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The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Evolution takes place in an ecological setting that typically involves interactions
with other organisms. To describe such evolution, a structure is needed which
incorporates the simultaneous evolution of interacting species. Here a formal
framework for this purpose is suggested, extending from the microscopic inter-
actions between individuals — the immediate cause of natural selection, through
the mesoscopic population dynamics responsible for driving the replacement of
one mutant phenotype by another, to the macroscopic process of phenotypic evolu-
tion arising from many such substitutions. The process of coevolution that results
from this is illustrated in the context of predator-prey systems. With no more than
qualitative information about the evolutionary dynamics, some basic properties of
predator-prey coevolution become evident. More detailed understanding requires
specification of an evolutionary dynamic; two models for this purpose are outlined,
one from our own research on a stochastic process of mutaton and selection and the
other from quantitative genetics. Much of the interest in coevolution has been to
characterize the properties of fixed points at which there is no further phenotypic
evolution. Stability analysis of the fixed points of evolutionary dynamical sys-
tems is reviewed and leads to conclusions about the asymptotic states of evolution
rather different from those of game-theoretic methods. These differences become
especially important when evolution involves more than one species.

1 Introduction

It is a central problem in evolutionary theory that the evolution of a lineage needs to be

considered in the context of ecological conditions experienced by the lineage. Natural

selection, the source of much biotic evolution, is driven by differences among organisms

in survival and reproduction as they live out their lives in an ecological setting, and

the relationship between evolution and ecology is aptly summed up in Hutchinson’s

(1967) metaphor ’The ecological theater and the evolutionary play’. The birth and

death processes of individuals are a common object of study of both subjects, and there
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is a wide recognition that a synthesis of the relevant areas of population ecology and

evolutionary genetics is needed to inject an ecological basis into evolutionary theory;

see for instance comments by Lewontin (1979).

The ecological setting of evolution can take many different forms, involving abiotic as

well as biotic factors. In this paper we focus on the ecological process of predation, and

consider how to model the evolutionary dynamics generated by an interaction between

a prey and predator species. We do this to provide some background to the subject for

theoreticians interested in entering the subject area, and also to illustrate and place in

context some mathematical methods developed by Marrow et al. (1992) and Dieckmann

and Law (1996). Although we concentrate on predation, the main ideas can be applied to

a variety of biotic interactions falling within the scope ofcoevolution, a term coined by

Ehrlich and Raven (1964) to describe the evolutionary process caused by the coupled

evolution of all of the lineages concerned. Slatkin and Maynard Smith (1979) and

Futuyma and Slatkin (1983) give introductions to coevolution. In a coevolving system,

the evolution of the component species needs to be considered simultaneously, because

evolutionary changes in one species can be the cause of evolutionary changes in the

other(s).

A number of biological issues are raised by the coevolution of predators and prey.

Most important is an instability inherent in their coevolution, since natural selection by

the prey on the predator favours predator phenotypes best able to consume the prey,

whereas selection by the predator on the prey favours prey phenotypes least likely to be

killed. This may lead to an escalation in traits affecting attack and defence, referred to

as an evolutionary ’rat race’ by Rosenzweig (1973) and an ’arms race’ by Dawkins and

Krebs (1979). Abrams (1986) argued that an arms race does not exhaust the possibilities;

for example, continuing evolution in one species may occur even if the other remains

constant. Although evidence is hard to find, Bakker (1983) documented changes in

mammalian herbivores and carnivores during the Paleocene to Mid Eocene that could

be of the kind suggested by Dawkins and Krebs (1979). Those taxa characteristic of

open habitats, where pursuit and flight are critical features of predation, show similar

speed-enhancing changes in limb morphology; during this time the prey appear to have

evolved faster than predators. Dawkins and Krebs (1979) argued that an asymmetry in

the selection pressures would be expected, on the grounds that the prey is running for

its life whereas the predator ’is only running for his dinner’. Notice that, if the predator

evolves faster than the prey, it could gain such a great advantage that it destroys its

prey altogether and brings about its own extinction. This led for example Slobodkin

(1968, 1974) and Michod (1979) to consider how the apparent ’prudence’ in exploitation

of prey by natural predators could come about by selection operating at the level of

the individual. One likely cause is that the predator selects for prey life histories in
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which the effects of predation on the prey’s reproductive success are reduced, a process

experimentally confirmed in the water fleaDaphnia magnaby Edley and Law (1988).

To investigate these and other issues arising in the coevolution of predators and prey

it helps to have a formal structure for modelling the process. Such models might be

cast in terms of population genetics, evolutionary game theory, or quantitative genetics.

Population genetics deals with how the frequency of a gene in each species with some

effect on the interaction changes over the course of time, as discussed by Jayakar and

Zonta (1990). This approach is to focus on the detailed dynamics of single genes.

Evolutionary game theory in contrast sacrifices genetics to focus on the details of

ecological, frequency-dependent interactions among organisms. Each species is assumed

to comprise a set of phenotypes influencing the interaction, and a search is made for

fixed points at which the phenotypes present are uninvadable by others; see for instance

Parker (1983, 1985). The focus in this case is on an endpoint of evolution and, implicit

in this, is an assumption that a sequence of gene substitutions, the stuff of population

genetics, can bring the system to the fixed point in the first place. With these two

approaches in mind, evolution has been likened to the motion of a streetcar, with many

stops and starts as one gene is substituted for another, before eventually reaching the

terminus; population genetics deals with the path between one stop and the next, and

evolutionary game theory searches for the terminus. (We will see below, however, that

a terminus does not necessarily exist.) The third approach, quantitative genetics, focuses

on statistical properties of traits with continuous variation caused by the environment and

a large (unspecified) number of genes with small effects; see for example Saloniemi

(1993). This has the advantage that many of the traits important in coevolution are

continuous variables, and the disadvantage that, like much of evolutionary game theory,

it lacks an explicit mechanistic basis in genetics.

