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Abstract

A new approach to the regularized decomposition (RD) algorithm for two stage stochas-
tic problems is presented. The RD method combines the ideas of the Dantzig{Wolfe
decomposition principle and modern nonsmooth optimization methods.

A new subproblem solution method using the primal simplex algorithm for linear
programming is proposed and then tested on a number of large scale problems. The
new approach makes it possible to use a more general problem formulation and thus
allows considerably more freedom when creating the model. The computational results
are highly encouraging.
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1 Introduction

Let A be an m1 � n1 matrix, c 2 IRn1 and b 2 IRm1. Next, let T! be an m2 � n1 random
matrix and d! 2 IRm2 , ly! 2 IRn2 , uy! 2 IRn2 and q! 2 IRn2 be random vectors over a
probability space (
;B; P ); ! denotes an elementary event in this space. We consider the
following two-stage stochastic programming problem:

min
�
cTx+

Z
qT!y!P (d!)

�
(1:1)

subject to
Ax = b; (1:2)

lx � x � ux; (1:3)

and, for P -almost all ! 2 
,
T!x+Wy! = d!; (1:4)

ly! � y! � uy!: (1:5)

Here x 2 IRn1 denotes the deterministic �rst stage decision, while y! 2 IRn2 is the recourse
decision, which may depend on the elementary event ! 2 
.

There are many practical problems that lead to models of form (1.1)-(1.5). For exam-
ple, in the linear programming problem

min cTx

Mx = r;

lx � x � ux;

some coe�cients of the resource/demand vector r or some entries of the matrix M may
be uncertain. They can be modeled as random variables r(!) and M(!), but then the
constraints

M(!)x = r(!); ! 2 
;

�This research was partially sponsored by a grant of the Scienti�c Research Committee of Poland no.

3 P403 018 06.
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become prohibitively restrictive and usually impossible to satisfy for all realizations of the
random entries. By splitting the constraints into the deterministic and the random parts:

M(!) =

"
A

T!

#
; r(!) =

"
b

d!

#
;

and introducing corrective activities y! 2 IRn2 to take care of the random shortage/surplus
vector d! � T!x, we arrive to (1.1)-(1.5).

It should be stressed that the two stage stochastic programming problem is not just a
formal trick to correctly pose linear programs with uncertainty. It can be used to model
decision problems in which two types of decisions can be distinguished: deterministic ones,
which have to be determined before the uncertain quantitities are known, and \on-line"
decisions that can be dependent on the observation of uncertain data.

While there seems to be no doubt as to theoretical advantages of using models of form
(1.1)-(1.5), their solution is much more di�cult than for underlying deterministic models.
We shall focus our attention on problems with discrete distributions; approximation of
general distributions by discrete ones in stochastic programming is discussed in [2] and
[11].

Let 
 be �nite, 
 = f1; 2; : : : ; Lg, and let the realizations (T!; d!); ! 2 
, be attained
with probabilities p! > 0, (

P
!2
 p! = 1). Then (1.1)-(1.5) can be rewritten as a large

linear programming problem

min cTx + p1q
T
1 y1 + p2q

T
2 y2 + ::: + pLq

T
LyL

Ax = b;

T1x + Wy1 = d1;

T2x + Wy2 = d2;
...

. . .
...

TLx + WyL = dL;

(1:6)

lx � x � ux;

ly! � y! � uy!; ! = 1; 2; :::; L:

There are several reasons for studying (1.6) thoroughly.
First of all, it is the remarkable size that makes this problem di�cult from the practical

point of view. Stochastic programs are usually extensions of deterministic linear models,
so we should think of T! having size of a constraint matrix in a typical linear program, and
this size is multiplied in (1.6) by the number L of realizations of (T!; d!). For nontrivial
problems with many independent random factors causing the stochasticity of the entries
of T! and d!, L must be su�ciently large to re
ect this randomness in our model. As a
result, the dimension of (1.6) may go in hundreds of thousands.

Another di�culty is the possibility of ill-conditioning of (1.6). If the number of �rst
stage activities x in the optimal basis exceeds m1+m2, then the similarity of the realiza-
tions T!; ! 2 
, implies that the columns corresponding to these activities are close to
being linearly dependent (for T! � T singularity would occur).

A very rich literature is devoted to solution methods for problems of form (1.6) or their
duals. The �rst group of methods are variants of the simplexmethod which take advantage
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of the structure of the constraint matrix of (1.6) to construct compact representations of
the basis inverse and to improve pivotal strategies (cf, e.g., [23]). The second group
are linear decomposition methods coming down from the famous decomposition principle
of Dantzig and Wolfe [7] (see [5, 21]). Finally, there is a possibility of reformulating
(1.6) as a nonsmooth optimization problem and applying to it general non-di�erentiable
optimization algorithms (see, e.g., [9]).

In the regularized decomposition (RD) method, proposed for general large scale struc-
tured linear programming problems in [15], we combine the last two approaches: the
problem is stated as a nonsmooth optimization problem, but for the purpose of solving
it we modify the general bundle method introduced in [13] (and further re�ned in [12]
and many other works, see [9]) by taking full advantage of problem's structure. As a
result, a �nitely convergent non-simplex method for large structured linear programs can
be obtained.

The main purpose of our paper is to specialize the regularized decomposition method to
stochastic problems with recourse. We present various techniques developed for exploiting
speci�c structural properties of stochastic programs and for mitigating the computational
e�ort. In particular, a new subproblem solution technique is presented, which takes
advantage of the similarity of the subproblems. Finally, results of some computational
tests are described, which show that the method is capable of solving stochastic programs
of considerable size.

