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PREFACE

One of the most striking examples of collaboration between
projects at IIASA was the informal "Resilience Group," made up
of members of the Ecology, Energy and Methodology Projects.
Holling's original idea of resilience as a property or measure
of an ecological system found unexpected applications to society
models considered by the Energy Project; at the same time, the
mathematical identification of the resilience concept gave rise
to several interesting methodological problems. The collaboration
arising out of these common interests proved extremely fruitful
to all participants of this informal group. From the group dis-
cussions, the author has distilled precise mathematical defini-
tions for the many facets of the resilience concept. This paper
shows that the language of differential topology is rich enough
to express all the--sometimes diverging--ideas about resilience
that came up at IIASA. By necessity, the discussion in this
paper takes place on a somewhat technical level; an appendix
summarizes the necessary mathematical terms.
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SUMMARY

During the past year, several research efforts at IIASA
have tried to develop a precise mathematical definition of
Holling's very general and rich resilience concept. This paper
develops a mathematical lanquage for resilience, using the
terms and concepts of differential topology. Central to this
treatment is the division of the state space of a system into
basins, each containing an attractor. The translation of Hol-
ling's concept into this language reads roughly as follows:

a system is resilient if, after perturbation, it will still
tend to the same attractor as before (or to an "only slightly
changed™” attractor). The reason for treating changes of state
variables and changes of parameters separately is explained.

All resilience measures conceived up to now, as defined within
this language, are listed as well. The various definitions of
resilience are then compared to the well-known concepts of
structural stability and of Thom's catastrophe theory. Finally,
the author indicates some--in his opinion--important directions
for further research into the general resilience concept.
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DEFINITIONS OF RESILIENCE

1. INTRODUCTION

The resilience concept, pioneered by C.S. Holling [1], has
been the subject of a prolonged discussion at IIASA. Various
expressions for a resilience value have been proposed by Hol-
ling's group [2], and, in the course of the study of the “New
Societal Equations," another possible expression for resilience
was computed explicitly [3] and will be used as input to an opti-
mization problem. WNevertheless, apart from [4], no general
investigation has been made of the resilience concept in the con-
text of the theory of differentiable dynamical systems. It is
the purpose of this paper to give precise, workable definitions
of resilience in the langquage of this theory. This lanqguage will
turn out to be rich enough to express all different facets of the
"resilience concept."” As we shall see, Holling's original concept
has to be split into two essentially different properties. This
distinction has been noted in the resilience discussion for some
time under the labels "resilience in state space" vs. "resilience
of state space." The present work is restricted to deterministic
systems. The problem is first discussed in an informal conceptual
way, as a motivation for the rigorous mathematics contained in
the second part. An appendix summarizes some mathematical defi-
nitions used.

2. The MATHEMATICAL STAGE: DIFFERENTIABLE DYMAMICAL SYSTEMS

Although some attempts have been made to link resilience
to "long exit time expectations" in a stochastic approach [5],
the discussion so far has been centered on deterministic systems.
One natural mathematical language for the description of such
systems is the theory of differential dynamical systems, i.e.,
of differentiable maps and flows on a manifold. (An informal

collection of concepts and results of this theory is given in



the appendix.) For the definitions of resilience, we therefore
assume that we have abstracted a mathematical model of the given
system in the following form:

X(t) = ¢.(x) ; x €M , t=12,...0rtER . (2.1

M denotes the state space of the system, assumed to be a manifold;
¢t gives the total dynamic evolution of the system over time,
either discrete (as in various ecological models, where the
average reproduction time of a species gives a natural time step)
or continuous. By choosing a particular functional form for
¢--or for the differential equation defining it--we perform the
"first cut"™ for our model: we separate the "system"” from the
"rest of the real world," which will be regarded as unknown
perturbations. The second cut involves the separation of state
variables and parameters; the dimensionality and interpretation
of the state space enter here. This separation can be performed
only via a significant difference in time scales; in the language
of [14], state variables and parameters must belong to different
"strata." Loosely speaking, parameters are allowed to vary in
only two ways: either by sudden jumps,1 such that the state
variables can be approximated to be constant during the change,
or by slow "adiabatic" changes, such that the system can be
assumed to be already in its asymptotic state, as in the appli-
cations of catastrophe theory [13]. This distinction will appear
in the treatment of resilience of the state space; it reminds one
of the sudden and the adiabatic approximation in time-dependent
quantum-mechanical perturbation theory.