The approach used here is motivated by the ecology of interactions between predators

and prey-the proximate cause of natural selection. The evolutionary variables are

therefore phenotypic traits (properties such as body weight or height) rather than gene

frequencies. But we wish to go beyond the game theoretic study of fixed points to

investigate a dynamical system of evolution within which the properties of fixed points

can be seen in their proper context. This could be done either through quantitative

genetics or as a development of evolutionary game theory; we have chosen the latter

path to keep a close connection with game theory. Casting the dynamics in these

terms entails some compromise over the genetic system; the methods we describe apply

explicitly to a system of pure-breeding clones, but it will be seen that a model used

in quantitative genetics has many of the same features. Our approach also departs

from single-species evolutionary game theory in being based on density in addition to

frequency of different phenotypes. This is an important ecological feature when dealing
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with games between species because, as Pimentel (1968) pointed out, the whole game

achieves more or less significance in the evolution of each species as the abundance of

the other species becomes respectively greater or lower.

2 A Structure for Modelling Coevolution

We seek a formal description for the process of coevolution that works from the details

of phenotype-dependent interactions of individuals (the cause of natural selection) to the

large-scale phenotypic evolution of the system. One would like the process to be ’self-

referencing’ in the sense that the path of evolution is driven internally by the population

dynamics of the interacting species. We focus on one prey and one predator species,

but note that the structure could readily be extended to systems with greater numbers of

species and involving other kinds of interactions, as described by Dieckmann (1994) and

Dieckmann and Law (1996). The following argument rests on a hierarchy of three time

scales: microscopic interactions among individuals, mesoscopic population dynamics,

and macroscopic phenotypic evolution.

2.1 Interactions among Individuals

Suppose that coevolution is taking place in one trait in each species, the value of the

trait in an individual (i.e. its phenotype) beings1 in the prey ands2 in the predator;

the traits might for instance be adult body sizes. The trait values are taken to be

continuous and are elements of the setsS1 andS2 in the prey and predator respectively.

The phenotypes of a prey individual and a predator individual, which are denoted

s = (s1; s2) and taken from the setS = S1 � S2, determine what happens when they

encounter one another. One must specify the effect of the encounter on the birth and

death rates of the individuals concerned. In qualitative terms the encounter will most

likely lead to an increased risk of mortality in the prey; the predator on the other hand

most likely experiences a reduced rate of mortality or, in the longer term, an increased

rate of reproduction, or both. How great the effect on the vital rates is, depends on

the phenotypes of the individuals; any difference in vital rates between co-occuring

conspecific individuals with different phenotypes causes natural selection. For instance,

a large prey individual is more likely than a small one to defend itself successfully from

a predator of intermediate size and, as a result, to gain a selective advantage through a

lower risk of death in the encounter. Some specific choices for the effect of encounters

on vital rates are given in an example in Section 3.
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2.2 Population Dynamics of Resident Phenotypes

The population dynamics described below will drive the replacement of one phenotype

by another. Suppose first, as a preliminary, that each species comprises only one

phenotype, the pair of phenotypes being given bys. To consider the population

dynamics, we introduce state variablesx = (x1; x2) for the densities of prey and predator

respectively. The population dynamics of the two species may then be written as a pair

of differential equations

_xi = xifi(s; x) for i = 1; 2 (1)

where fi is the per capita rate of increase of speciesi, and depends ons through

a set of control parameters the values of which depend on the current phenotypes.

These control parameters indicate how the birth and death rates caused bys influence

population dynamics; for example in the familiar Lotka-Volterra equations,_xi =

xi

�
ri +

P
j �ijxj

�
, they are theri’s and �ij ’s. The control parameters would be

taken as constants in a pure ecological model, but in the presence of coevolution they

may change as the phenotypic state changes, as discussed by Lewontin (1979) and

Stenseth (1986). Clearly we are only concerned with systems in which the densities

are bounded; moreover, the issue of coevolution only arises if the population dynamics

allow coexistence of the species over a subset ofS, denoted bySc.

2.3 Population Dynamics of Resident and Mutant Phenotypes

To examine how the system evolves, we start by allowing a mutant to arise and determine

what happens to its population densityx0

i. Suppose a mutation occurs in speciesi,

causing a phenotypic change�si in a system currently composed of individuals of

phenotypess; such a mutant is denoteds0

i = si + �si. Two factors are crucial in

determining whether the mutant replaces the resident. First it should increase when rare

and second it should then tend to fixation.

To determine the initial behaviour of a mutant when rare, the initial per capita rate

of increase must be written in such a way that it distinguishes the phenotype of the

individual under consideration from those in the environment in which it occurs. Thus

we write efi(s0

i; s; x), where the first arguments0

i defines the phenotype of this individual,

and the latter argumentss, x can be regarded as defining the biotic environment, see

below. The dynamics of the system augmented by the rare mutant are therefore written

_xj = xj
efj�s0

j; s; x
�

for j = 1; 2 ;

_x0

i = x0

i
efi�s0

i; s; x
�
:

(2)

The first two equations describe the dynamics of the resident phenotypes, and the last

gives the dynamics of the mutant. Since the mutant is rare initially, its effect on the
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biotic environment at this stage is negligible and the environment is determined by the

resident phenotypes. For simplicity we assume that, before arrival of a mutant, the

densities of resident populations with phenotypess have come to equilibrium given by

x̂j(s) : efj

�
s0

j; s; x̂
�
= 0 for j = 1; 2 ; (3)

in this case of a system at equilibrium the environment is fully specified bys, so the third

argument ofefi is no longer needed, and we write the initial per capita rate of increase

of the mutant asf i(s
0

i; s). The conditions under which the assumption of equilibrium

population dynamics can be removed are considered in Dieckmann and Law (1996).

