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Foreword

IIASA, the Russian Academy of Sciences and several Russian governmental agencies,
signed agreements in 1992 and 1994 to carry out a large-scale study on the Russian
forest sector. The overall objective of the study is to focus on policy options that
would encourage sustainable development of the sector.

The first phase of the study concentrated on the generation of extensive and consis-
tent databases for the total forest sector in Russia. In its second phase, the study
encompassed assessment studies of greenhouse gas balances, forest resources and
forest utilization, biodiversity and landscapes, non-wood products and functions,
environmental status, transportation infrastructure, forest industry and markets,
and socioeconomics.

The remote sensing activities within this project aims at the following three main
objectives:

• to produce an up-to-date forest information database of the Russian forestsec-
tor;

• to develop and test methods to produce an up-to-date land use and land cover
database for Russia; and

• to develop and test operative forest information and decision support system,
with monitoring and revision capabilities, in a GIS environment.

The current study was done during the 1998 Young Scientists Summer Program
(YSSP).
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Classification and Estimation of Forest and

Vegetation Variables in Optical High Resolution

Satellites: A Review of Methodologies

Gidske L. Andersen (gidske@nrsc.no)

1 Introduction

Several international organizations have highlighted the importance of developing
sustainable forest management (i.e., the Intergovernmental Panel on Forests, World
Commission on Forests and Sustainable Development), both in terms of long-term
management, and biodiversity conservation and mitigation of climate change im-
pacts.

Russia has vast forest resources, comprising 23% of the world’s forest areas (forest
area as defined by FAO, 1995), and in world-wide growing stock terms this amounts
to 21–22%. In addition, 11% of living forest biomass and 55% of the world’s growing
stock of conifers of the world’s growing stock is located in Russia. The majority of
Russia’sn forest resources are located in Siberia and the boreal forest of Central
and Western Siberia is the largest unbroken tract of forest on earth. Accordingly,
Russian and Siberian forests are of global importance, not only ecologically but also
economically.

Russian forests received increased attention after the political and economic trans-
formation of the former Soviet Union. The debate is now about the future develop-
ment of forest resources. Any new policies, resulting from the debate, will inevitably
have an impact on both the management and exploitation of forest resources and
significant changes are considered to be likely.

The current forest inventory system is central in the debate as several weaknesses
are recognized [18, 23, 24]. Weaknesses in the current system include:

• no forest fire monitoring system;

• no inventories of disturbances due to pests, disease and other biotic factors;

• no complete survey of the extent and intensity of abiotic impacts;

• the production and utilization of so-called non-wood products and functions
of the forest are not efficiently monitored;
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• inventories for individual regions have been carried out infrequently; existing
forest maps are of poor quality (1:2500000), and the last inventory of approx-
imately 90 million hectares was carried out during the period 1948–1956; and

• the current inventory system is unable to capture many of the important dy-
namics of the forest.

Hence, it is recognized that there is a need for a new land information system which
should be policy and market oriented and in which remote sensing plays a crucial
role [18]. Both the economic conditions and the vast forest areas require a more
intensified use of remote sensing.

Some of the variables of interest for a future inventory system using satellite data
are:

1. Factors reflecting disturbances of areas; forest fires, insect damage, harvests
and air pollution.

2. Primary and secondary forests, and harvested areas.

3. Species composition regarding coniferous and deciduous species.

4. Natural regeneration status regarding coniferous and deciduous species.

5. Rough distribution of volume classes, primarily three to four classes.

6. Transportation infrastructure including road network.

7. Indicators of surface parameters such as humidity and the extent of permafrost
which can be used as variables to forecast the risk of large scale disturbances
(e.g., forest fire).

Combining the existing forest inventory information with high resolution satellite
data (SPOT) will produce new and detailed information, and offer not only the
possibilitiy to update faster but also the possibility for historical studies. The clas-
sification of satellite data offers the possibility of recognizing variables of interest.

This study reviews and describes methods for the classification and estimation of
forest and vegetation variables in optical high resolution satellite data.

2 Classification of Boreal Forests

Forestry planning is, to a certain degree, assisted by remote sensing, mainly in North
America and Europe. The goal of applying remote sensing to forestry is to add value
(utility) in the planning process [11], which should mean one of the following:

• the information retrieved from satellite remote sensing should be less expensive
than collection by other means;
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• it should contain better information at the same cost; or

• it should be both cheaper and better in some way.

The potential of applying remote sensing to forestry has been recognized by several
authors [27, 31].

The use of ground based survey methods to obtain detailed inventory data is cur-
rently both too expensive and time consuming [12, 22, 27]. If detailed data were
available, it would be possible to optimize a response to the changing market
demands. The need for a less expensive and more comprehensive approach has
prompted much research into extracting forest information from aerial and satellite
remote sensing [27].