In this language, a parameter is therefore a variable
contained in ¢, without being a function on the state space M.
Later, it will be varied over a parameter manifold P. The
semi-group property ¢t+s = ¢t¢s then expresses the autonomy
of our system. In the discrete case, this implies immediately

o = f%n € N) with a single map f£. We assume all maps to be

n

1"Sudden" and "slow" with respect to a typical time scale
of the system itself.



once differentiable (C1). Further differentiability regquire-
ments cannot be made in general: threshold behaviors of repro-
duction rates, for example, imply discontinuities in the first
or higher derivatives as in [6].

In the continuous case, ¢ will of course not be given
explicitly, but only through a differential eguation ﬁ(t) = F(x).
The "integrated form" (2.1) is introduced for convenience in
the definitions. We neglect for the moment difficulties due to
incompleteness of F (i.e., not all trajectories can be extended
to arbitrary large times). For an example of this problem,
see [71].

3. EXPRESSING THE RESILIENCE CONCEPT

In a very crude way, the desired definition could be given
in the form: "the system can absorb changes." Those changes,
to be sure, are assumed to be sudden and external (controllable
or uncontrollable, predictable or random) and therefore not to
be included in the mathematical description via ¢t. But a
question suggests itself immediately: “How large can those
changes be?“2 Thus resilience, as we see it, will be a two-
stage concept. First, on the gualitative side, we try to answer
the question, "Is a system resilient?" 1If the answer is yes,
then the quantitative side asks, "How resilient is it?" By no
means will this question have a unique answer; the consensus
stresses the necessity of several "resilience measures.” One
system could very well be more resilient than another with
respect to one measure, and less so with respect to a second one.
To define resilience values, we must assume that in the state
space M we have a notion of distance, (a metric d) in accordance
with one well-established idea of resilience as "distance to

210 illustrate this idea, if the change in state variables
occurs at time tor the evaluation given by ¢t continues on from

a new xé instead of the Xy reached through evolution before tye

o o
To talk about the magnitude of the change, we need some distance
between x! and x_ .

% o



the next point of catastrophic behavior"; or a notion of volume

{a measure v), expressing the other main idea of resilience as
"size of basins." The identification of this distance or volume
will be a non-trivial problem to be solved for each system indi-
vidually; any identification of distance involves implicit assump-
tions about the structure of possibly occurring disturbances, any
identification of volume involves assumptions of average distri-
butions of points describing the system over the basin. Here we
mention only two guestions alluded to in [2] and [3]: 1logarithmic
scale vs. linear scale of the perturbations, and the problem of
"natural units" if the coordinates in M (the state variables)

have different dimensions.

If no coherent scaling of different state variables is
possible, we might even have to replace 4 by a multidimensional
distance notion: a family of semi-metrics (d1...di) measuring
the size of jumps in different directions of state space. The
various definitions of resilience measures can then be adjusted

accordingly.

Apart from this two-stage concept, there is a qualitative
distinction when we try to answer the question: "What kind of
changes can the system absorb?" Although in [1] Holling treated
"changes in state variables" and "changes in parameters” on an
equal footing, for a rigorous mathematical treatment we will
have to make a distinction. Changing the state of the system
at one particular time changes one particular orbit, while
changing the functional form of the flow or map through a change
in parameters, for instance, involves the whole phase portrait.
Given a precise formulation of the statement "the system can
absorb," we will then have two concepts of resilience, depending
on the nature of the changes.

Two suggestive names for those concepts have been proposed:
"resilience in state space” (short for "of a point in phase
space"), corresponding to changes of state variables, vs.
"resilience of state space" corresponding to changes of parameters.
The latter concept will have different aspects as we deal with
sudden or adiabatic parameter changes. In this paper we call them



R, and R, for simplicity.

1

4. THE ROLE OF ATTRACTORS AND BASINS

We use the picture presented in the appendix: a finite
number of attractors Ai are located in basins B separated by
separatrices S.. Let us assume that we have singled out one
attractor3 A1 as "desirable” (this, of course, is an external
value judgment), and that the current state lies in B,; the
system thus tends towards Ay as t »~ 4=, A change will obviously
be absorbed if, after the change, the system still tends to

"almost" the same region of state space.