A necessary condition then for the mutant to increase when rare is that it should have

a positive per capita rate of increase in the environment of the resident phenotypes at

their equilibrium densities, i.e.

f i

�
s0

i; s
�
> 0 : (4)

The eventual fate of an initially successful mutant is less easy to settle. Either it goes

to fixation, thereby replacing the former resident, or both the mutant and the resident

stay in the system at finite densities. For population dynamics (2) of Lotka-Volterra

type (i.e. fi = ri +
P

j �ijxj), the latter outcome can typically be excluded; this is

principle of mutual exclusion is proven in Dieckmann (1994). In this case, invasion

implies fixation, and the phenotype of speciesi has made a step fromsi to s0

i. The

idea here is to allow the dynamical system of population densities explicitly to drive

the replacement of one mutant by another.

2.4 Phenotypic Evolution

Once a method is in place to determine whether a mutant phenotype replaces the resident

phenotype, it is straightforward to consider a sequence of mutants each one replacing

the phenotype that was previously present. Such a sequence, called a trait-substitution

sequence by Metz et al. (1994), indicates the long-term evolutionary path of the system.

The aim now is to find a system of equations describing this macroscopic evolution, in

which the phenotypic traits are themselves the state variables.

As a preliminary, we make two assumptions. These are that the principle of mutual

exclusion applies and that successful mutants occur rarely enough for evolution to be

modelled to a good approximation by a monomorphic dynamic within species. These

assumptions apply below unless otherwise stated. We caution that the assumption of

monomorphism would not apply if the mutant and resident phenotypes come to persist

in a protected polymorphism; Metz et al. (1994) and Dieckmann (1994) consider ways

to deal with this problem.
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A selection derivative, measuring the sensitivity of the mutant’s initial rate of increase

to changes in its phenotype, is central to the evolutionary dynamic. This is defined as2

@

@s0

i

f i

�
s0

i; s
�
s
0

i
=si

= lim
s
0

i
!si

f i(s
0

i
; s)� f i(si; s)

s0
i
� si

(5)

wheref i(si; s) = 0, because the resident phenotype is at equilibrium with respect to

population density. Notice that the derivative is evaluated while holding the environment

(defined by the equilibrium densities) constant, since it refers to a rare mutant invading

at x̂(s). The selection derivative is important because it indicates whether phenotypic

evolution takes place in the direction of greater or smaller phenotypic values; if

@f i=@s
0

i
> 0 (respectively@f i=@s

0

i
< 0), then the system is vulnerable to invasions

by mutants withs0
i
> si (respectivelys0

i
< si) with s0

i
sufficiently close tosi. One

would expect, then, the macroscopic evolutionary dynamics to have a property

_si

8<
:

> 0 when @f i=@s
0

i
> 0

= 0 when @f i=@s
0

i
= 0

< 0 when @f i=@s
0

i
< 0

for i = 1; 2 : (6)

These conditions do not, of course, yet specify an evolutionary dynamic; this would

entail the introduction of a scaling factor which can be dependent on the process

of mutation. We will give in Section 4 such a dynamic from Dieckmann and Law

(1996) that is derived from the assumption of infinitesimal mutational steps and as such

applies as a close approximation for mutations of small finite size. Nonetheless, without

specifying the mutation process, it is still possible to get some qualitative insights into

predator-prey evolution and other kinds of coevolving systems. Notice, in particular

that isoclines of zero evolution according to (6) are defined by

�i(s) :
@

@s0
i

f i

�
s0
i
; s
�
s
0

i
=si

= 0 ; (7)

the fixed points in phenotypic evolution are thus given by the intersections of�1 and

�2. These qualitative properties are illustrated in the next section.

3 An Example

We show how the structure above may be used in the context of a specific model

investigated by Marrow et al. (1992), in which the traitss undergoing evolution are

interpreted as body sizes of the prey and predator. The per capita rates of increase of

phenotypes s at densitiesx are given by

prey: f1(s; x) = r1 � �(s)x1 � �(s)x2

predator: f2(s; x) = �r2 + 
(s)x1
(8)

where r1, r2, �, � and 
 are positive control parameters. The benefit to a predator

of a prey item,
(s), is taken to be at its maximum for some intermediate body size



8

of both the predator and the prey. It is assumed that a bell-shaped function describes

the relationship:


(s) = c1 exp
�
��2

1
+ 2c2�1�2 � �2

2

�

where�1 = (s1 � c3)=c4 and �2 = (s2 � c5)=c6, andc1 to c6 are positive parameters.

On the basis that what is good for the predator is bad for the prey, the loss to the prey,

�(s), is taken to be proportional to
(s)

�(s) = exp
�
��21 + 2c2�1�2 � �2

2

�

The term�(s) represents self-limitation in the prey and therefore depends only ons1,

and a quadratic function is assumed such that the prey would evolve to an intermediate

body size in the absence of predation

�(s1) = c7 � c8s1 + c9s
2

1

where c7 , c8 and c9 are positive parameters.