Woodcock, et al. [31] mentions the costs which can be saved, both in the long term
and per unit area. The conversion of satellite image format to GIS is easy, making
map production possible within a short time and also allows the fast update of
computer-based maps following fires, floods, and other catastrophic events. This is
particularly useful for areas where resource information is limited and fast changes
make the information collected by conventional methods outdated [19]. Another
advantage is the high degree of consistency between locations that is offered by
remote sensing [31].

In the years since the launch of the first optical satellite, Landsat MSS in 1972,
technology has developed and improved so much that multiple sensors are available
today. In particular, development has been toward a better spectral, spatial and
radiometrical resolution. The main satellites are described in Table 1. The bands
which are usually available are: green, red, and near infrared; however, with newer
sensors, these are extended to blue, and two mid-infrared bands.

Table 1: Some characteristics for commonly used optical satellites.

Ground No. of Visible No. of Infrared
Satellite Sensor Resolution Bands Bands
Landsat MSS 80a 3 1
Landsat TM 30 3 3
SPOT P 10 1 0
SPOT XS 20 2 1–2b

RESURS-O1 MSU-E 45 2 1

a Varies slightly for the different Landsat generations. b SPOT4 has a mid-infrared band.

2.1 Methods of classification and segmentation

A raster image is basically a grid of pixels, i.e., squares with digital numbers, dis-
tributed in a spatial framework of rows and columns. The human brain recognizes
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patterns in the image and the interpretation gives us information of the spatial
distribution of features described by the sum of pixels. Classification consists of
recognizing these features and patterns and their assignment to specified land cover
classes. Both spectral and spatial patterns are of interest and the approach can be
either manual or digital.

The visual/manual technique uses the skills of the human brain to recognize factors
such as shape, size, pattern, shadow, tone/color, texture and site [15]. Some of these
factors can be limited by the ground resolution of the satellite. Manual interpretation
as described by Borry, et al. (1990) (referred to in [11]) deems to be more reliable
than digital classification of forest type. Roy, et al. [19]1 emphasize that visual
interpretation is a subjective method and hence mapping borders will vary between
interpreters. However, this is of limited importance for broad scale studies. For
detailed mapping computer-aided techniques are suggested. If the area studied is
over a certain size a visual approach is, however, very cumbersome, time, and labour
consuming. Visual interpretation is also applied as part of the digital approach in the
segmentation and ensuing evaluation of the defined segments [3]. Woodcock, et al.
[31] uses manual techniques to label clusters derived from a complex classification.

Digital classification methods normally use stastical or spectral decision rules to
assign the unit considered to different classes. The unit considered can be either the
pixel or a region. As opposed to the per-pixel approach a region-based classification
first requires segmentation.

2.1.1 Segmentation

Image segmentation is a method of defining discrete objects or classes of objects.
The method was presented in the 70’s by Ketting and Landgrebe (referred to in
[11]) but is still not commonly applied as a satellite image interpretation tool for
forestry purposes [3, 11]. However, the advantages for forestry are recognized by
several authors [2, 3, 10, 11, 20] which is due to the fact that forestry planning and
management still uses forest stand as the basic unit. Ideally, the use of segmentation
will define forest stands. A next step is the classification of regions and normally
the more conventional methods are applied. The classification of regions avoids
the problems of single mixed pixels but also provides more parameters to classify
than the brightness normally used. These parameters can be texture, perimeter and
shape. In particular, texture measures are very important features for discriminating
individual stands [2, 3]. Skewness and kurtosis are other parameters which can be
put into the classification of the segments. However, a reliable calculation of these
require the regions to be above a minimum size [2].

Several methods of segmentation exist, four of these are: pixel-based, edge-based,
object-based/region growing, and hybrid [2]. Burger and Steinwendner [2] select the
object-based approach due to its simplicity, efficacy, generality and its capability
of being combined with edge-based methods. These object/region based methods
can be further divided into split and merge-, region-growing-, and pyramid-linking-
segmentation techniques. The region-growing algorithms are most often applied

1This is not a study of boreal forests but the principles and conclusion are of general interest.
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to forestry [2, 3, 10, 20, 30, 31]. There are four different types of region-growing
algorithms:

• spatial clustering;

• single linkage region-growing;

• hybrid linkage region-growing; and

• centroid linkage region-growing.

In principle the segmentation algorithms consist of several steps, however the specific
approach depends on the algorithm. The following describes the general approach
of a region-growing algorithm.