Corresponding to the two kinds of resilience discussed

above, non-resilient behavior can occur in two ways:

R,: The sudden jump of the state variables moves the
point describing the system across a separatrix into

another basin;

R2: The phase portrait changes in such a way that the
system (assumed to have the same values of the state
variables as before the changes) now lies in a basin
whose attractor is in a different region of state space.
We see here, by the way, one difference between sudden
and adiabatic changes: a slow "adiabatic" change
will not cause the system to tend to a different
attractor; rather, it will tend to an "adiabatically
changed" one.

5. MATHEMATICAL DEFINITION

We first assume the same situation as in the last section
and define the set S as M - UB; (the union of all separatrices).
i

Definition (5.1) (R1):

Given a system {¢t} in M with a finite number of attractors

Ai and basins Bi’ it is called resilient in the R1 sense

30:, in general, a subset of attractors!



: 4
if M - UBi has measure zero.
i

This means that almost all initial conditions lead to attractors
and small shifts do not disturb the asymptotic behavior since
the basins are open sets. This condition is fulfilled, e.gqg.,

if the non-wandering set consists only of hyperbolic fixed points
and closed orbits (finite in number), or if ¢ satisfies Axiom A
and is twice differentiable [8]. There are C1 counter-examples
satisfying Axiom A where the separatrices have positive measure.
It is not clear what this mathematical statement would mean in
the real world; it could be interpreted as saying that there is
a non-zero probability that the system lies arbitrarily close

to a basin boundary.

We generalize this concept to deal with continuous families
of fixed points, e.g.:

Definition 5.1.a (generalized R,):

For a point x € M, we denote by w(x) the future limit set
of x(y € w(x) if there exists a sequence of real numbers
t, t = such that ¢, (x) » y). Then {¢t} is called gener-
alized R, ifsthe maﬁ x =+ w(x) is continuous with the Haus-
dorff metric” on the space of compact subsets of M except
on a set of measure zero. This expresses the stability of

the asymptotic behavior under disturbances of the initial

condition. Of course (5.1.a) contains (5.1) since w(x) = Ai
for x € Bi'
Turning to resilience measures, we define r(x) = d(x,S) for

each point in S. We distinguish different expressions (dependent
on the application intended).

4

The property of zero measure is independent of the partic-
ular distribution of state variables described by, e.qg. the
volume notion, as long as it has a density.

5The Hausdorff distance between the compact sets A and B
is defined by d(A,B) = max(sup inf d(x,y), sup inf d(x,y)).
X€CA y€B yEB x€A

(There is a point in B at distance d(a,B) from any point in A,
and vice versa.)



i) Mean resilience of the basin B, (Holling and co-workers):

f r(x)du(x) , (5.2)
B

R

1

with some probability measure u.

This concept is useful in some ecological applications--e.g.,
where one is dealing with an ensemble of systems--and has been
used by Holling's group.

ii) Trajectory resilience. Here we focus on one particular

initial condition, so that the resilience value is a
function of x. Hifele in [9] proposed "average

resilience
t
R, = 1/f —d (5.3)
0 |x(t)[r(o x)

and the author [7) proposed "minimal resilience:"

R . (x) = min r(x,) ., (5.8)
min t30 t

e.g., in a normative approach to standard setting.
The last expression has been tabulated for the model
in (3] and is being used as input to an optimization
program.

Bxpressions such as those in {i) have been called resilience
numbers, thege in (ii) resilience functions, since they still are
functions over state space. Another possible resilience number
could be

iii) Volume resilience: {5.5)

RV=V(B1) ’



v being the volume on state space as in Section 2.

This number may be less significant due to the fact
that in higher-dimensional models, the basins will

generally have rather complicated structures, such

that they could contain a large volume while the

boundary is still close to each point in the basin.

Of course for the computation of these numbers in a
concrete problem, the exact locations of the separatrices have
to be determined. Two kinds of approaches seem most suitable
for this: either a method proving that some region lies
wholly within the domain of attraction (Lyapunov's method as
used in [10], or Zubov's method as described in [11]), or a
direct determination of the separatrices as stable manifolds
of co-dimension one. The latter method was used in [7].

6. MATHEMATICAL DEFINITION: R2

Resilience of the second kind as conceived in this paper
will obviously be a concept related to the structural sta-
bility idea of Smale [12]. It is well known that any notion
of gqualitative equivalence between systems gives rise to a
corresponding notion of structural stability in the general
sense: a system will have a certain structural stability
property if its egquivalence class under the given equivalence
notion is open in some Cr-topology. Structural stability in
the technical sense is connected in this way to topological
conjugacy, i.e., the existence of a homeomorphism transforming
the systems into each other. While structural stability is
too strong a concept, since it is concerned with the whole
phase portrait and not with positive time asymptotics alone,
Q-stability is too weak since it implies nothing about struc-
tural change of the basins. 1In {4], it was illustrated that
basins could jump under a small perturbation of an Q-stable
system (hyperbolic fixed points and closed orbits), a non=-

resilient situation as explained in Section 3.