For certain ranges of the parameters in the functions�, � and
, there are body sizes

that permit both species to have positive equilibrium densitiesx̂; the set of body sizes

with this property,S
c
, is delimited by the oval curve in Figure 1. As Harrison (1979)

for example showed,̂x has global asymptotic stability given Equations (1) and (8),

and this ensures that the system comes to equilibrium for a givens. Suppose that a

mutation occurs causing small changes in body size to the predator or prey. A prey

mutant (respectively predator mutant) increases when rare if it satisfies respectively:

f
1

�
s0

1
; s
�
= r1 � �

�
s0

1

�
x̂1(s)� �

�
s0

1
; s2

�
x̂2(s) > 0

f 2
�
s0

2
; s
�
= �r2 + 


�
s1; s

0

2

�
x̂1(s) > 0 :

Since these dynamics are of Lotka-Volterra type, invasion typically implies fixation.

Exceptions to this principle of mutual exclusion can occur close to the isoclines�i(s),

as discussed in Dieckmann (1994), in which case both resident and mutant may remain

causing the population to become polymorphic. Usually this behaviour does not persist

because evolution in the other species takes the system away from the isocline, and the

system reverts to monomorphism. But it is possible for evolution to lead to a fixed

point with this polymorphic property (see Section 5), in which case the monomorphic

assumption underpinning the model breaks down, as discussed by Metz et al. (1994).

With these caveats, conditions (6) can be used to partition Sc into regions in which

evolution towards larger (@f
i
=@s0

i
> 0), or smaller (@f

i
=@s0

i
< 0), body size occurs for

each species, separated by the isocline�
i
(s) on which there is no selection. An example

is given in Figure 1, the qualitative direction of evolution being shown by the arrows.
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Figure 1 Some qualitative properties of evolutionary dynamics of prey (s1) and predator (s2) body
size. Sc is the interior of the oval region. The line�1 is shown as discontinuous; the straight line�2 is
shown as continuous. Fixed points of the system occur at the intersections of�1 and�2. Arrows indicate
the direction in which body size evolves in each species, horizontal arrows for prey and vertical arrows
for predators. Discontinuous part of the boundary of the oval region indicates where a prey mutant could
cause predator extinction. From Marrow et al. (1992: Figure 2a), with parameters:r1 = 0:5, r2 = �0:05,
c1 = 1:0, c2 = 0:6, c3 = 0:5, c4 = 0:22, c5 = 0:5, c6 = 0:25, c7 = 3:0, c8 = 10:0, c9 = 10:0.

Simple though this approach is, it illustrates some features of a coevolving predator-prey

system. First, it shows the tension typical of predator-prey coevolution. In the example

given, the predator gains its greatest benefit from the prey ats1 = 0:5, s2 = 0:5, but the

prey suffers its greatest loss here and the system does not tend to this point. Second,

there is continuing evolution across the phenotype space, only terminated if the system

reaches a fixed point. We should emphasize that, although evolution in this example

leads to a fixed point, this is by no means an inevitable outcome, and an example is

given later (Figure 2) in which the!-limit set of the evolving system is a limit cycle

— the species driving each other to continue evolving as long as the system remains

in existence. Third, if one species tended to its isocline, continuing evolution would

require mutations in the other species to shift it along the isocline; such evolution can

be envisaged as an arms race because there would be no further change without the

’escalation’ due to these mutations. Fourth, the geometry of fixed points of the system

is exposed, that is, the points at which the lines�1 and �2 intersect. There can be

several such points, and the properties of these fixed points are of interest in their own

right (see Section 5). It can be seen that, in the case of the outer pair of fixed points,

each species is evolving towards its isocline; but, in the case of the intermediate fixed

point, the predator converges while the prey diverges. Fifth, the shape ofS
c

indicates

that there is only a limited range of body sizes enabling coexistence of the species; it is



10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 2 Phase portrait of a system with an evolutionary limit cycle.Sc is the interior of the oval
region. The discontinuous line is�1 and the straight continuous line is�2. A fixed point of the system
occurs at the intersection of�1 and�2. Curved continuous lines withinS

c
are orbits, all of which tend

to the limit cycle around the fixed point. The dynamical system (9) is set such that
�
�1�

2

1

�
=
�
�2�

2

2

�
= 1;

other parameters are as in Figure 1 except forc1 = 0:11 (Marrow et al. 1992: Figure 2g).

possible for a sequence of mutant substitutions in the prey to lead to extinction of the

predator, if they take a path across the part of the boundary shown as discontinuous.

On the other hand there is no region of phenotype space in which both species have an

equilibrium population density of zero, and thus there is in this example no evolutionary

path in which the predator can gain such an advantage over the prey that it destroys

the prey and brings about its own extinction.

4 Evolutionary Dynamics

To take the investigation of coevolution further, an explicit dynamic for the process is

needed. This can be done in several ways; here we mention a stochastic trait-substitution

model and one from quantitative genetics.

4.1 Stochastic Trait-Substitution Model

This models evolutionary trait-substitution sequences as directed random walks in

phenotype space arising from mutation and selection. Stochasticity is induced in the

evolutionary dynamics first by making the occurrence and size�si of mutations a random

variable. Second, it comes about from the chance extinction that even advantageous

mutants experience after their first appearance in a single individual, due to the effects

of demographic stochasticity as discussed by Fisher (1958: 80 et seq.). These random
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effects are countered by natural selection arising from the biotic environment and this

imposes directionality on the random walks. A master equation for this process is

derived in Dieckmann and Law (1996), and it is shown that, by taking the first jump

moments of the equation (van Kampen 1981), this yields a system of ordinary differential

equations

h _sii = ki(s)
@

@s0

i

f i

�
s0

i
; s
�
s
0

i
=si

for i = 1; 2 ; (9)

where

ki(s) =
1

2
�i�

2

i

x̂i(s)

xu

� 0 :

Here hsii is the expected phenotypic value,�i is the probability that a given birth

is a mutant,xu is the unit density scalinĝxi to numbers, and�2
i

is the variance of

the mutation distribution. The factorki(s) scales the rate of evolution in speciesi

and comprises two parts, the evolutionary rate constant1

2
�i�

2

i
and the equilibrium

population size. Notice the dependence of this system on the selection derivative (5);

as a consequence the qualitative properties of the dynamics (6) remain in place, and

system (9) specifies a full dynamic for the process of coevolution developed earlier.

