
�IIASA
Interna t ional Ins t i t ute fo r App l ied Sys tems Ana lys is • A-2361 Laxenburg • Aus t r i a
Tel: +43 2236 807 • Fax: +43 2236 71313 • E-mail: info@iiasa.ac.at • Web: www.iiasa.ac.at

INTERIM REPORT IR-97-043 / July

On Stochastic Dominance
and Mean-Semideviation Models

Włodzimierz Ogryczak (Wlodzimierz.Ogryczak@mimuw.edu.pl)
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Abstract

We analyse relations between two methods frequently used for modeling the choice among
uncertain outcomes: stochastic dominance and mean–risk approaches. The concept of
α-consistency of these approaches is defined as the consistency within a bounded range
of mean–risk trade-offs. We show that mean–risk models using central semideviations as
risk measures are α-consistent with stochastic dominance relations of the corresponding
degree if the trade-off coefficient for the semideviation is bounded by one.

Key Words: Decisions under risk, Stochastic dominance, Mean–risk models, Portfolio
optimization.
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On Stochastic Dominance

and Mean-Semideviation Models

W lodzimierz Ogryczak∗ (Wlodzimierz.Ogryczak@mimuw.edu.pl)

Andrzej Ruszczyński (rusz@iiasa.ac.at)

1 Introduction

Uncertainty is the key ingredient in many decision problems. Financial planning, cancer
screening and airline scheduling are just few examples of areas in which ignoring uncer-
tainty may lead to inferior or simply wrong decisions. There are many ways to model
uncertainty; one that proved particularly fruitful is to use probabilistic models.

We consider decisions with real–valued outcomes, such as return, net profit or number
of lives saved. Although we sometimes discuss implications of our analysis in the portfolio
selection context, we do not assume any specificity related to this or any other application.

Whatever the application, the fundamental question is how to compare uncertain out-
comes. This has been the concern of many authors and will remain our concern in this
paper. The general assumption that we make is that larger outcomes are preferred over
smaller outcomes.

Two methods are frequently used for modeling the choice among uncertain prospects:
stochastic dominance (Whitmore and Findlay, 1978; Levy, 1992) and mean–risk approaches
(e.g., Markowitz, 1987). The first one is based on an axiomatic model of risk averse
preferences, but does not provide a simple computational recipe. It is, in fact, a multiple
criteria model with a continuum of criteria.

The second approach quantifies the problem in a lucid form of two criteria: the mean,
that is the expected outcome, and the risk—a scalar measure of the variability of outcomes.
The mean–risk model is appealing to decision makers and allows a simple trade–off anal-
ysis, analytical or geometrical. On the other hand, the mean–risk approach is unable
to model the entire richness of risk-averse preferences. Moreover, for typical dispersion
statistics used as risk measures, the mean–risk approach may lead to obviously inferior
solutions.

The seminal portfolio optimization model of Markowitz (1952) uses the variance as
the risk measure. It is, in general, not consistent with the stochastic dominance rules; the
use of the semivariance rather than variance was already recommmended by Markowitz
(1959) himself. Porter (1974) showed that a fixed target semivariance as the risk measure
makes the mean–risk model consistent with the stochastic dominance. This approach
was extended by Fishburn (1977) to more general risk measures associated with outcomes
below some fixed target.
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Our aim is to develop relations between the stochastic dominance and mean–risk ap-
proaches that use more natural measures of risk, associated with all underachievemets
below the mean. Therefore, we focus our analysis on the central semideviations:

δ̄(k)
x =

(∫ µx

−∞
(µx − ξ)k Px(dξ)

)1/k

, k = 1, 2, . . . , (1)

where Px denotes the probability measure induced by the random variable x on the real
line, and µx = E{x} =

∫
ξ Px(dξ). In particular, (1) for k = 1 represents the absolute

semideviation

δ̄(1)
x = δ̄x =

∫ µx

−∞
(µx − ξ)Px(dξ) =

1

2

∫ ∞
−∞
|ξ − µx|Px(dξ), (2)

and for k = 2 the standard semideviation:

δ̄(2)
x = σ̄x =

(∫ µx

−∞
(µx − ξ)2 Px(dξ)

)1/2

. (3)

We shall show that mean–risk models using semideviations as risk measures are consistent
with the stochastic dominance order, if the mean–risk trade-off is bounded by one.