As a further distinction from the usual mathematical con-
cepts of structural stability, Q(-stability, etc., we have to
note that we will not vary the system over a whole neighborhood
in Diff (M) or X1(M) (the space of all discrete or continuous
systems on M). We therefore assume a sub-manifold P of Diff (M)
or X‘(M) to be given such that the original ¢ € P. P can be
thought of as described by a finite set of parameters contained
in ¢ that we want to vary; then P will be finite-dimensional.
But P could very well be infinite-dimensional if some equations
of the model are assumptions and implicitly inexact while others
are exact identities. Then one might study resilience of the
model to arbitrary small variations of the first set of equations,
in the spirit of Thom's insistence on structurally stable
models [13]. Many of the mathematical distinctions in what
follows will become trivial in the case of stable equilibria
and are included partly for completeness; however, there are
strong suggestions that non-trivial attractors will appear even
in simple models. A particularly nasty example is given by
the Lorenz attractor (see [18]).

We again use the Hausdorff distance to formulate the con-
dition that basins and attractors do not vary much.

Definition (6.1.a) (R2' discrete case):

Given a system ¢ on M and a manifold P as above such that
¢ € PC Diff (M), ¢ is called resilient in the second

sense if:

i) There exists a neighborhood U of ¢ in the C1-topology
on Diff (M) such that all systems ¢' € U N P have the
same finite number of attractors (and, therefore,
the same number of basins!);

ii) The maps ¢' P Ai(¢') (i-th attractor of ¢') and
o' Bi(¢') (closuﬁe of i-th basin of ¢') are con-
tinuous with the C -topology on U M P and the Haus-
dorff metric on the A, and Ei'
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Definition (6.1.b) (RZ’ continuous case):

Assume the continuous system {¢t} given by a differential
equation x = F(x) as in Section 2, and P a sub-manifold
of X'(M), F € P. Then F is called resilient in the

second sense if:

i) There exists a neighborhood U of F in the C1—topoloqy
such that all systems (¢'t} defined by the F' € UN P
have the same finite number of attractors;

ii) The maps F b A, (F), F b EI(F) are continuous with the
C1—topoloqy on UM P and the Hausdorff metric on the
Ai and B;.

If the manifold P is finite-dimensional, given by variations
of some parameters in the functional form of ¢ (or F in the
continuous case), the continuity conditions (2) simply mean
continuity in those parameters.

Comparing this definition with the well-known stability .
concepts, we see that we have put a very weak condition on the
attractors. Usual formulations require topological conjugation
on the attractor,6 or at least that nearby systems give homeo-
morphic attractors. Thus, the Lorenz attractor [18], known
to be topologically unstable, could very well be RZ' This
weakening of the definition is due to the intended applications
of the resilience concept; one does not want to be bothered
with "sub-shifts of finite type" in an ecological model, for
example. For the first steps we are interested only in the
location of attractors. However, a more refined analysis should
include the invariant--under (¢t}"measures u; on the attractors
describing time averages in the basins [8]. Some climatologists
have expressed great interest in those averages, which can be
used for defining mean resilience in Section 5. Thus, for a

6_ .
This means that the orbits of {¢'t} on A;(¢') can be

carried into the orbits of {¢t} on A.(¢) by a homeomorphism of
the attractor sets. 1
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stable fixed point, Rm would simply be tiie minimum distance

to the basin boundary. Then the conditions

attractors should be replaced by (ii'):

The maps ¢' b ui(¢') are continuous with the
on the space of measures. This implies (ii)

support of LR

On the other hand, a possible generalization
into account that "splitting" one attractor under

(ii) on the

weak topology

since Ai = the

might take

variation

into several--still close together--does not essentially change
the asymptotic structure of the system. For each attractor
Ai of ¢, and each perturbed system ¢', we then have a finite
set ai(¢') of attractors of ¢' (close together), and we replace

(ii) by (ii"):

the maps ¢' + (. A(d")
A€ a. (")
1
and o m U E:(¢')
BiCQ

[where @ is the set of all basins belonging to
attractors in ai(¢')] are continuous.