The system (9) is a first order result which is exact for mutational steps of infinitesimal

size, and gives a good approximation for mutational steps of small size. The system

can be refined by consideration of higher-order corrections, as derived and discussed

in Dieckmann and Law (1996).

Figure 2 illustrates some evolutionary orbits of a coevolving system of predator and

prey based on equations (9), having the feature that the!-limit set is a limit cycle

rather than a fixed point. This is of some biological interest because it shows that

the interaction between the predator and prey is sufficient to keep the system evolving

indefinitely; as discussed by Marrow et al. (1992), changes in the physical environment

are not a prerequisite for continuing evolution.

4.2 Quantitative Genetics Model

In the literature, an evolutionary dynamic from quantitative genetics has most often

been used. Quantitative genetics at its simplest distinguishes between two components

of the phenotypic valuesi: an additive genetic partai and a non-genetic partei
statistically independent ofai. The distinction betweensi and ai is made because

selection operates on phenotypic values but only the additive genetic components are

inherited, as discussed by Falconer (1989). The standard formulation of a quantitative-

genetic dynamic given by Lande (1979) does not allow the per capita rate of increase

(fitness) associated with phenotypesi to depend on the environment. But Iwasa et
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al. (1991), Taper and Case (1992) and Abrams et al. (1993) have suggested ways of

removing this limitation. By assuming that the phenotypic distributions are narrow and

that the time scale of population dynamics can be separated from that of evolution, a

dynamic resembling closely that of equations (9) can be obtained:

_si = ki

@

@s0

i

f i

�
s0

i; s
�
s
0

i
=si

for i = 1; 2 ; (10)

where

ki = �2
ai

> 0

wheresi is the expected mean phenotypic value and�2
ai

the variance of the additive

genetic values, often assumed to be constant. Although not usually explicitly derived

from quantitative genetics, dynamics of this kind have been used on a number of

occasions; see for instance Brown and Vincent (1987a), Rosenzweig et al. (1987),

Hofbauer and Sigmund (1990), Vincent (1990) and Marrow and Cannings (1993).

In view of the models’ radically different starting points, the similarity of dynamics (9)

and (10) is notable. They do however differ in the source of variation on which selection

operates. Dynamics (10) depend on phenotypic variation due to many genes with small

additive phenotypic effects placed together in different combinations; evolution is then

a process of selection on these combinations as they are reshuffled through segregation

and recombination. Dynamics (9) on the other hand depend on variation generated

by mutation. The quantitative genetic model is well-founded empirically, whereas the

mutation-driven dynamic (9) is based on a somewhat simplified notion of phenotypic

variation. On the other hand dynamics (9) are derived explicitly from a stochastic

process of mutation and initial increase of advantageous mutants in Dieckmann and

Law (1996), and represent a natural dynamical extension to evolutionary game theory.

5 Fixed Point Properties

Much of the interest in models of coevolution has been to characterize properties of

fixed points in phenotype space at which the selection pressures generated by interacting

species are balanced, so that there is no further phenotypic evolution of the system.

Such work has usually been developed in the context of evolutionary game theory, and

a dynamic is often not made explicit in this context. Here we mention some of the

literature on the application of evolutionary game theory to questions of coevolution.

We then point out that the introduction of an evolutionary dynamic is necessary to

determine the asymptotic stability of fixed points (in contrast to the assertions of game

theory). It should be kept in mind, however, that these fixed point properties cannot

tell us all we need to understand the evolutionary process for, as we have already seen,

the!-limit set of an evolutionary dynamic need not be a fixed point (Figure 2).
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5.1 Evolutionarily stable strategy (ESS)

The notion of an ESS, defined by Maynard Smith and Price (1973), has been widely used

to identify fixed points in phenotypic evolution, as discussed by Maynard Smith (1982).

An ESS is a phenotype which, if adopted by almost all individuals in a population,

cannot be invaded by a rare mutant of any other phenotype. The notion has been applied

to multispecies coevolution by Brown and Vincent (1987a, 1987b) amongst others. In

the context of two-species coevolution used in this paper, a sufficient condition for the

phenotypes s to be an ESS is that, for individuals of phenotypess0

i
6= si,

efi

�
s0

i
; si; sj; x̂(s)

�
s0

i
=si

> efi
�
s0

i; si; sj; x̂(s)
�

for i; j = 1; 2

and j 6= i ;

recalling from (2) that the first argument ofefi defines the individual’s phenotype, and

the other arguments define its biotic environment. The set from whichs0

i is drawn is

discussed below. The arguments is written out in full above to distinguish the condition

for an ESS from another notion given earlier by Roughgarden (1979, 1983), that of a

coevolutionarily stable community (CSC); this has the property (in our notation)

efi
�
s0

i; sj; x̂(s)
�
s0

i
=si

> efi
�
s0

i; sj; x̂(s)
�

for i; j = 1; 2

and j 6= i ;

where the phenotype of the conspecific resident is not allowed to affect the per capita

rate of increase of the mutant other than by the equilibrium densities, and is thus not

specified. This means that the mutant’sefi depends on the phenotype of the conspecific

resident only through the effect of the latter on the equilibrium densities. Consequently

intraspecific frequency-dependent selection is excluded, and the circumstances under

which the notion of a CSC applies are rather more restricted than those for the ESS,

as discussed by Abrams (1989) and Taper and Case (1992). Notice that these game-

theoretic properties of fixed points do not consider evolutionary dynamics, and such

points may or may not be attractors in phenotypic evolution. An ESS as defined above

might be better called an evolutionarilysteadystate, as this makes no reference to the

dynamical notion of stability.