In Section 2 we recall the notion of stochastic dominance and establish its basic prop-
erties. Section 3 develops new necessary conditions of stochastic dominance. In Section 4
we use these conditions to establish relations between stochastic dominance and mean–risk
models, and in Section 5 we present simple sufficient conditions of stochastic efficiency.
Finally, we have a conclusions section.

2 Stochastic dominance

Stochastic dominance is based on an axiomatic model of risk averse preferences (Fishburn,
1964). It originated from the majorization theory for the discrete case (Hardy, Littlewood
and Polya, 1934; Marshall and Olkin, 1979) and was later extended to general distributions
(Hanoch and Levy, 1969; Rothschild and Stiglitz, 1969). Since that time it has been widely
used in economics and finance (see Bawa, 1982; Levy, 1992 for numerous references).
In the stochastic dominance approach random variables are compared by the pointwise
comparison of their distribution functions F (k).

For a real random variable x the first function F
(1)
x is the right–continuous cumulative

distribution function

F (1)
x (η) = Fx(η) =

∫ η

−∞
Px(dξ) = P{x≤ η} for η ∈ R. (4)

The kth function F
(k)
x (for k = 2, 3, . . .) is defined as

F (k)
x (η) =

∫ η

−∞
F (k−1)
x (ξ) dξ for η ∈ R. (5)

The relation of the kth degree stochastic dominance (kSD) is understood in the following
way:

x �
(k)
y ⇔ F (k)

x (η) ≤ F (k)
y (η) for all η ∈ R. (6)

The corresponding strict dominance relation �
(k)

is defined by the standard rule

x �
(k)
y ⇔ x �

(k)
y and y 6�

(k)
x. (7)
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Thus, we say that x dominates y by the kSD rules (x �
(k)

y), if F
(k)
x (η) ≤ F

(k)
y (η) for all

η ∈ R, with at least one strict inequality.
Clearly, x �

(k−1)
y implies x �

(k)
y and x �

(k−1)
y implies x �

(k)
y, provided that the

kth degree function F
(k)
x is well defined.

We shall employ a sightly more general approach to the topic. Let (Ω,F ,P) be an
abstract probability space, and let Ex =

∫
x(ω)P(dω) denote the expected value of a

random variable x. The space of real random variables x such that E{|x|k} < ∞ is
denoted, as usual, Lk(Ω,F ,P) (we frequently write simply Lk). The norm in Lk is defined
as

‖x‖k =
(
E{|x|k}

)1/k
.

The distribution functions (5) are closely related to the norms in the spaces Lk.

Proposition 1 Let k ≥ 1 and x ∈ Lk. Then for all η ∈ R

F (k+1)
x (η) =

1

k!

∫ η

−∞
(η − ξ)k Px(dξ) =

1

k!
‖max(0, η− x)‖kk.

Proof. If k = 0, the left equation follows directly from (4) (with the convention 0! = 1).
Assuming that it holds for k − 1 we shall show it for k. We have

F (k+1)
x (ζ) =

1

(k − 1)!

∫ ζ

−∞

(∫ η

−∞
(η − ξ)k−1 Px(dξ)

)
dη

=
1

(k − 1)!

∫ ζ

−∞

(∫ ζ

ξ

(η − ξ)k−1 dη

)
Px(dξ),

where the order of integration could be changed by Fubini’s theorem (see, e.g., Billingsley,
1995). Evaluation of the integral with respect to η gives the result for k. 2

Remark 1 Proposition 1 allows to define the distribution functions F
(κ)
x and the corre-

sponding dominance relations for arbitrary real κ > 0:

F (κ+1)
x (η) =

1

Γ(κ+ 1)
‖max(0, η− x)‖κκ,

where Γ(·) denotes the Euler’s gamma function. In the sequel, however, we shall consider
only integer κ.

Equation (1) and Proposition 1 imply the following observation.

Corollary 1 Let k ≥ 1 and x ∈ Lk. Then δ̄(k)
x =

(
k!F (k+1)

x (µx)
)1/k

.