The system as defined by

uX - sx3

X = (6.3)
would still be resilient in this sense to variations of u around
Although the stable fixed point for u < 0 splits at

the attracting

u = 0.
4 = 0 into one unstable and two stable points,

points are still close together.

T . .
This means §hat time averages of continuous functions on
the state space will vary continuously under variations of ¢.
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If we look for a numerical expression connected with R2

we first might try:

Definition (6.2) (minimal resilience):

Given a metric d on the "parameter manifold" P, and

(parameter separatrix) the set s, = {$ € P|¢’

denoting by S P

P
does not satisfy RZ}' we define

R(o) = d(¢,sp)
min

a normative number such as Rmin (Section S).8 This number,
of course, tells us a range of parameter variations which do
not induce gualitative changes in the behavior of the system.
By choosing the parameter manifold P in different ways, one
could then study resilience with respect to various com-

binations of parameters.

Another possible definition of a resilience number more in
line with standard sensitivity analysis is suggested here. Given
the continuous dependence of attractors and basins required by
Definition (6.1), their "speed" under parameter variation may
be interesting. Although the phase portrait does not change--the
systems might even be structurally stable, i.e., more than just
R,--a very sengitive dependence of basin boundaries does not
correspond to the intuitive concept of a resilient system. A
large reduction in size of a particylar basin is considered
almost as catastrophic as its complete disappearance. We there-
fore propose

Definition (6.3) (speed resilience):

Under the assumptions of Definition (6.2), and denoting
by B, a ball of radius h around the system ¢ in the param-
eter manifold P,

Rep = 1/1im 1 sup sup[d(A.,A. '),d(B.,B!)] .
sP b0 K 0'€B, i it 1

8We denote resilience values connected to R2 by a bar.
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with d the Hausdorff metric of closed sets in state space

and Ai,Bi,..., as in (6.1);

Definition (6.4) (volume sensitivity resilience):

sup |v(B1) - V(B;)l '
P

with B1 the "desired" basin and notations as above. But
any volume~type measures must be regarded with some reser-
vation, as explained in Section 5.

ESP may well be 0 even if the system is R,, if the location
of attractors or basins depends non-differentiably on the param-
eters; see, for an example, equation (6.3). This system is

resilient only in the generalized sense (stable fixed points at

t‘/%) mentioned there, however.

For slow changes of the parameters in the sense of Section 3,
the conditions about the variations of basins in Definitions
(6.1) and (6.4) should be left out. Under these conditions, a
basin boundary can never overtake the system on its course to-
wards the attractor. In Definition (6.1), only the disappearance
of the attractor should be counted as non-resilient behavior,
as in catastrophe theory. Approaching such parameter values
will involve a shrinking of the basin as observed in several
ecological examples.

7. CONCLUSION AND DIRECTION OF FURTHER RESEARCH

The theory of differentiable dynamical systems gives a
satisfactory language for describing the many different facets
that make up the resilience concept. At the same time, we have
been able to distill from the applications an interesting mathe-
matical concept that has not been studied yet in ordinary sta-
bility theory. 1In relation to catastrophe theory, the resilience
concept is a two-fold extension: it takes more complicated
attractors than fixed points into account right from the start,
and it also involves properties of the basins.



-14-

The following directions of further research--some of them

already under discussion--are suggested:9

- The mathematical theory of resilience should be
investigated: general necessary of sufficient criteria
for resilience of the state space would be extremely
interesting. Some starting points for this are con-

tained in Section 6.

- 1In relation to the "kit concept"--constructing a system
having a predetermined structure of attractors and
basins--two tasks are important: starting a list of
attractors relevant for applications, and studying

consistency questions along the lines of [15}.

- Studying the change of the phase portrait as we cross a
parameter separatrix: the problem of bifurcation. This
has been suggested as a mechanism for generating turbu-
lent and erratic behavior of systems [17]. For the
resilience concept, its study gives us an understanding
of "what goes wrong."

- Numerical methods for the calculation of boundary basins
should be developed and tried in simple models; a list
of candidates is given at the end of Section 5.

- The connections between the choice of resilient measure
(distance, volume in state space, etc.) and our know-
ledge or our implicit assumptions about the structure
of perturbations of the system should be described in
detail.
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APPENDIX

A short introduction to the mathematical foundations of
the theory can be found in P. Walters.10 Only a brief list of
informal definitions will therefore be given here. We shall
deal with the discrete case (¢n = £7; D) and the continuous
case (C) simultaneously.