2 The RD method

2.1 Outline

It can be readily seen that if x is �xed in (1.6) then minimization with respect to
y1; y2; ::; yL can be carried out separately. This leads to the following two-stage formulation

min

"
F (x) = cTx+

X
!2


p!f!(x)

#
(2:1)

subject to
x 2 X0 = fx : Ax = b; lx � x � uxg; (2:2)

x 2 X! for ! 2 
; (2:3)

with f!(x) de�ned as the optimal value of the second stage problem:

f!(x) = min
n
qT!y j Wy = d! � T!x; l

y
! � y � uy!

o
; (2:4)

and with
X! = fx : f!(x) <1g:

We introduce condition (2.3) explicitly to the problem formulation, because we are going
to use separate approximations of f! and of their domains X!.

The functions f! are convex and polyhedral and the sets X! are convex closed poly-
hedra [22]. Thus (2.1){(2.3) can in principle be solved by a method for piecewise linear

3



problems or by a general algorithm for constrained nonsmooth optimization. Although
the pieces of f! and the facets of X! are not given explicitly, it is possible to extract from
the subproblems (2.4) at successive points xk; k = 1; 2; : : : ; information about the piece
of f! or facet of X! active at xk. If f!(xk) <1 an objective cut can be obtained:

f!(x) � �k! + (gk!)
Tx: (2:5)

If the subproblem is infeasible, one can obtain information about a constraint (��j!; �g
j
!)

de�ning X! and violated at xk: a feasibility cut

��k! + (�gk!)
Tx � 0: (2:6)

The pieces (cuts) collected so far can be used to construct lower approximations of the
functions f!,

f!(x) � �f!(x) = maxf�j! + (gj!)
Tx; j 2 J!g;

and outer approximations of the sets X!

X! � �X! = fx : ��j! + (�gj!)
Tx � 0; j 2 �J!g;

J! and �J! are some selected subsets of f1; 2 : : : ; kg.
Crucial questions that arise in this respect are the following:

� how are the successive points xk generated?

� how are the cuts at xk constructed?

� how are the approximations �f! and �X! updated?

The most natural method for generating successive points xk is to solve the linear
approximation of (2.1)-(2.3) constructed on the basis of currently available information:

min
x2 �X

"
�F (x) = cTx+

X
!2


p! �f!(x)

#
; (2:7)

where

�X = X0 \

 \
!2


�X!

!
:

After solving (2.7) we obtain cuts at the current solution, add them to the sets of cuts
used previously, solve (2.7) again, etc..

The cutting-plane approach, however, has well-known drawbacks. Initial iterations can
be ine�cient. The number of cuts increases after each iteration and there is no reliable
rule for deleting them. The master problem (2.7) is sensitive with respect to changes in
the set of cuts and its conditioning is getting worse when approaching the solution.

For these reasons, in the RD method the linear master (2.7) is modi�ed by adding to
its objective a quadratic regularizing term:

min
x2 �X

"
�(x) =

1

2�
kx� �kk2 + cTx+

X
!2


p! �f!(x)

#
: (2:8)
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Here �k is a certain reference point, and � is a positive parameter. This modi�cation
stabilizes the master and makes it possible to delete inactive cuts so that the size of (2.8)
is limited. It also facilitates using advanced starting points.

Instead of constructing separate approximations for all f! in (2.7), we can also work
with a piecewise linear approximation of their weighed sum f(x) =

P
!2
 p!f!(x), as it

was originally suggested in the L-shaped method of Van Slyke and Wets [21] and general
bundle algorithms (see [9] and [12]). This would mean constructing objective cuts for f by
averaging (with the weights p!) the objective cuts for f!. We use here more complicated
separate approximations, because aggregation of cuts may slow down convergence of the
method, as it was observed in [15] (this idea was also analyzed in [1]). We shall show that
it is possible to e�ciently process separate approximations for each f! by exploiting the
structural properties of (2.8).

2.2 Logic

The method generates two sequences: a sequence �k of reference points and a sequence
xk of trial points. Each iteration of the method consists in updating and solving the reg-
ularized master problem (2.8), which can be equivalently stated as follows. We introduce
variables v! , ! 2 
, to represent �f!(x) by inequalities involving objective cuts:

(gj!)
Tx+ �j! � v!; j 2 Jk!; ! 2 
:

Using explicit formulations of feasibility cuts (2.6) and putting all the cuts together we
can rewrite the master (2.8) in a more compact form

min
�
1

2�
kx� �kk2 + cTx+ pTv

�
(2:9)

subject to
(Gk)Tx+ ak � (Ek)Tv: (2:10)

The set of constraints (2.10) (so called bundle) comprises in general three groups of cuts:

(a) selected direct constraints from (1.2)-(1.3);

(b) selected feasibility cuts (2.6) collected at some previously generated trial points
xj; j 2 �Jk! � f0; 1; ::; kg; ! 2 
;

(c) selected objective cuts (2.5) collected at some previously generated trial points
xj; j 2 Jk! � f0; 1; ::; kg; ! 2 
.

Thus each column of the matrix Ek in (2.10) is either a null vector, if the cut is of class
(a) or (b), or the l-th unit vector if the cut belongs to class (c) and approximates fl(x).
There are never more than n+ 2L cuts in the bundle.

When solving (2.9)-(2.10), we shall always ensure that the constraints correspond-
ing to positive Lagrange multipliers are linearly independent; they will be called active

constraints.
There are two phases of the method. At Phase 1 we seek a point which satis�es (2.2)-

(2.3). It serves then as a starting point for Phase 2, where we aim at solving (2.1)-(2.3).
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Since the Phase 1 algorithm is in fact a special case of the main Phase 2 method, we shall
now describe in detail the latter.