It is also clear that the functions F (k) are nondecreasing and convex, but the convexity
property can be strengthened substantially.

Proposition 2 Let k ≥ 1 and x ∈ Lk. Then for all a, b ∈ R and all t ∈ [0, 1] one has

F (k+1)
x ((1− t)a+ tb) ≤

(
(1− t)

(
F (k+1)
x (a)

)1/k
+ t
(
F (k+1)
x (b)

)1/k
)k
. (8)
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Proof. Let t ∈ [0, 1]. Consider the random variablesA = max(0, a−x),B = max(0, b−x),
and U = max(0, (1− t)a + tb − x). By the convexity of the function z → max(0, z − x),
with probability one

0 ≤ U ≤ (1− t)A + tB.

Therefore,
‖U‖k ≤ ‖(1− t)A+ tB‖k ≤ (1− t)‖A‖k + t‖B‖k,

where we used the triangle inequality for ‖ · ‖k.
By Proposition 1, k!F (k+1)(a) = ‖A‖kk. Similarly, k!F (k+1)(b) = ‖B‖kk, and

k!F (k+1)((1 − t)a + tb) = ‖U‖kk. Substitution into the last inequality yields the required
result. 2

In a similar way we can prove the following properties.

Proposition 3 Let k ≥ 1 and x, y ∈ Lk. Then for all η ∈ R and all t ∈ [0, 1] one has

F
(k+1)
(1−t)x+ty

(η) ≤
(

(1− t)
(
F (k+1)
x (η)

)1/k
+ t
(
F (k+1)
y (η)

)1/k
)k
. (9)

Proof. We define the random variables A = max(0, η − x), B = max(0, η − y), and
U = max(0, η− (1− t)x− ty), and proceed exactly as in the proof of Proposition 2. 2

Proposition 4 Let k ≥ 1 and x, y ∈ Lk. Then for all t ∈ [0, 1] one has

δ̄
(k)
(1−t)x+ty(η) ≤ (1− t)δ̄(k)

x + tδ̄(k)
y . (10)

Proof. Define A = max(0, µx − x), B = max(0, µy − y), and U = max(0, (1− t)µx +
tµy − (1− t)x − ty), and proceed as in the proof of Proposition 2. 2

3 Necessary conditions of stochastic dominance

The simplest necessary condition of the kth degree stochastic dominance establishes the
corresponding inequality for the expected values (Fishburn, 1980).

Proposition 5 Let k ≥ 1 and x, y ∈ Lk. If x �
(k+1)

y, then µx ≥ µy .

Our objective is to develop necessary conditions that involve central semideviations. At
first we establish some technical results.

Lemma 1 Let k ≥ 1 and x ∈ Lk. Then(
i!F (i+1)

x (η)
)1/i
≤
(
k!F (k+1)

x (η)
)1/k(

P{x< η}
)1/i−1/k

for i = 1, . . . , k.

Proof. We have

i!F (i+1)
x (η) = E

{
(max(0, η− x))i

}
= E

{
(max(0, η− x))i · 1lx<η

}
,

where 1lx<η denotes the indicator function of the event {x < η}.
Define A = (max(0, η − x))i, B = 1lx<η, p = k/i and q = k/(k − i). From Hölder’s

inequality E{AB} ≤ ‖A‖p‖B‖q (see, e.g., Billingsley, 1995) we obtain

i!F (i+1)
x (η) ≤

∥∥∥(max(0, η− x))i
∥∥∥i/k
k/i
·
∥∥∥1lx<η∥∥∥(k−i)/k

k/(k−i)

= ‖max(0, η− x)‖ik
(
P{x < η}

)(k−i)/k
.

Raising both sides to the power 1/i we obtain the result. 2
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Lemma 2 Let k ≥ 1, x, y ∈ Lk and let x �
(k+1)

y. Then

(i)
(
i!F (i+1)

x (µy)
)1/i
≤ δ̄(k)

y

(
P{x < µy}

)1/i−1/k
for all i = 1, . . . , k;

(ii) if δ̄
(k)
y > 0, then

(
i!F (i+1)

x (µy)
)1/i

< δ̄(k)
y for all i = 1, . . . , k− 1.