A fized roint of ¢ is an Xq € M with ¢t(x0) = x, for all t.

A pertodic point (D)/closed orbit (C) is an Xq € M with
¢t(x0) = X, for some t.

The non-wandering gset Q is defined as the set of x € M
which do not wander in the following sense: x wanders if
there is a neighborhood U(x) with ¢tU(x)rﬁ U(x) = g for

all t large enough. Non-wandering is the weakest recurrent-
like property; of course, all periodic points/closed orbits,
but in general also more complicated things, lie in Q.

A fixed point Xq is hyperboliec if the Jacobian of £ (D)/
JF.
the matrix -—> (C)/at x

% has no eigenvalues on the unit
i

0
circle (D)/on the imaginary axis (C). In this case, the
stable and unstable manifolds ws(xo) and w“(xo) can be defined

as points tending exponentially to x, as x + +®, X + -®,

0
respectively. They are smooth sub-manifolds of M, invariant

under ¢t. A hyperbolic fixed point cannot disappear under

a small perturbation of ¢.

1OP. Walters, "An Outline of Structural Stability Theory,"
in H.-R. Griimm, ed., Analysis and Computation of Egquilibria
and Regions of Stability, CP-75-8, International Institute for
Applied Systems Analysis, Laxenburg, Austria, 1975.
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A conttnuous hyperbolic splitting over a closed subset

N € M is given by defining in a continuous way a splitting
of the tangent space Tx(M) = E: ;] E: (for these concepts
see Walters10) into directions where ¢ is exponentially
contracting or expanding, respectively (D). 1In the con-
tinuous case, Tx(M) = E:(M) = Ei @ Ez @ Fx, where F is a
one-dimensional subspace along the direction of the vector

field at x.

¢ satisfies Axiom A if

1) The periodic points (D)/closed orbits (C) are

dense in Q;

2) There exists a continuous hyperbolic splitting
over Q. (Axiom A thus deals only with the
behavior of ¢ on the non-wandering set.)

In this case, Q can be partitioned into basic sets Ai;

they are the proper generalizations of fixed points. Every
A; has its stable and unstable manifold W°(A;) and W' (A))
with properties analogous to those of fixed points.

An attractor is a closed minimal invariant subset A C N
with an open neighborhood U contracting to A in the future

(A= N ¢,U0). This is the proper generalization of a stable
t>0

fixed point. The basin B of an attractor A is the set of
% € M tending to A as t + =; it is open. In the case of
Axiom A, a basic set Ai is an attractor if‘ws(Ai) is open;
then W2(A,) is the basin of Ay

An attractor is called strange if it is not a smooth sub-
manifold of M, e.g., the Lorenz attractor. Warning: most

attractors are strange!
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A separatriz (in the terminology of [4]) is a stable
manifold of co-dimension one. In the case of Axiom A,

the basin boundaries are to be found among the separatrices.

For an Axiom A attractor A, there exists an tnvariant

meagure u on A for which the following is true:

.1 I

(D) if:f ) f(¢iX)
: n=1

=ff(x)du(x)
A

] T

(c) %_:;: T/ f(¢tx)dt
0

for almost all x in the basin of A and all continuous
functions £ on M (Bowen-Ruelle theorem). So u allows us

to calculate time averages.

The Cr—tapology on the space of all dynamical systems on

M11 is defined in the following way: two systems ¢ and 3'
are c'-close if, together with their derivatives up to order
r, they are uniformly close as maps ¢£ and ¢t from M to M
for a fixed t.

A system ¢ is Cr—structurally-atable if for all ¢', c*-
close enough to 4, there exists a homeomorphism12 h of M
transforming orbits of ¢ into orbits of ¢'. Thus, up to
a topological deformation, ¢' looks exactly like ¢.

will

11Here, M has to be compact, or awkward technical problems

occur.

12There are good reasons for insisting only on bicontinuity

of h, instead of on differentiability.



-18-

A system ¢ 1is c¢T-q~-stable if the above holds at least on
the non-wandering sets Q of ¢ and Q of ¢' (so that h
transforms @ into Q'). Here, we are interested only in
non-transient behavior: on Q. If ¢ is Q{-stable, it must

satisfy Axiom A.

A system ¢ is topologically stable if all cF-close ¢!
have non-wandering sets homecomorphic to the one of ¢. The
Lorenz attractor is not even topologically stable.
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