Let �0 be a starting reference point satisfying (2.2)-(2.3) and let the initial bundle be
given by

G0 =
h
g1 � � � gL

i
; a0 =

2
664
�1
...
�L

3
775 ; E0 = I =

2
664
1

. . .

1

3
775 ;

with (g!; �!) describing objective cuts at �0 for ! 2 
. The bundle may (but need not)
contain also some constraints from (2.2) and some feasibility cuts of form (2.6) inherited
from Phase 1.

RD ALGORITHM

Step 1. Solve the master at �k getting a trial point xk and objective estimates vk and
calculate F̂ k = cTxk + pTvk. If F̂ k = F (�k), then stop (optimal solution found);
otherwise continue.

Step 2. Delete from the bundle some members inactive at (xk; vk) so that no more than
n1 + L members remain.

Step 3. If xk satis�es (2.2) then go to Step 4. Otherwise add to the bundle no more than
L violated constraints, set �k+1 = �k, increase k by 1 and go to Step 1.

Step 4. For ! 2 
 solve (2.4) at xk.

(a) If the constraints of (2.4) are inconsistent then append to the bundle the fea-
sibility cut (2.6);

(b) else if f!(xk) > vk! then append to the bundle the objective cut (2.5).

Step 5. If all subproblems were solvable then go to Step 6, else set �k+1 = �k and go to
Step 7.

Step 6. If F (xk) = F̂ k or F (xk) < F (�k) and exactly n + L members were active at
(xk; vk) then set �k+1 = xk; otherwise set �k+1 = �k .

Step 7. Increase k by 1 and go to Step 1.

If the starting reference point is not feasible, we can put into the starting bundle
arti�cial cuts v! � �C, where C is a very large constant, for all the functions f!(x) for
which objective cuts are not yet available, and set F (�) = +1.

It follows from the theory developed in [15] that after �nitely many steps the method
either discovers inconsistency in (2.1)-(2.3) or �nds an optimal solution. Our proof for
the case p = [ 1 1 : : : 1 ]; � = 1 can be trivially extended to arbitrary p > 0; � > 0. It is
worth mentioning that the �nite convergence property does not require any additional non-
degeneracy assumptions typical for general cutting plane methods and bundle methods
(see [20, 12]).
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Few comments concerning implementation of Algorithm 1 are in order. The number
of bundle members may vary between L and n1 + 2L, but in fact only cuts generated
at Step 4 need be stored. If the number of linear constraints in (2.2) is large, various
strategies can be used at Step 3, similarly to pricing strategies in linear programming.
Finally, one can control the penalty coe�cient � on line, increasing it whenever steps are
too short, and decreasing � when F (xk) > F (�k) (see section 5).

2.3 Critical scenarios

To solve the regularized master problem an active set strategy can be used [15]. At each
iteration we select a subset of constraints (2.10), de�ned by some submatrices G, a and E

of Gk, ak and Ek, such that E is of full row rank (at least one cut for each f! ) and

"
G

E

#

is of full column rank. We treat these cuts as equalities and solve the resulting equality
constrained subproblem by solving the system of its necessary and su�cient conditions of
optimality

E� = p; (2:11)

ETv + �GTG� = GT (� � �c) + a (2:12)

(for simplicity we drop the superscript k). The solution is given by

x = � � �(c+G�): (2:13)

In the method we alter the active set by adding or deleting cuts until the solution is
optimal for (2.9)-(2.10).

Let us look closer at the structure of the set of active constraints in the problem (2.9)-
(2.10), and in particular - at the numbers �(!) of active objective and feasibility cuts for
each scenario ! 2 
. We de�ne the degree of criticality �(!) of scenario ! 2 
 as the
number its active cuts decremented by one,

�(!) = �(!) � 1:

Clearly, the degree of criticality of each scenario is non-negative, because there must be
at least one objective cut for each ! 2 
 in the active set. A scenario ! 2 
 is called a
critical scenario if it has a positive degree of criticality.

Critical scenarios play a special role in the method. Indeed, if a scenario ! is not
critical, its recourse cost f!(�) is represented in the active set by a singe objective cut

v! � (gB!)
Tx+ �B! = �f!(x):

Thus, at this point it is su�ciently well approximated by a linear function �f!(�). This
allows for an analytical elimination of the scenario ! from the master problem; just the
linear part c of the objective function needs to be modi�ed. Consequently, only critical
scenarios substantially contribute to the complexity of the master problem.

The number of critical scenarios and the sum of their degrees of criticality can be
easily bounded by a number which does not depend on the total number of scenarios L.
Indeed, the number of active constraints in (2.9)-(2.10) does not exceed n1+L and there
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must be at least one active feasibility cut for each ! 2 
. Therefore the total degree of
criticality of all scenarios

� =
X
!2


�(!)

does not exceed n1 � �0, where �0 � 0 be the number of active direct constraints from
(2.2).

Clearly, � is also an upper bound on the number of critical scenarios, because degrees
of criticality are non-negative. It is worth noting once again that the bound � does not
grow with L; if L� n1��0 then the vast majority of scenarios are non-critical. Although
we do not know which scenarios are critical (at the current point), but the knowledge,
that such a set exists and is small, facilitates the solution. Roughly speaking, we try to
guess the critical set and iteratively update it until the correct set is found.

Formally, we select for each scenario one active cut and call it a basic cut. The basic
cuts form the system

GT
Bx+ aB = v (2:14)

of dimension L. Other active cuts, which occur only for critical scenarios will be called
nonbasic. Rearranging the order of cuts so that the basic cuts appear �rst we shall have
E =

h
I N

i
. The nonbasic cuts form the system

GT
Nx+ aN = NTv (2:15)

of dimension m. Subtracting (2.14) multiplied by NT from (2.15) yields reduced cuts:

ĜTx+ â = 0; (2:16)

where Ĝ = GN � GBN and â = aN � NTaB. In other words, each critical scenario is
represented by the di�erences between its nonbasic cuts and its basic cut.