Proof. By Lemma 1 and the dominance,(
i!F (i+1)

x (µy)
)1/i

≤
(
k!F (k+1)

x (µy)
)1/k(

P{x< µy}
)1/i−1/k

≤
(
k!F (k+1)

y (µy)
)1/k(

P{x< µy}
)1/i−1/k

= δ̄(k)
y

(
P{x < µy}

)1/i−1/k
, (11)

for i = 1, . . . , k, which completes the proof of (i). To prove (ii), note that Proposition 5
implies that P{x< µy} ≤ P{x < µx} < 1. 2

We are now ready to state the main result of this section.

Theorem 1 Let k ≥ 1 and x, y ∈ Lk. If x �
(k+1)

y then µx ≥ µy and

µx − δ̄(k)
x ≥ µy − δ̄(k)

y ,

where the last inequality is strict whenever µx > µy .

Proof. By (5) and (6),

F (k+1)
x (µx) = F (k+1)

x (µy) +

∫ µx

µy

F (k)
x (ξ) dξ ≤ F (k+1)

y (µy) +

∫ µx

µy

F (k)
x (ξ) dξ. (12)

Let k > 1. Owing to Proposition 5, µx ≥ µy, and the assertion needs to be proved only

in the case of δ̄
(k)
x > δ̄

(k)
y . The integral on the right hand side of (12) can be estimated by

Proposition 2:∫ µx

µy

F (k)
x (ξ) dξ = (µx − µy)

∫ 1

0
F (k)
x ((1− t)µy + tµx) dt

≤ (µx − µy)
∫ 1

0

(
(1− t)

(
F (k)
x (µx)

)1/(k−1)
+ t
(
F (k)
x (µy)

)1/(k−1)
)k−1

dt.

Using Lemmas 1 and 2 (with i = k − 1), and integrating we obtain:∫ µx

µy

F (k)
x (ξ) dξ ≤ µx − µy

(k− 1)!

∫ 1

0

(
(1− t)δ̄(k)

x (P{x< µx})1/k(k−1)

+ tδ̄(k)
y (P{x < µy})1/k(k−1)

)k−1
dt

≤ µx − µy
(k− 1)!

∫ 1

0

(
(1− t)δ̄(k)

x + tδ̄(k)
y

)k−1
dt

=
µx − µy
k!

· (δ̄
(k)
x )k − (δ̄

(k)
y )k

δ̄
(k)
x − δ̄(k)

y

. (13)

Substitution into (12) and simplification with the use of Corollary 1 yield

δ̄(k)
x − δ̄(k)

y ≤ µx − µy, (14)
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which was set out to prove.

We shall now prove that (14) is strict, if µx > µy. Suppose that δ̄
(k)
y > 0. By virtue of

Lemma 2(ii), inequality (13) is strict, which makes (14) strict, too.

If µx > µy and δ̄
(k)
y = 0, we must have P{x< µy} = 0, so

δ̄(k)
x ≤ P{x < µx}1/k(µx − µy) < µx − µy.

and (14) is strict again.
If k = 1 the integral on the right hand side of (12) can be simply bounded by µx−µy,

and we get (14) in this case, too. Moreover, Fx(ξ) < 1 for ξ < µx, and the inequality is
strict whenever µy < µx. 2

Since the dominance x �
(k+1)

y implies x �
(m)

y for all m ≥ k + 1 such that F
(m)
x is

well-defined, we obtain the following corollary.

Corollary 2 If x �
(k+1)

y for k ≥ 1, then µx ≥ µy and µx − δ̄(m)
x ≥ µy − δ̄(m)

y for all
m ≥ k such that E{|x|m} <∞.

In the special case of the second degree stochastic dominance our results have a useful
graphical interpretation. For a random outcome x having a bounded variance we consider

the graph of the function F
(2)
x : the Outcome-Risk (O-R) diagram (Figure 1). By Corol-

lary 1, the first two semimoments are easily identified in the O-R diagram: the absolute

semideviation δ̄x = δ̄
(1)
x is the value F

(2)
x (µx), and the semivariance σ̄2

x = (δ̄
(2)
x )2 is the

doubled area below the graph from −∞ to µx. We also have a manifestation of the Lya-
punov inequality σ̄x ≥ δ̄x (Lemma 1 with η = µx, k = 2 and i = 1), because the shaded
area contains the triangle with the vertices (µx, 0), (µx, δ̄x) and (µx − δ̄x, 0).