To add to the problems of terminology, the term ESS has also been used to refer to

local asymptotic stability of equilibria of population densities in coevolutionary theory

by Reed and Stenseth (1984). They envisaged a vectorx of densities for resident

phenotypess, and a vectorx0 of densities for mutant phenotypess0, the set of phenotypes

s being an ESS if the equilibrium point at whichx 6= 0 andx0 = 0 has local asymptotic

stability for all s0 6= s, given thats0 lies in the neighbourhood ofs. This definition

explicitly extends the notion of an ESS to account for population dynamics but, like

the definitions above, makes no reference to evolutionary dynamics.
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In these arguments and those below it is important to be clear about what set of mutant

phenotypes is tested against the fixed-point phenotypes. Typically in evolutionary game

theory, it is assumed that all phenotypes inSi are tested (Maynard Smith 1982). How

useful it is to test the fixed point against all possible phenotypes in coevolutionary models

is debatable, because the range of phenotypes created by mutation and recombination

around the current mean value is typically a small subset ofSi. As Roughgarden (1987)

pointed out, one would not expect all the phenotypic variation apparent in different

breeds of dogs to arise in a natural population ofCanis lupus. To restrict phenotypic

variation to a small region in the neighbourhood of the current mean is in keeping with

Darwin’s (1859) notion that evolution typically occurs by the accumulation of small

phenotypic changes. It therefore seems more natural to use a local test, comparing the

fixed point against phenotypes involving small deviations from it, as in the definition

of an ESS above by Reed and Stenseth (1984); we adopt the local test below. We

also restrict attention to a fixed point that lies inSc. An interior fixed point of this

kind, denoted̂s below, has the property that the selection derivatives@f i=@s
0

i
vanish

at ŝ for both species.

5.2 Asymptotic Stability of Fixed Points

Here we review and develop some results concerning the asymptotic stability of fixed

points given dynamics (9) to contrast with those from evolutionary game theory. We

assume throughout thatf i(s
0

i
; s) is continuous, twice differentiable ins0

i
and si, and

has non-zero second derivatives. The functionf i(s
0

i
; s) then is saddle-like ins0

i
andsi

around the isoclines�i(s); on the lines0

i
= si, we havef i(s

0

i
; s) = 0. As a preliminary,

we note two properties of the isoclines. The first isnon-invasibilitysuch that, on�i(s),

mutants in speciesi with phenotypes close to�i(s) are not able to invade:

@2

@s02

i

f i

�
s0

i
; s
�
s
0

i
=si

< 0 ; (11)

the converse of this we refer to asinvasibility. The notion of non-invasibility is familiar

from ESS theory (Parker and Maynard Smith 1990) and the arguments of Roughgarden

(1983) and Brown and Vincent (1987a, 1987b). Second is the property ofconvergence

that successive mutations in speciesi cause evolution towards�i(s):

@2

@s02

i

f i

�
s0

i
; s
�
s
0

i
=si

+
@2

@si@s
0

i

f i

�
s0

i
; s
�
s
0

i
=si

< 0 ; (12)

with the converse property ofdivergence. Attention was first drawn to the distinction

between convergence and non-invasibility by Eshel and Motro (1981) and Eshel (1983),

and was discussed in more detail by Taylor (1989). It is, for instance, conceivable that

the isocline is non-invasible, but that starting from other points in its neighbourhood
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speciesi evolves away from it; such a configuration has aptly been called a ’Garden

of Eden’ configuration by Hofbauer and Sigmund (1990).

As shown by Abrams et al. (1993), the relationship between these isoclinic properties

and asymptotic stability is trivial if the dynamical system comprises only one species.

If we take just one of equations (9), the Jacobian at the fixed pointŝ1 is:

J = k1(s)

�
@2f

1
(s0

1
; s)

@s02

1

+
@2f

1
(s0

1
; s)

@s1@s
0

1

�
s0

i
=s1=ŝ1

:

The condition for dynamical stability of a fixed pointJ < 0 thus coincides with the

condition for convergence (inequality 12). Clearly, dynamical stability of the fixed point

is not equivalent to non-invasibility of the fixed point.

For 2-dimensional systems as given in equations (9), the fixed points are given by the

intersection of the isoclines�1(s) and�2(s), and the Jacobian at a fixed pointŝ is

J =

"
k1(s)

�
@2f

1
(s0

1;s)

@s02

1

+
@2f

1
(s0

1;s)

@s1@s
0

1

�
k1(s)

@2f
1
(s0

1;s)

@s0

1
@s2

k2(s)
@2f

2
(s0

2;s)

@s0

2
@s1

k2(s)
�

@2f
2
(s0

2;s)

@s02

2

+
@2f

2
(s0

2;s)