Next, partitioning � into

"
�B
�N

#
, we can use (2.14){(2.16) to eliminate v and �B from

(2.11){(2.12), which yields
�ĜT Ĝ�N = ĜTxB + â; (2:17)

where xB = ���(c+GBp) is the solution implied by basic cuts alone. The other unknowns
in (2.11)-(2.12) are de�ned by �B = p �N�N and x = xB � �Ĝ�N .

In this way the large system of necessary and su�cient conditions of optimality has
been reduced to a relatively small system (2.17) whose order m never exceeds the number
of �rst stage variables n1, independently of the number of realizations taken into account.
This is a substantial improvement over the linear programming formulation (1.6).

Our approach is close in spirit to the generalized upper bounding (GUB) technique
applied to the dual of the master problem (2.9)-(2.10) (see [6]), because (2.11) is a collec-
tion of GUB constraints. Using this connection, we can interpret non-critical scenarios as
those for which the matrixW in the extended form (1.6) can be replaced by some locally
stable basis matrix B!, which reduces the block ! to a system of equations. Critical
scenarios still have to be represented by (reduced) linear programs.

The system (2.17) can be solved by QR factorization (cf. e.g. [4]). We can also update
the solution each time the active set is revised or � is changed by Algorithm 1. Since the set
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of critical scenarios may change, a number of special transformations need be developed
to take full advantage of our reduced formulation. They are specialized versions of general
techniques for updating the QR factorization (see [16] for the details).

3 Solving subproblems

3.1 A penalty-based primal simplex method

The general form of a subproblem is

min qTy (3:1)

Wy = h

l � y � u;
(3:2)

where q, W , l, u and h assume for ! 2 
 the values q!, W!, ly!, u
y
! and d! � T!x

k. Let us
observe that only the recourse matrix W is �xed, when the scenario ! or the upper level
solution xk change.

A modi�ed version of the primal simplex algorithm has been devised in order to make
it possible to solve a long sequence of such problems in an e�cient way. In this section we
shall highlight those features that are most important for the regularized decomposition
scheme (see [19] for the details).

The method uses an exact penalty approach to de�ne a penalty problem

minqTy +M
m2X
i=1

jtij (3:3)

s. t.
Wy + It = h;

l � y � u;
(3:4)

in which a vector t of arti�cial variables is introduced, I denotes an identity matrix and
M is a positive penalty factor.

The method starts the calculations from an arbitrary starting point y0, l � y0 � u.
Without loss of generality we assume here that t0 = h � Wy0 is nonnegative. Then
problem (3.3){(3.4) is transformed into a linear program

min
h
qTy +MeT t

i
(3:5)

s. t.
Wy + It = h;

l � y � u;

t � 0;
(3:6)

where eT = [1 1 : : : 1].
At each iteration the current state of the method is de�ned by the following objects: a

quadratic nonsingular basic matrix B = [WB IB] of dimension m2, and a primal solution
(y; t) which satis�es the constraints (3.6). It is not required that the values of the nonbasic
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variables yN and tN (corresponding to the partsWN and IN of the constraint matrix, which
are not included into the basis matrix) are at their bounds.

For each solution we de�ne the dual vector � as

�T = [qTB MeTB]B
�1; (3:7)

where qB and eB denote the subvectors of q and e corresponding to the columns of the
basis matrix.

The method proceeds in a usual way, by determining reduced costs for the structural
variables � = q � W T� and for the arti�cials � = Me � �. They are used to select a
nonbasic variable to be moved and its direction of change. Then the direction of changes
of the basic variables is determined. If the seleted nonbasic variable hits its bound, a
new nonbasic variable is selected, etc. If a basic variable hits its bound �rst, the basis is
changed. An arti�cial variable hitting zero is �xed there by making its both bounds equal
to zero.

We need to notice a few relations between problems (3.1){(3.2) and (3.5){(3.6):

1. if (3.5){(3.6) has an optimal solution in which t = 0, then (y; �) constitutes an
optimal primal-dual solution pair for (3.1){(3.2),

2. if (3.1){(3.2) is infeasible then any solution to (3.5){(3.6) will have t � 0, t 6= 0,

3. if (3.1){(3.2) is dual infeasible, so is (3.5){(3.6).

Additionally, there are two potential problems that may only occur when M is too small:

1. problem (3.1){(3.2) is feasible but the optimal solution to (3.5){(3.6) has t � 0,
t 6= 0,

2. problem (3.1){(3.2) is dual feasible but (3.5){(3.6) is not.

In both cases a penaltyM0 exists such that for anyM > M0 neither of those problems
will occur (see, e.g., [19]). The task of �nding such M0, or rather some M known to be
greater than or equal to M0 is solved as follows.