-

6

ηµx
�
�
�
�
�
�
�
�
�
�
�
�
� η − µxF

(2)
x (η)

δ̄x1
2 σ̄

2
x

ppppppppppppppppppppppppppp

pppppp

pppppp

pppppppppp

pppppp

pp

pppppp

ppppp

pppppppppppp

ppppppp

ppp

pppppppppppppppp

ppppp

ppppppppppppppppp

ppppppppp

Figure 1: The O-R diagram and semimoments

Now consider two random variables x and y in a common O-R diagram. If x �
(2)

y

then Theorem 1 implies that µx− δ̄(1)
x ≥ µy − δ̄(1)

y . This is obvious from Figure 2, because

the slope of F
(2)
x does not exceed one.

But we also have a more sophisticated relation illustrated in Figure 3. The area below

F
(2)
x to the left of µx, equal to 1

2 σ̄
2
x, is not larger than the area below F

(2)
y to the left of

µy, increased by the area of the trapezoid with the vertices: (µy, 0), (µy, δ̄y), (µx, 0), and
(µx, δ̄x). Employing the Lyapunov inequalities δ̄x ≤ σ̄x and δ̄y ≤ σ̄y, we obtain a graphical
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-

6

ηµy µx

F
(2)
y (η) F

(2)
x (η)
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�
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�
�
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δ̄y

δ̄x

δ̄y + η − µy

p

p

p

p

p

p

p

p

p

p

p

Figure 2: First necessary condition: x �
(2)
y ⇒ δ̄x ≤ δ̄y + µx − µy

-

6

ηµy µx

F
(2)
y (η) F

(2)
x (η)

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p p
p

p
p

δ̄y

δ̄x

1
2 σ̄

2
y

1
2 σ̄

2
x

Figure 3: Second necessary condition: x �
(2)
y ⇒ 1

2 σ̄
2
x ≤ 1

2 σ̄
2
y + 1

2(µx − µy)(δ̄x + δ̄y)
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proof of Corollary 2 for k = 1 and m = 2. For more details on the properties of the O-R
diagram the reader is referred to (Ogryczak and Ruszczyński, 1997).

A careful analysis of the proof of Theorem 1 reveals that its assertion can be slightly
strengthened. Indeed, estimating in (13) the quantities P{x < µy} and P{x < µx} from
above by some constant ρ,

P{x < µx} ≤ ρ ≤ 1,

we obtain the necessary condition

ρ1/kµx − δ̄(k)
x ≥ ρ1/kµy − δ̄(k)

y .

Unfortunately, it does not possess the separability properties of the assertion of Theorem 1,
because the right hand side contains a factor dependent on x. In the special case of
symmetric distributions, however, we can use ρ = 1/2. We can also use central deviations

δ(k)
x =

(∫ ∞
−∞
|µx − ξ|k Px(dξ)

)1/k

= 21/kδ̄(k)
x ,

and obtain a stronger necessary condition.

Corollary 3 If x and y are symmetric random variables and x �
(k+1)

y for k ≥ 1, then

µx ≥ µy and µx − δ(m)
x ≥ µy − δ(m)

y for all m ≥ k such that E{|x|m} <∞.

4 Mean–semideviation models

Mean–risk approaches are based on comparing two scalar characteristics (summary statis-
tics) of each outcome: the expected value µ and some measure of risk r. The weak relation
of mean–risk dominance is defined as follows

x �
µ/r

y ⇔ µx ≥ µy and rx ≤ ry.

The corresponding strict dominance relation �
µ/r

is defined in the standard way (7). Thus
we say that x dominates y by the µ/r rules (x �

µ/r
y), if µx ≥ µy and rx ≤ ry where at

least one inequality is strict.
An important advantage of mean–risk approaches is the possibility to perform a pic-

torial trade-off analysis. Having assumed a trade-off coefficient λ ≥ 0 one may directly
compare real values of µx − λrx and µy − λry. This approach is consistent with the
mean–risk dominance in the sense that

x �
µ/r

y ⇒ µx − λrx ≥ µy − λry for all λ ≥ 0. (15)

Therefore, an outcome that is inferior in terms of µ−λr for some λ ≥ 0 cannot be superior
by the mean–risk dominance relation.