@s2@s
0

2

�
#
s0=s=ŝ

As in the 1-dimensional case, the bracketed terms on the diagonal are the same as

the expressions given in inequality (12), and are therefore the isoclinic conditions for

convergence of each species. But there is a much more indirect relationship between

these convergence conditions and dynamical stability. Abrams et al. (1993) consider

the necessary and sufficient condition for local stability of a fixed point, that trJ < 0

anddetJ > 0. From this and our own work we collect together the following results

for 2-dimensional systems. (i) Convergence of each species (i.e. bracketed terms in J

negative) is neither necessary nor sufficient for local asymptotic stability of the fixed

point. Convergence is not sufficient because, although convergence implies trJ < 0,

the sign ofdetJ depends on the off-diagonal mixed partial derivatives. Convergence is

not necessary because it is possible to have trJ < 0 anddetJ > 0 when one species is

convergent and the other divergent. (ii) If each species is divergent, i.e. both bracketed

terms ofJ are positive, we have trJ > 0 and hence the fixed point is unstable. Thus

certain classes of fixed point are definitely evolutionary repellors, but others could be

either repellors or attractors. However, by allowing for conditions on the signs of the

off-diagonal elements ofJ , three further results about these remaining fixed points can

be given. (iii) If each species is convergent and the off-diagonal elements are of opposite

sign, the fixed point is an evolutionary attractor. (iv) If one species is convergent, the

other divergent and the off-diagonal elements have the same sign, the fixed point is an

evolutionary repellor. (v) In all cases not covered by (ii), (iii) or (iv) local stability

of the fixed point can be tuned just by varying the evolutionary rate constants. We

conclude from these results that the simple identity of the condition for convergence
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Figure 3 A system with isoclines such that the predator is convergent and the prey is divergent at the
fixed point.Sc is the interior of the oval region. The discontinuous line is�1 and the straight continuous
line is�2. A fixed point of the system occurs at the intersection of�1 and�2. The parameters defining the
isoclines are as in Figure 2. Sections of the isoclines are labelled as follows. I: satisfies both inequality
(11) and (12); II: satisfies (12) but not (11); III: satisfies neither (11) nor (12).

with that for local asymptotic stability, which holds for single-species evolution, has no

counterpart in multispecies coevolution. In the latter case, the stability of a fixed point

can depend critically on the details of the dynamical features of the coevolving system.

5.3 Example

Figure 3 is an example which illustrates some of the results described above. At

the point of intersection of the isoclines, the prey phenotypeŝ1 has the properties of

invasibility and divergence, whereas the predator phenotypeŝ2 has the properties of

non-invasibility and convergence. This example is interesting for several reasons. First,

the fixed point is an example of case (v) above, i.e. its dynamical stability depends

on the evolutionary rate constants. If the rate constants of the prey and predator are

chosen in the ratio 1:1, the fixed point is unstable and the attractor is given by a

limit cycle (Figure 2). On the other hand, if the rate constants are chosen in the ratio

1:10, allowing faster predator evolution, the fixed point becomes stable and serves as

an attractor for the evolutionary dynamics (Figure 4). Second, the example illustrates

how dynamical stability is independent of non-invasibility of the fixed point. It can be

seen that̂s is an attractor in Figure 4 notwithstanding the fact that coevolution leads

to a local fitness minimum for the prey. Takada and Kigami (1991) and Abrams et al.

(1993) have also noted that a system of coevolving species may be driven to a fixed

point where one species is at a local fitness minimum. Third, the fixed point has a
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Figure 4 Phase portrait of a system based on the isoclines given in Figure 3.Sc is the interior of
the oval region. The discontinuous line is�1 and the straight continuous line is�2. A fixed point of the
system occurs at the intersection of�1 and�2. Curved continuous lines withinS

c
are orbits, all of which

tend to the fixed point. The dynamical system is the same as that in Figure 2, except that parameters of
dynamical system (9) are set to relatively slow down prey evolution:

�
�1�
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1

�
=
�
�2�

2

2

�
= 0:1.

property that there is disruptive selection in the prey population and, as a result of

this, two phenotypes can coexist on opposite sides of the fixed point. This can lead to

evolutionary branching in the prey species, and the monomorphic evolutionary dynamic

(9) ceases to be appropriate when the system reaches the fixed point, a phenomenon

noted by Christiansen (1991) and discussed in depth by Metz et al. (1994). Fourth,

in the system illustrated in Figure 4, the three basic kinds of selection discussed by

Mather (1973: 90) are all present: selection isdirectional for both species away from

the isoclines,stabilizing for the predator around its isocline anddisruptivefor the prey

around its isocline in the neighbourhood of the fixed point.

6 Discussion

6.1 Evolutionary Game Theory and Dynamical Systems

A distinction between game theoretic methods, concerned primarily with non-invasibility

of fixed points (ESSs), and more general considerations of dynamics runs rather deep

through evolutionary theory. In evaluating these methods, the following points should

be stressed. First, even in the evolution of a single species, non-invasibility does

not guarantee dynamical stability of the fixed point. Second, in the coevolution of

interacting species, neither non-invasibility nor convergence is sufficient to ensure

dynamical stability of the fixed point. One needs further knowledge of the mixed
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partial derivatives arising from interactions between species and on the rates at which

evolutionary processes take place within species to determine whether a fixed point is

an attractor. Notice in particular that the evolutionary rates and thus the evolutionary

stability can depend on specific features of the mutation process, see equations (9),

which therefore must not be excluded from the discussion of evolutionary phenomena.

Third and perhaps most important, there are no a priori grounds in the first place to

suppose that an evolving system should tend to a fixed point; other!-limit sets such

as limit cycles or even chaotic orbits in phenotype space seem just as plausible. In fact

Van Valen (1973) proposed, on the basis of palaeontological evidence, that interactions

among organisms could be sufficient to cause continuing evolutionary change. As

pointed out by Fisher (1958: 45), such biotic processes could be responsible for a

continual deterioration in the environment experienced by a species, and Van Valen

(1973) used the metaphor of the Red Queen’s hypothesis ’it takes all the running you can

do, to stay in the same place’ from Carroll (1871) to describe the resulting evolutionary

process. Such!-limit sets are referred to asRed Queendynamics in the literature by

authors such as Rosenzweig et al. (1987) and Marrow et al. (1992), and an example of

such a system was given in Figure 2.