If the simplex algorithm terminates by indicating unboundedness at iteration at which
variable yj is selected to move, we try to �nd such value of M that the corresponding
reduced cost �j changes its sign (and thus yj ceases to be an attractive candidate). To
achieve this we divide the basic cost vector into two parts: one that depends on the

penalty, M

"
0
eB

#
, and one that does not,

"
qB
0

#
. By (3.7), the reduced cost �j is then

expressed as
�j = qj �

�
M
h
0 eTB

i
+
h
qB 0

i�
B�1wj; (3:8)

where B is the current basis matrix. Determining whether a penalty M0 exists for which
�j changes sign is now a matter of simple arithmetics. If it doesn't exist (i.e., �j does
not depend on M) the problem is declared unbounded. For an arti�cial variable ti in an
analogous way one can determine for which values of the penalty coe�cient the reduced
cost

�i = M �
�
M
h
0 eTB

i
+
h
qB 0

i�
B�1ei (3:9)
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becomes non-positive.
Similarly, if the simplex algorithm terminates and produces an optimal solution (ŷ; t̂)

in which t̂ 6= 0, we determine whether an increase of M will revive the method. We apply
the formulae (3.8) and (3.9) again, but this time all non-basic variables are considered.
If t̂ 6= 0 and no pro�table reduced cost can be produced by increasing M , the original
problem is declared infeasible.

Additionally, for reasons that will be made clear in Section 3.4, if the problem is found
to be infeasible, all non-zero arti�cial variables are forcibly moved into the basis. It is
done by performing a number of degenerate iterations.

Owing to the dynamic penalty control criteria described here, the penalty can be
initially set to a relatively small value. Experience shows that it needs to be adjusted very
rarely (see [19] for detailed analysis and numerical results). This practically eliminates
the main drawback of the penalty approach: numerical di�culties due to the introduction
of very large numbers.

3.2 Restart procedure

The subproblem solver can restart from numerical values ŷ after arbitrary changes to
some or all of the vectors q, l, u and h associated with the subproblem. It needs to be
stressed that the method can restart from any combination of a non-singular basis and
an initial solution.

The restart procedure has three phases. First, the current solution is made feasible
with respect to the simple bounds l and u by the projection

y0j =

8><
>:

ŷj if lj � ŷj � uj
lj if ŷj < lj
uj if ŷj > uj

j = 1; : : : ; n:

In the second phase the new value of the arti�cial variable vector t0 = h � Wy0 is
computed. The last phase, which is not necessary, but often helps, consists of shifting the
variables y0j within the intervals [lj; uj] so as to decrease the Euclidean norm kt0k. A one
dimensional optimization problem

min
lj�yj�uj

kt0 � wj(yj � y0j )k
2

is solved for each column wj, j = 1; : : : ; n of W , followed by possible updates of y0j and t
0.

The values of y0 and t0 thus obtained are passed to the simplex method as the starting
point.

3.3 The initial solution

The regularized decomposition method requires that at each major iteration L subprob-
lems be solved. At the �rst major iteration one has no choice but restart a subproblem
!k from the �nal (optimal or infeasible) solution to some other subproblem !l, l < k.
Exactly one subproblem needs to be solved from a \cold start", while all others may be
restarted.

However, from the second major iteration on two possibilities are available.
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1. Repeat the abovementioned scheme (as in [16]).

2. For each subproblem use its own solution from the previous iteration as a new
starting point.

This is an important choice to make. A fundamental di�erence is such that in case 1
one always has to deal with possible changes of l, u, q and h while in case 2 only the right
hand side h changes between the major iterations (due to the variation of the �rst stage
variables x transferred to the subproblems by the technology matrix T!k). It is easy to
see that the scenario-dependent di�erences of l, u, q and d remain constant throughout
the computation process. But as the method converges, the di�erences between the
consecutive trial points xk decrease and so do the di�erences between solutions to the
same subproblem. Indeed, as we recall from the interpretation of non-critical scenarios,
the majority of subproblems have locally stable bases and need little or no updating of
their solutions.

Additionally, it is clear that case 2 is convenient for truly coarse-grain parallel compu-
tations. Each subproblem may be solved and re-solved independently of others, possibly
in a separate processing node and with negligible communication overhead (a vector of
�rst stage variables must be broadcast at each major iteration and a cut is sent back from
each subproblem afterwards).

3.4 Generating cuts

The coordination algorithm constructs an outer approximation of an epigraph of each
subproblem's objective function f!(x).

Optimality cuts

If f!(xk) < 1 then the algorithm for determining the penalty coe�cient M guarantees
that t̂ = 0 at the solution of (3.5){(3.6). Therefore

f!(xk) = qT ŷ +MeT t̂

= qTBŷB +MeTB t̂B + qTN ŷN

= [qTB MeTB]B
�1
�
d! � T!x

k �NŷN
�
+ qTN ŷN

= �̂T
�
d! � T!x

k �NŷN
�
+ qTN ŷN :

Since the optimal basis is dual feasible, at any other point x

f!(x
k) � �̂T (d! � T!x�NŷN) + qTN ŷN : (3:10)

Indeed, if the bounds on yB and tB were removed from problem's formulation, equality in
(3.10) would occur.

Consequently, to obtain the standard form of the optimality cut (2.5) we compute

gk! = �T T
! �̂ (3:11)

and
�k! = f!(x

k)� (gk!)
Txk. (3:12)
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Feasibility cuts

Let us assume that subproblem ! has been found infeasible. In such case all non-zero
arti�cial variables are in the �nal basis, i.e. t̂N = 0. Thus

B

"
ŷB
t̂B

#
+NŷN = d! � T!x

k: (3:13)

Let t̂i, t̂i > 0 be the arti�cial variable with the largest value. Multiplying (3.13) by the
inverse of the basis matrix and by the ith unit vector ei we obtain

t̂i = eTi B
�1
�
d! � T!x

k �NyN
�
.

A change �x = xk � x of the trial point xk has to be such that ti is reduced to zero.
Therefore we require that

t̂i � eTi B
�1T!x

k + eTi B
�1T!x � 0.

The above formula is a standard form of a feasibility cut (2.6) in which

(�gk!)
T = eTi B

�1T!

and
��k! = ti � (�gk!)

Txk.