A mean–risk model is said to be consistent with the stochastic dominance relation of
degree k if

x �
(k)
y ⇒ x �

µ/r
y. (16)

Such a consistency would be highly desirable, because it would allow us to search for
stochastically non-dominated solutions by the rule:

x �
µ/r

y ⇒ y 6�
(k)
x,
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or by the implied rule involving the scalarized objective:

µx − λrx > µy − λry for some λ ≥ 0 ⇒ y 6�
(k)
x.

We would then know that using simplified aggregate measures of form µ− λr would not
lead to solutions that are inferior in terms of stochastic dominance.

A natural question arises: can mean–risk models be consistent with the stochastic
dominance relation?

The most commonly used risk measure is the variance (see Markowitz, 1987). Un-
fortunately, the resulting mean–risk model is not, in general, consistent with stochastic
dominance. The use of fixed-target risk measures is a possible remedy, because stochastic
dominance relations are based on norms of fixed-target underachievents (Proposition 1).

We shall try to address the question in a different way. We modify the concept of con-
sistency to accomodate scalarizations, and we use central semideviations as risk measures.

Definition 1 We say that a mean–risk model is α-consistent with the kth degree stochas-
tic dominance relation if

x �
(k)
y ⇒ µx ≥ µy and µx − α rx ≥ µy − α ry, (17)

where α is a non-negative constant.

By virtue of (15), the consistency in the sense of (16) implies α-consistency for all α ≥ 0.
Moreover,

µx ≥ µy and µx−α rx ≥ µy−α ry ⇒ µx−λrx ≥ µy−λry for all 0 ≤ λ ≤ α (18)

(combine the inequalities at the left side with the weights 1 − λ/α and λ/α). Thus α-
consistency implies λ-consistency for all λ ∈ [0, α]. It still guarantees that the mean–risk
analysis leads us to non-dominated results in the sense that

µx − λrx > µy − λry for some 0 ≤ λ ≤ α ⇒ y 6�
(k)
x.

With these general definitions we can return to our main question: how can the risk
measure be defined to maintain α-consistency with the stochastic dominance order? The
answer follows immediately from Theorem 1.

Theorem 2 In the space Lk(Ω,F ,P) the mean–risk model with r = δ̄(k) is 1-consistent
with all stochastic dominance relations of degrees 1, . . . , k+ 1.

Proof. By Theorem 1,

µx − δ̄(k)
x > µy − δ̄(k)

y ⇒ y 6�
(k+1)

x.

The implication y 6�
(i+1)

x ⇒ y 6�
(i)
x, i = k, . . . , 1, completes the proof. 2

In the special case of k = 1 we conclude that the mean–absolute deviation model of
Konno and Yamazaki (1991) is 1

2 -consistent with the first and second degree stochastic

dominance. Indeed, the absolute deviation δ(1) = 2δ̄(1), and Theorem 2 implies the result.
For k = 2 we see that the use of the central semideviation as the risk measure (instead of

the variance in the Markowitz model) guarantees 1-consistency with stochastic dominance
relations of degrees one, two and three.

The constant α = 1 in Theorem 2 cannot be increased for general distributions, as the
following example shows: P{x = 0} = (1 + ε)−k, P{x = 1} = 1 − (1 + ε)−k, and y = 0.
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Obviously x �
(k+1)

y, but for each α > 1 we can find ε > 0 for which µx − αδ̄(k)
x < 0 =

µy − αδ̄(k)
y .

For symmetric distributions we can use Corollary 3 to get a wider range of trade-
offs for semideviations, which allows us to replace semideviations with the corresponding
deviations.

Corollary 4 In the class of symmetric random variables in Lk(Ω,F ,P) the mean–risk
model with r = δ(k) is 1-consistent with all stochastic dominance relations of degrees
1, . . . , k+ 1.