The first step is the combination of pixels into regions. A neighborhood function,
commonly consisting of either four or all eight neighbor pixels, is applied and these
pixels are included in the region if the spectral difference between the center- and
neighbor-pixels are below a certain threshold. This threshold can be a user-specified
Euclidean distance in a n-dimensional space [20] or an adaptive threshold [3], tadapt,

tadapt = (1−min(0.8,
standarddeviation

mean
))t (1)

where t is a given threshold. In the latter case, the user specifies the final highest
allowed threshold for including a pixel. Below this value, the threshold can change
as the region grows; it decreases as the standard deviation of the growing region
increases. Thus, this adaptiveness of the threshold is a simple measure of the texture
and, as such, an alternative way to include texture measures in segmentation.

The addition of single texture bands were tested by Ryherd and Woodcock [20] and
Woodcock and Harward [30]. The results indicate that in the case of land-cover
types with different texture values, segmentation is significantly improved by using
texture data [20]. Woodcock and Harward [30] conclude that sparsely stocked forest
stands which have high internal variance texture bands derived by an adaptive filter
improve the segmentation results. In the worst case, a texture band will not, [20], or
rarely [31], degrade the quality of the segmentation. The adaptive filtering technique
applied includes a 3x3 moving window selecting the lowest value to be assigned for
the pixel considered.

The second step is the filtering and merging of regions. Regions below a certain size
should be merged with the spectrally closest spatial neighbor. Spatial adjacency
is defined by Burger, et al. [3] to be the overlapping regions after delineating the
region of interest. Both size and spectral measures are used to control merging. A
minimum size can be applied in the first step to avoid creating single pixel regions
[20]. Two different maximum sizes can be applied: one size for which merging is not
allowed for that specific region, and a viable size which does not allow two regions
over this size to merge. For certain features such as, small lakes and meadows which
can be spectrally delimited, a user specified spectral limit can be used to avoid these
features disappearing when merged with other features [20].
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Hagner [10] uses the t-ratio as the spectral measure for merging regions. The t-ratio
is defined as:

t− ratio =
x̄1 − x̄2√
s21
n1

+
s22
n2

(2)

where:

x̄i = mean of region i
s2
i = variance of region i
ni = number of pixels in region i

Hagner [10] decides the appropriate level of the t-ratio on a trial and error basis.
The visual interpretation of aerial photographs and field checking are the basis for
the comparison. In the case of multiple bands the measure used is the square root
of summed, squared t-ratios. The t-ratio is not defined for single pixel regions and
they are merged only on the basis of the distance to the closest spectral neighbor in
feature space. Merging is an iterative process where the threshold increases until the
user defined threshold is reached. The regions to be merged should be each other’s
reciprocal nearest neighbor in the n-dimensional feature space [20].

Additional information sources can be included in the segmentation process. Hagner
[10] guides the stand delineation (segmentation) by map information and digital
elevation models.

With further improvement in sensor technology and hence increased spatial resolu-
tion, individual trees will be recognizable. A forest stand is thus no longer a ho-
mogenous region and segmentation cannot provide the seperation of forest stands.
To solve this problem, it is suggested to first apply a low pass filter to remove the
high texture information of the image and then apply the segmentation algorithms
on the blurred image [3].

2.1.2 Classification

The classification algorithms are executed on the images themselves or on partly
processed images, for example, a segmented image. However, the classification prin-
ciples are the same if one deals with segment- or per-pixel classification.

Classification is a two-step process:

1. The training stage:

• unsupervised;

• supervised.

2. The classification stage.

The Training Stage. Training is the process of defining the criteria for which the
patterns are recognized (Hord, 1982, reffered to in [6]).
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Unsupervised training or clustering is a more computer automated process which
basically recognizes spectral clusters defined on a solely statistical basis. Different
clustering methods exist; among them ISODATA (Iterative Self Organizing Data
Analysis) and RGB clustering.

The first iteration of ISODATA clustering determines the means of the maximum
number (N) of clusters arbitrarily. The spectral distance between all the pixels
and the cluster means are calculated and the candidate pixel is assigned to the
closest spectral cluster. When all the pixels are assigned to a cluster the means
are recalculated and used for defining clusters in the next iteration. The process
continues until a user specified portion of the pixels does not change from one cluster
to another between two iterations. This number is defined by the convergence
threshold. The user also sets the maximum number of iteration and clusters to
be processed.

Good a-priori knowledge of the area is not required. However, the clustering will be
useless if no appropriate interpretation of the clusters is given. Mayer and Fox [17]
interpret the unsupervised signatures by comparing spectral mean plots to similar
plots derived from a supervised approach. They conclude that such comparison, in
conjunction with photo-interpretation, is an effective way of assigning reliable labels.
Woodcock, et al. [31] apply unsupervised classification to determine the vegetation
growth forms for the regions derived by segmentation. They do one classification
for poorly illuminated areas and another for well illuminated areas.