4 Crash

The crash algorithm attempts to �nd easily and cheaply an approximate solution to the
stochastic problem. This solution then becomes the starting point for the regularized
decomposition.

Benders (L-shaped) decomposition techniques [21] can hardly take much advantage of
an advanced starting point. The initial iterations of those methods may escape far away
from any starting point which might be given to them. In case of the RD method the
objective of the quadratic master problem is equipped with a regularizing term (in this
context calling it a proximal term might be more appropriate). The value of the penalty
coe�cient (1=2�) from the formula (2.8) allows us to control the steplength. Normally,
when no starting information is available, it is initialized with a relatively small value.
Thus the method may reach a neighborhood of the optimum in only a few steps. However,
if approximate values of the �rst stage variables are available, we may start the method
with a much larger penalty and thus tell it to search the neighborhood of the initial
solution �rst.

Note, that this means that the RD algorithm is capable of restarting after some changes
to the stochastic model, e.g., re�nement of discretization of the random variable distribu-
tions, addition of new constraints, generation of more scenarios, etc.

The crashing method is very simple indeed. A deterministic two stage linear program

min cTx+ qTDy (4:1)
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s. t.
Ax = b

TDx+Wy = dD
lx � x � ux

l
y
D � y � u

y
D

(4:2)

is solved with the revised simplex method. In (4.1){(4.2) the matrix TD and vectors qD,
dD, l

y
D and u

y
D may represent the expected values of the random variables, may be a

randomly chosen realization or may correspond to the most likely scenario. The starting
point chosen in this way does not have to be feasible; the RD method accepts infeasible
starting points.

5 Numerical results

The development of a specialized implementation of the algorithms, ideas and techniques
was accompanied by extensive computational experiments aimed at assessment of the
usefulness of these techniques. A series of numerical tests have been performed on a
number of small, medium and large problems. Table 5 presents a summary of the two-
stage problems used.

Problem called snn represents a network planning model with random demand [18]. It
has 85 independent random variables, each of which has �ve to ten possible realizations.
The total number of scenarios is far too huge to even consider taking them all into account
(around 1070). As it is commonly done in such cases, we have decided to take random
samples of 10, 50, 100, 500 and 1000 scenarios.

Problem storm is a stochastic aircraft scheduling and transportation problem [14] with
118 independent random variables having �ve possible realizations each. It has a total of
3 � 1082 scenarios.

Problems fxm2, pltexpA2, stormG2 come from a collection of stochastic linear test
problems of [10], where further details about their background can be found.

All the experiments with the RD code were done on a CRAY 6400 SuperServer multi-
processor. The code is so far entirely sequential. It was compiled with a non-parallelizing
GNU C++ compiler and was always run on a single computation node equipped with a
Sparc RISC processor. All times are given in seconds of sequential CPU work as reported
by the Solaris operating system function times().

The default version of the method contained the following features:

� Crash procedure based on the expected value problem.

� Restart of each subproblem from its basis and its solution at the previous iteration.

� Initial penalty coe�cient in the master 1=� = 1.

� Update of the penalty parameter � according to the rules (
 = 0:9):

{ if F (xk) > 
F (�k) + (1 � 
)F̂ k ("null step") then decrease �;

{ if F (xk) < (1� 
)F (�k) + 
F̂ k ("exact serious step") then increase �;
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{ otherwise ("approximate serious step") keep � unchanged.

Coe�cients 0.5 and 2 were used to decrease/increase �.

The primal and dual accuracy in the subproblem solver was 10�8, and the master
accuracy (in terms of the errors of the objective value predicted by the cuts) was 10�8,
too.

The results are collected in Table 2. We see that the number of master iterations
practically does not grow when the number of scenarios increases, and that our penalty
control mechanism preserves reasonable proportions between serious and null steps. For
problems fxm2 and pltexpA2 the crash procedure found the optimal solution, and a
series of null steps was necessary to collect cuts su�cient to prove optimality. The restart
procedure in subproblems seems to be rather successful, too. Many simplex iterations
were simple steps in which the values of variables were updated without changes in the
basis. The number of basis updates per subproblem per iteration was very small in all
cases (the largest proportion was 7 in ssn with 1000 scenarios). Finally, it is worth noting
that the total solution time was far below the costs of solving these problems by earlier
methods, especially for large problems.

In Table 3 the �nal values of the penalty coe�cient 1=� are shown. We see that
our rules for updating the penalty successfully adapt it to the shape of the function
considered. In ssn the objective function is very 
at and therefore the penalty converged
to a relatively small number.

Figure 1 illustrates (in the logarithmic scale) the objective error at succesive iterations
for the most di�cult problem ssn with 1000 scenarios in the default case. Note that at
null steps the objective value increases and that the last step was a null step. It is worth
observing that the method behaves in a rather regular way.

Figure 2 shows the number of critical scenarios in succesive iterations for the most
di�cult problem ssn with 1000 scenarios. We see that it is very small compared to the
total number of scenarios and to the theoretical sizes of the master predicted by the
theory. This feature is one of the main reasons for the good performance of the RD
method for large problems and virtually negligible costs incurred in the master itself.
Since the master is the only non-parallelizable part of the RD method, there are reasons
to expect good performance of our approach in truly parallel computing environments.
In other problems the number of critical scenarios was even smaller and never exceeded
10.

The next series of experiments aimed at assessing the value of various new techniques
introduced into the method.

Table 4 shows the performance of other versions of the method relative to the default
version. Threee modi�ed versions were tested.

1. The penalty coe�cient 1=� = 0:01.

2. Each subproblems restarted from the optimal solution of the previous subproblem,
instead of its own optimal solution at the previous upper level iteration.