5 Stochastic efficiency in a set

Comparison of random variables is usually related to the problem of choice among risky
alternatives in a given feasible (attainable) set Q. For example, in the simplest problem
of portfolio selection (Markowitz, 1987) the feasible set of random variables is defined as
all convex combinations of a given collection of investment opportunities (securities). A
feasible random variable x ∈ Q is called efficient by the relation � if there is no y ∈ Q
such that y � x. Consistency (17) leads to the following result.

Proposition 6 If the mean–risk model is α-consistent with the kth degree stochastic dom-
inance relation with α > 0, then, except for random variables with identical µ and r, every
random variable that is maximal by µ − λr with 0 < λ < α is efficient by the kth degree
stochastic dominance rules.

Proof. Let 0 < λ < α and x ∈ Q be maximal by µ−λr. Suppose that there exists z ∈ Q
such that z �

(k)
x. Then from (17) we obtain

µz ≥ µx,

and
µz − αrz ≥ µx − αrx.

Due to the maximality of x,
µz − λrz ≤ µx − λrx.

All these relations may be true only if they are satisfied as equations; otherwise, combining
the first two with weights 1− λ/α and λ/α we obtain a contradiction with the third one.
Consequently, µz = µx and rz = rx. 2

It follows from Proposition 6 that for mean–risk models satisfying (17), an optimal solution
of problem

max{µx − λ rx : x ∈ Q}
with 0 < λ < α, is efficient by the kSD rules, provided that it has a unique pair (µx, rx)
among all optimal solutions. In the case of nonunique pairs, however, we only know that
the optimal set contains a solution which is efficient by the kSD rules.

Combining Proposition 6 and Theorem 2 we obtain the following sufficient condition
of stochastic efficiency.

Theorem 3 If x̂ is the unique solution of the problem

max{µx − λ δ̄(k)
x : x ∈ Q} (19)

for some λ ∈ (0, 1] and k ≥ 1, then it is efficient by the rules of stochastic dominance of
degrees 1, . . . , k+ 1.
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Proof. It remains to consider the case λ = 1. Suppose that there exists z ∈ Q such that
z �

(k)
x̂. Then from Theorem 2, µz ≥ µx and

µz − λ δ̄(k)
z ≥ µx̂ − λ δ̄(k)

x̂ .

Since x̂ is the unique maximal solution of (19), z = x̂. 2

Theorem 3 can be extended on risk measures defined as convex combinations of semidevi-
ations of various degrees. By applying Theorem 2 for i = k, . . . , m the following sufficient
condition of stochastic efficiency can be obtained.

Corollary 5 If x̂ is the unique solution of the problem

max{µx −
m∑
i=k

λiδ̄
(i)
x : x ∈ Q} (20)

for m ≥ k ≥ 1 such that E{|x|m} <∞, and some λi ≥ 0 satisfying 0 <
∑m

i=k λi ≤ 1, then
it is efficient by the rules of stochastic dominance of degrees 1, . . . , k+ 1.

Owing to Corollaries 3 and 4, for symmetric distributions we can use the central deviation

δ
(i)
x as the risk measures in (20).

It is practically important that the simplified objective functionals in (19) and (20)
are concave (see Proposition 4).

6 Conclusions

The stochastic dominance relation x �
(k+1)

y is rather strong and difficult to verify: it is

an inequality of two distribution functions, F
(k+1)
x ≤ F (k+1)

y . The necessary conditions of
Section 3 establish useful relations:

µx − λδ̄(k)
x ≥ µy − λδ̄(k)

y , for all λ ∈ [0, 1],

that follow from the dominance (µx and δ̄
(k)
x denote the expectation and the kth central

semideviation of x).
This allows us to relate stochastic dominance to mean–risk models with the risk rep-

resented by the kth central semideviation δ̄
(k)
x . The key observation is that maximizing

simplified objective functionals of the form

µx − λδ̄(k)
x ,

where λ ∈ (0, 1), we obtain solutions which are efficient in terms of stochastic dominance.
This may help to quickly identify prospective candidates in complex decision problems
under uncertainty.

Still, sufficient conditions of stochastic dominance in some specific classes of decision
problems under uncertainty require more attention. We hope to address these issues in
the near future.
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