Knowledge of non-invasibility and of other fixed point properties is nonetheless a helpful

guide to understanding certain features of the dynamics. In particular we note that a

system tending to a fixed point at which there is disruptive selection for at least one

species will violate the assumption of monomorphic dynamics on which equations (9)

depend. See Dieckmann and Law (1996) for suggestions as to how this problem may

be overcome.

6.2 Empirical Background

To the theorist interested in entering the field of coevolution, we ought to point out

that the empirical base of the subject is not strong. Although many features of living

organisms are best interpreted as the outcome of a process of coevolution, rather little

is known about the dynamics of the process. There is, for instance, some evidence for

coevolution of predators and their prey from the fossil record of hard-bodied organisms;

see for example Vermeij and Covitch (1978), Kitchell et al. (1981), Vermeij (1982,1983,

1987), Bakker (1983), Stanley et al. (1983), West et al. (1991). But in such examples

one sees only an outcome of the evolutionary dynamics, and the dynamics themselves

are not readily reconstructed. A rare exception in the case of host-pathogen evolution is

myxomatosis in Australia documented by Fenner and Ratcliffe (1965) where, following

the release of the myxoma virus in 1950, the virulence of the myxoma virus declined

as did the susceptibility of the rabbit; from the information available, some inferences

about the evolution of virulence can be made from the data, as discussed by Anderson
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and May (1982) and Dwyer et al. (1990). There is unfortunately no experimental basis

in coevolution to match, for instance, the experiments of single-species quantitative

genetics where selection differentials can be applied to specific traits and responses to

selection measured, as described by Falconer (1989). This is not altogether surprising,

because the experimental problems of getting two or more interacting species to live

together while each generates selection differentials on the other(s) are, to say the

least, substantial. Yet experiments along these lines are needed to set the evolutionary

dynamics of coevolution on a firm empirical base and to guide development of theory.

We end with three suggestions about possible directions for future research.

6.3 Community Coevolution

We have considered a simple case of coevolution involving two species, it being

straightforward in this case to visualise the geometry of evolutionary dynamics. In

reality matters are more complicated since it is rare for a predator and prey species to

live in isolation of other interactions; as reviewed by Pimm et al. (1991), typically they

would be embedded in a food web with other species. Unless the interactions between

a particular pair of species are much stronger than those with others, one needs to think

of the traits evolving as a result of an ensemble of the selection pressures of all the

species present, a process referred to as diffuse coevolution by Janzen (1980). The

issue of how these larger communities evolve is of interest in its own right, and there is

much to be done to develop a mathematical framework for such investigations. Some

steps in this direction are the lag-load model of Maynard Smith (1976) and Stenseth

and Maynard Smith (1984), the plant-herbivore model of Levin et al. (1990), the rugged

fitness landscape models of Kauffman and Johnsen (1991) and Kauffman (1993), and

the predator-prey community model of Brown and Vincent (1992).

6.4 Evolution of Population Dynamics

As phenotypic evolution takes place, the control parameters of population dynamics will

typically change and this may lead to qualitative changes in the population dynamics, for

instance a change from an equilibrium to a non-equilibrium!-limit set for population

densities. There have been few attempts to document this experimentally, although

Stokes et al. (1988) have suggested that changes observed in the population dynamics

of a laboratory population of blowflies were consistent with evolution from oscillatory to

equilibrium population dynamics. Data from natural populations such as those collated

by Hassell et al. (1976) have suggested that chaotic dynamics are rather rare; on the

other hand recent research by Rand and Wilson (1991) and Turchin and Taylor (1992)

suggests that such dynamics do occur. A question that arises from the feedback from

evolution to population dyanamics is whether there could be a tendency for equilibrium
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attractors for population density to come to prevail in natural systems. Work by Hansen

(1992), Metz et al. (1992), Gatto (1993) and Godfray et al. (1993) argues for this. But

whether there is a general mechanism (based on individual selection) for evolution to

do so is open to debate, and needs further investigation.

6.5 Adaptive Landscapes

One might ask if some property of the species increases during their coevolution, that is,

whether in some sense the species are ’improving’ on an absolute scale. The metaphor

of an adaptive topography, which envisages that phenotypic values of a species can

be mapped on to a scale of mean population fitness to produce a hilly landscape, has

been widely used in evolutionary theory. Evolution is then seen as a process of hill

climbing until a local maximum in mean fitness is reached. But it is not at all clear

that this metaphor is appropriate if selection is generated by interactions within the

system as opposed to factors set externally (e.g. abiotic factors such as temperature

and humidity). Let us consider two interpretations of this metaphor. We will examine

evolution in one of the species, and assume that the system is at some point s in a

phenotype space prior to a mutation in this species, with population dynamics that have

settled to equilibrium. Suppose an advantageous mutant starts to spread. (i) A first

obvious interpretation of mean fitness would be the population’s mean per capita rate of

increase. But this measure is not appropriate because the total population density may

decline as the mutant starts to spread; from a starting height of zero, the mean per capita

rate of increase would then become negative and the path of evolution would be down

a surface defined by this measure. (ii) An alternative interpretation would be to use a

surface defined by the initial per capita rate of increase of mutants in the environment

s, the slope of which is given locally by the selection derivative (5) indicating the

correct direction of evolution. Yet, by the time the mutant reaches fixation, it has a

per capita rate of increase of zero. Thus, based on this second measure, there is no

overall gain arising from the evolution, and we conclude that it remains debatable as

to how appropriate a hill-climbing metaphor is in the context of coevolution. This

leads us to ask what, if any, metaphor would be appropriate to describe a process of

coevolution, and under what circumstances there exists a function that is maximized

during the course of evolution.
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