3. Crash option disabled.
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Name Scena- Stage 1 Stage 2 Deterministic LP Master

rios Rows Columns Rows Columns Rows Columns Rows Columns

fxm2 6 92 114 238 343 1520 2172 104 126

16 3900 5602 124 146

pltexpA2 6 62 188 104 272 686 1820 74 200

16 1726 4540 94 220

ssn 10 1 89 175 706 1751 7149 21 109

50 8751 35389 101 189

100 17501 70689 201 289

500 87501 353089 1001 1089

1000 175001 706089 2001 2089

storm 10 1290 121 526 1259 6550 12711 1310 141

50 27590 63071 1390 221

100 53890 126021 1490 321

500 264290 629621 2290 1121

1000 527290 1259121 3290 2121

stormG2 8 187 121 526 1259 4395 10193 203 137

27 14389 34114 241 175

125 65937 157496 437 371

1000 526187 1259121 2187 2121

Table 1: Two stage test problems { the summary.

Problem Scenarios Master Iterations Simplex Iterations Time
Total Null Serious Total Simple Full

fxm2 6 10 10 0 814 482 332 7.6
16 11 11 0 1462 686 776 14.1

pltexpA2 6 7 7 0 941 469 472 5.3
16 7 7 0 2490 1220 1270 7.1

ssn 10 21 1 20 9789 2900 6889 19.1
50 41 3 38 118546 29934 88612 216.3
100 34 2 32 234637 63618 171019 427.4
500 95 21 74 2344477 354073 1990404 3837.0
1000 110 34 76 5388854 755128 4633726 8575.3

storm 10 18 9 9 4212 2477 1735 30.8
50 33 13 20 24389 11193 13196 171.2
100 33 11 22 47427 20193 27234 326.2
500 42 18 24 250992 87377 163615 1851.7
1000 43 19 24 506109 176875 329234 3834.9

stormG2 8 21 7 14 3850 2274 1576 26.4
27 25 10 15 12724 7294 5430 83.2
125 36 16 20 61955 29180 32775 443.4
1000 37 14 23 489147 171734 317413 3389.2

Table 2: Performance of the default version of the method.
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Problem Scenarios Final Penalty
fxm2 6 1.600E+01

16 3.200E+01
pltexpA2 6 1.000E+00

16 1.000E+00
ssn 10 9.766E-04

50 9.766E-04
100 1.953E-03
500 3.906E-03
1000 1.953E-03

storm 10 5.000E-01
50 3.125E-02
100 7.813E-03
500 6.250E-02
1000 7.813E-03

stormG2 8 5.000E-01
27 1.250E-01
125 6.250E-02
1000 1.250E-01

Table 3: Final penalty.

Iteration
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1,00E+00

1,00E+02

0 20 40 60 80 100 120

Figure 1: Objective error in the 1000-scenario version of ssn. Non-monotonicity occurs
at null steps.
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Figure 2: Critical scenarios in the 1000-scenario version of ssn.

Problem Scena- Small Penalty Cyclic Restart No Crash

rios Master Simplex Time Master Simplex Time Master Simplex Time

fxm2 6 1.00 1.24 1.09 1.00 0.56 0.86 6.30 5.52 4.95

16 1.27 1.88 1.45 1.00 0.38 0.83 7.00 9.95 6.11

pltexpA2 6 1.00 1.00 1.02 1.00 0.89 1.17 26.86 33.15 10.43

16 1.00 1.00 1.01 1.29 0.96 1.30 45.29 39.90 26.00

ssn 10 0.52 0.88 0.93 1.00 3.49 5.03 0.71 1.35 1.55

50 0.83 0.77 0.83 1.00 2.95 4.84 0.83 0.88 1.07

100 0.83 0.77 0.83 1.29 3.35 6.29 1.03 1.02 1.08

500 0.91 0.86 0.87 1.04 3.83 8.03 0.97 0.93 1.06

1000 1.15 1.07 1.06 0.95 3.55 6.83 1.57 1.32 1.35

storm 10 1.56 3.05 2.43 1.39 7.34 2.99 2.06 2.77 2.33

50 0.94 2.41 1.90 0.85 7.15 2.69 0.88 2.20 1.84

100 1.27 2.50 2.12 1.15 9.84 3.79 1.03 2.51 2.11

500 1.02 2.33 1.86 1.10 11.01 3.85 1.12 2.31 1.91

1000 1.16 2.38 1.94 0.91 9.17 3.05 1.30 2.45 2.06

stormG2 8 1.38 2.45 2.14 1.10 5.27 2.75 0.95 1.97 1.67

27 1.16 2.54 2.13 1.08 4.51 2.16 0.76 2.17 1.89

125 0.86 2.28 2.62 0.81 3.46 1.32 0.78 2.09 1.78

1000 0.86 2.26 2.10 1.16 4.38 1.60 0.81 2.21 1.77

Table 4: Performance of other versions of the method relative to the default.
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In the method with small penalty our penalty adjustment mechanism incrased it after
some time, but the costs incurred in this transition period were substantial: the total time
was ca. 50% higher than in the default case. It is worth noting that the costs were mainly
located in the simplex method; a smaller penalty in the master implied longer trial steps
and larger di�erences in the subproblems in successive iterations. Smaller penalty helped
in ssn, where the objective is extremely 
at (cf. Table 3).

In the version without self restarts the solution time was on average 3 times higher,
and the increase of the costs was again concentrated in the subproblem solver. The reason
for this is simple: when a subproblem is restarted from its own optimal solution at the
previous steps, the number of simplex steps decreases, because the �rst stage decision are
convergent to the solution, so the di�erences between the successive versions of the same
subproblem diminish. On the other hand, the di�erences between distinct subproblems
remains, even if x does not change at all.

