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Preface

There are two fields of application for nondifferen­
tiable optimization (NDO): the first are some practical
problems, arising in applied projects; the second are the
methods which themselves have a large field of application
(e.g. structurized LP problems).

This working paper describes shortly the general scheme
of the NDO method's application to dynamic LP problems. The
paper is supposed and is believed to be a ground for joint
work on developing the method for DLP, revealing all the
possibilities of NDO [(1-4)] for structurized LP problems.
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GENERALIZED GRADIENT METHOD FOR

DYNAMIC LINEAR PROGRAMMING

A. Propoi

Abs.tract

A general scheme of application of nondifferentiable
optimization methods (NDO) to dynamic linear programming
(DLP) problems is considered.

1. Statement of the Problem

Let us consider the DLP problem in the following form [5]:

Problem 1P. To find a control

u * = {u* (0) , ... , u * (T-1 ) }

and a trajectory

x* = {x*(O), ... ,x*(T)}

satisfying the state equations:

x(t+l) = A(t)x(t) + B(t)u(t) + s(t)

x (0) = x O (t=O , ... , T-1 )

and the constraints

G(t)x(t) + D(t)u(t) < f(t)

R(t)u(t) < q (t)

u (t) > 0

(1)

(2)

(3 )

(4)

(5 )
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which maximizes the performance index

T-1
J 1P = (a(T),x(T» + ~ [(a(t),x(t»+(b(t),u(t»] • (6)

t=O

Here u(t) EEr ; x(t) EEn • Matrices A(t)(nxn), B(t)(nxr), G(t)(mxn),

D(t)(mxr), R(t)(~xr) and vectors xO, s(t)(nx1), f(t)(mxl),

q (t) (~ x 1) are supposed to be fixed.

Choosing a control u for some initial state x(O), we obtained

from (1), (2) the corresponding trajectory:

XU = x (x (0) ,u) (7)

Problem 1P is associated with the dual [6]:

Problem 1D. Find dual controls

A* = {A * (T-1 ) , ... , * (0) ) }

and a dual trajectory

p* = {p*(T), ... ,p*(O)}

subject to costate equations:

0'* = {a * (T-1 ) , ... , 0'* (0) }

p(t) = AT (t)p(t+1) - GT(t)A(t) + a(t)

p(T) = a(T)

and constraints

(8 )

(9 )

( 10)

A(t) > °
which minimizes

T-1
J

1D
(A,O') = (p(O),xO) + L

t=O

a (t) > °

[(p(t+1),s(t»+(A(t),f(t»+(O'(t),q(t»]

( 11)

Here p (t) E En, A(t) E Em, a (t) E E~, are the' Lagrange multi­

pliers for constraints (1)-(4) respectively.



Again, choosing a dual control A for some boundary condition

(10), we obtained from (8},(9) the corresponding dual trajectory

AP = p(p(T},A}

2. Method

Let us introduce the Lagrange function for Problem 1P as

follows:

T-1
L(u,A} = J 1P (u} + L (A(t},f(t}-G(t}xu(t}-D(t}u(t})

t=O

( 12)

(13 )

where in (13) xU(t} (t=O, ••• ,T-1) are supposed to satisfy state

equations (1) for some u and x(O}, (see (7}), so the Lagrange mul­

tipl~ers p(t) for these constraints are not necessary.

Propositions.

(i) Problem 1P has a solution.

(ii) The sets

U(t} = {u(t) IR(t}U(t}~q(t}, u(t}~O}

are bounded for all t = O,1, •. ·.,T - 1

Let

U = U(O}x"'xU(T-1}

~(A) = max L(u,A}
u£u

U
A

={U\L(u,A} = w(A},u£U}

( 14)

( 15)

( 16)

Lemma 1. With the propostions stated above~ the follo~ing

statements are true:

(i) W(A) is a concave~ piece-~ise linear~ continuous

function defined for aZl A > 0;

(ii) the function W(A) is bounded on the set {A>O} and

achieves its minima~ i.e. A* exists~ such that



-ll

~(A*) = min ~(A) = min max L(U,A)
A>O A>O u£u

Proof follows from the general results stated in [1].

(17 )

Lemma 2. Any solution A* of (17) corresponds to some solu­

tion {A*~cr*~p*} of Problem 1D.