The method with the crash option disabled is about 4 times worse than the default
version. The increase of the costs follows mainly from the increase of the number of master
iterations, which implies more subproblem calls, and more simplex iterations, especially
at the initial iterations.
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Figure 3: Simplex iterations in the 1000-scenario version of stormG2.

All these e�ects are best seen on the 1000-scenario problem stormG2, as illustrated in
Figure 3.

Summing up, the seems to be little doubt as to the advantages o�ered by the enhance-
ments discussed in this paper.
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6 Conclusions

The regularized decomposition method appears to be a rather e�cient tool for solving
large scale two-stage stochastic programming problems. Its e�ciency is due to the follow-
ing features.

1. The quadratic regularizing term stabilizes the master problem and facilitates the
accumulation of information about the shape of the function around the current
point. It also allows to use advanced starting points generated by a crash procedure.

2. The use of separate approximations for scenario subproblems instead of aggregate
(averaged) cuts speeds up convergence owing to the better description of the recourse
function.

3. The special algorithm for solving the master problem based on dynamic selection
of critical scenarios reduces it to a small numerical core whose size does not depend
on the number of scenarios.

4. The penalty-based simplex method allows quick hot starts and reoptimization of
the subproblems. In non-critical scenarios the re-optimization is quickly reduced to
simple updates of the values of variables without the changes of the basis.

The numerical experience gathered so far indicates that the regularized decomposition
method has a potential for solving very large stochastic programming problems. It can
also be easily parallelized.

20



References

[1] J. R. Birge and F. V. Louveaux. A multicut algorithm for two-stage stochastic linear
programs. European Journal of Operations Research, 34:384{392, 1988.

[2] J. R. Birge and Roger J.-B. Wets. Designing approximation schemes for stochastic
approximation problems, in particular for stochastic programs with recourse. Math-

ematical Programming Study, 27:54{102, 1986.

[3] CPLEX Optimization, Incline Village. Using the CPLEX Callable Library and

CPLEX Mixed Integer Library, 1993.

[4] J. W. Daniel et al. Reorthogonalization and stable algorithms for updating the
Gram{Schmidt QR factorization. Mathematics of Computation, 30:772{795, 1976.

[5] G. Dantzig and A. Madansky. On the solution of two-stage linear programs under
uncertainty. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics

and Probability, pages 165{176, Berkeley, 1961. University of California Press.

[6] G Dantzig and R. Van Slyke. Generalized upper bounding techniques. Journal of

Computer System Science, 1:213{226, 1967.

[7] G. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations

Research, 8:101{111, 1960.

[8] H.I. Gassmann. MSLiP: A computer code for the multistage stochastic linear pro-
gramming problem. Mathematical Programming 47 (1990) 407-423.

[9] J.-B. Hiriart-Urruty and C. Lemar�echal. Convex Analysis and Minimization Algo-

rithms. Springer-Verlag, Berlin, 1993.

[10] D. Holmes. A collection of stochastic programming problems. Technical Report 94-11,
Department of Industrial and Operations Engineering, The University of Michigan,
Ann Arbor 1994.

[11] P. Kall, A. Ruszczy�nski, and K. Frauendorfer. Approximation techniques in stochas-
tic programming. In Y. Ermoliev and R. J.-B. Wets, editors, Numerical Techniques
for Stochastic Optimization, pages 33{64. Springer{Verlag, Berlin, 1988.

[12] Krzysztof C. Kiwiel. Methods of Descent for Nondi�erentiable Optimization.
Springer{Verlag, 1985.

[13] C. Lemar�echal. Nonsmooth optimization and descent methods. Research Report 4{
78, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1978.

[14] J.M. Mulvey and A. Ruszczy�nski. A new scenario decomposition method for large-
scale stochastic optimization. Operations Research 43(1995) 477-490.

[15] A. Ruszczy�nski. A regularized decomposition method for minimizing a sum of poly-
hedral functions. Mathematical Programming, 35:309{333, 1986.

21



[16] A. Ruszczy�nski. Regularized decomposition of stochastic programs: algorithmic tech-
niques and numerical results. Working Paper WP-93-21, International Institute for
Applied Systems Analysis, Laxenburg, 1993.

[17] A. Ruszczy�nski. On the regularized decomposition method for stochastic program-
ming problems, in: Stochastic Programming: Numerical Techniques and Engineering

Applications. K. Marti and P. Kall (eds.), Lecture Notes in Control and Information

Sciences 423(1995), Springer-Verlag, Berlin 1995, pp. 93-108.

[18] S. Sen, R.D. Doverspike and S. Cosares. Network planning with random demand,
technical report, Department of Systems and Industrial Engineering, University of
Arizona, Tucson, 1992.

[19] A. �Swie
,
tanowski. A penalty based simplex method for linear programming. Working

Paper WP-95-005, International Institute for Applied Systems Analysis, Laxenburg,
Austria, 1995.

[20] J. M. Topkis. A cutting plane algorithm with linear and geometric rates of conver-
gence. Journal of Optimization Theory and Applications, 36:1{22, 1982.

[21] R. Van Slyke and R. J.-B. Wets. L-shaped linear programs with applications to
optimal control and stochastic programming. SIAM Journal on Applied Mathematics,
17:638{663, 1969.

[22] R. J.-B. Wets. Stochastic programs with �xed recourse: the equivalent deterministic
program. SIAM Review, 16:309{339, 1974.

[23] R. J.-B. Wets. Large scale linear programming techniques in stochastic programming.
In Y. Ermoliev and R. J.-B. Wets, editors, Numerical Techniques for Stochastic

Optimization, pages 65{93. Springer{Verlag, Berlin, 1988.

22