Proof: The problem of (15) for some·fixed A = AO is the OLP

problem with state equations (1), (2), constraints (4),(5) and per­

formance index (13). As the sets (14) are bounded for all t, it

has a finite solution u AO £ u AO. Therefore the dual to problem

(15), which coincides with the Problem 10, if A = AO, P = pO= .(AO),

has also a solution {crO=cr(AO), pO=p(AO)} and

for all feasible cr.

t ' I l.'f ,0 ,*In par l.CU ar, A = A - a solution of (17), then

(18)

Choosing cr = cr(A*,p*) in (18) from a solution of the problem

(10)-(11) with A = A*, P = p* = p(A*), we obtain, obviously,

Thus, the solution of dual Problem 10 is equivalent to the

solution of the problem (17). For finding a solution of (17), we

shall use the generalized gradient method [1]:

aYJ (Av) }

II a~ (A v) II
(v=0,1, ••• ,) ( 19 )

+Here P is a projection operator on positive orthant, that is

x, ,
l.

0,

if x, > °l.

if x, < °l.
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II x II is the eucledean norm of vector x, 3llJ (A) is generalized gra­

dient of function llJ(A).

Lemma 3. The function llJ(A) is differentiable at any point

AO e ~T in any direction y e EmT and

(20a)

1Jhere

3llJ(A) ={f(t)-G(t)x(t)-D(t)u(t) (t=O, ••• ,T-1)} u = {u(t)} £ uA

(20b)

From definitions of L(U,A) and ~A in (13) and (16) one can

obtain that the set uA is determined by the solutions of T LP

problems:

(p (t +1) B (t) - A(t) D(t) +b (t) , u (t» -+- max

R(t)u(t) 2.. q(t)

(t=O, ••• , T-1 )

u(t) > 0 (21)

where p(t+1) and A(t) are linked by costated equations (8),(9).

According to Lemma 2, minimization of the function llJ(A) over

A implies the solution of the problem, dual to 1. This minimiza­

tion can be carried out by different ways using different NDO

approaches.

If one uses the generalized gradient method technique [1],
then the algorithm of finding the optimal value A* can be described

as follows.

(1) Choose arbitrary dual control AV = {AV(t)~O} (v=O,1, ••• ,)

(2) From dual equations (7), (8) compute corresponding dual

trajectory pV = p(a(T) ,AV).

(3) Using {AV(t) ,pv(t+1)}, solve T LP problems (21). If

the solution of these problems for some t is not unique,

choose arbitrary uV(t) £ UA(t), where UA(t) is the set

of solutions of LP problem (21) for that t.



(4)

(5)

(6)
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From primal equations (1), (2) compute trajectory XV

Vfor u = u •

Compute vector a~(Av) from (20).

v+1Compute new value A from (19) etc.

We shall call this procedure A1.

Theorem 1. Let

Then

ex -+ 0,
v

00

r
v=o

ex = 0v

~(Av) -+ ~(A*)

AV
-+ A*

The proof of the Theorem follows from [1].

3. Disoussion

From the proof of Lemma 2, it follows that the solution

{A*,a*,p*} of dual Problem 10 can be determined from procedure

A2.

(1) Compute from A1 the dual control A*,optimal for (17).

(2) Compute from the dual state equations (8), (9) the opti­

mal dual trajectory p* = p(a(T),A*).

(3) Solve T LP problems:

(a (t) ,q (t» -+ min

RT(t)a(t) > b(t) + BT (t)p*(t+1) - OT(t)A*(t) (22)

a (t) > 0

It follows from Lemma 2, that {a*,A*,p*}, where a* = {a*(t)} is

optimal for problem (22), and is a solution of dual Problem 10.



4. Definition of Primal Solution

If the optimal solution of (17) ~* was determined, then
~* ~.u £ U may be a non-optimal control of primal Problem 1. This

is because o£ the unstable properties of the saddle-point set of

Lagrange function (13) for LP problems.

To obtain the optimal control u* of the primal Problem 1, one

can use, for example, the complementary slackness conditions. That

*is, A* is supposed to be known. Then if ~i(t) > 0, then

if

[G(t)x(t)+O(t)u(t)]i = f. (t)
1.

(23)

then

*u. (t) = 0
J

,

(24)

So, to find u*, it is necessary to solve OLP Problem 1P with con­

straints (23), (24) .

5. Conclusion

The algorithm considered above has two "control" parameters:

1. Choice of vectors u A
£ U~ (which corresponds to the choice

of direction in (19)),

2. Choice of the step size va. •

The choice of these parameters determines the properties of

concrete realization of the algorithm and there is enormous room

for application of different NOD approaches and ideas.

The investigation of different approaches to this problem

may be of special interest, because here we deal with linear pro­

gramming problems, so the choice of u~ and the determination of

u* can be connected with "finite" procedures of symplex-method.
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