Supervised training is a method in which the user defines a set of classes of interest.
Signatures for these classes are selected by the user, i.e., the user supervises the
computer in the training process. This requires some a-priori knowledge about the
area (reference/ground truth data) and their spatial distribution. This can be a
problem for remote sensing applications since the results are usually very dependent
on the quality and quantity of the reference data. One of the primary advantages of
remote sensing is thus questioned. Mayer and Fox [17] attribute the high accuracy
for certain variables to the large amounts of training data and the low accuracy for
other variables to insufficient training data.

A sampling between 10n and 100n pixels per class is recommended, n being the
number of channels or bands used in the classification. It is also recommended to
take several smaller homogenous samples than fewer larger ones (Swain and Davis,
1978 and Campbell, 1981 referred to in [21]).

The result of the training process is a set of signatures for the classes selected or rec-
ognized. These signatures can be either parametric or non-parametric. Parametric
signatures describe pixels in the training sample by a set of statistical parameters
which are the input in a statistical based classification. A non-parametric signature
is delimited by boundaries in a feature space/scatter diagram rather than described
by stastical parameters. However, it is possible to calculate statistics for one type
of feature space objects; the ellipse of which fulfills the normal distribution require-
ments of a parametric classifier. The most crucial part of the training step is the
evaluation of the signatures. If signatures overlap the spectral information of the
data itself cannot support the classes of interest. This is often one of the main prob-
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lems with a per-pixel classification which only uses the spectral information content
of the image. Some different methods for evaluating signatures are presented below.

Alarm. This is a visual method and produces an image file which displays all the
pixels within the minimum–maximum boundaries in the feature space of the selected
signature.

Ellipse or rectangles. The separability of signatures is evaluated by displaying the
ellipses or rectangles describing the signatures in a two-dimensional feature space.

Contingency matrix. The pixels in the sample/training regions are classified and the
resulting distribution across different classes are displayed in a contingency matrix
which contains the number and percentages of pixels that are classified as expected.

Separability/Divergence. Separability is a statistical measure of the distance between
two signatures. Some of the decision rules use distance in the classification algorithm
and separability can thus predict the result of the final classification. There are three
options for calculating separability:

• Divergence;

• Transformed Divergence; and

• Jeffries-Matusita Distance.

The latter two have lower and upper boundaries of which the upper boundary indi-
cates total separability.

Divergence, Dij is calculated by the formula:

Dij =
1

2
tr
(
(Ci − Cj)(C−1

i − C−1
j )

)
+

1

2
tr
(
(C−1

i − C−1
j )(µi − µj)(µi − µj)T

)
(3)

where:

i and j = the two signatures being compared
Ci = the covariance matrix of signature i
µi = mean vector of signature i
tr = the trace function (matrix algebra)
T = transposition function

Transformed Divergence, TDij is a further calculation using the Divergence equation
and is described by the following formula:

TDij = 2
(

1− exp
(−Dij

8

))
(4)

TDij ranges between 0 and 2000.

Jeffries-Matusita Distance is calculated by the formula:
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JMij =
√

2(1− e−α) (5)

where:

α =
1

8
(µi − µj)T

(
Ci + Cj

2

)−1

(µi − µj) +
1

2
ln

 |(Ci + Cj)/2|√
|Ci| × |Cj|

 (6)

and

i and j = the two signatures being compared
Ci = the covariance matrix of signature i
µi = mean vector of signature i
ln = the natural logarithm function
|Ci| = the determinant of Ci (matrix algebra)
T = transposition function

Values of JMij ranges between 0 and 1414.

The Jeffries-Matusita distance is related to the pairwise probability of error which
is the probability that a pixel assigned to class i is actually class j. Within a range
this probability can be estimated according to:

1

16

(
2− JM2

ij

)2
≤ Pe ≤ 1− 1

2

(
1 +

1

2
JM2

ij

)
(7)

Weight Factors can be included in the separability measure and influences the best
average and the best minimum separability. The weight factors are used to compute
a weighted divergence with the following calculation:

Wij =

c−1∑
i=1

(
c∑

j=i+1
fifjUij

)
1
2

[(
c∑
i=1

fi

)2

−
c∑
i=1

f2
i

] (8)

where:

i and j = the two signatures being compared
Uij = the unweighted divergence between i and j
Wij = the weighted divergence between i and j
c = the number of signatures (classes)
fi = the weight factor for signature i

Ayanz and Biging [21] include these separability measures in a iterative classification
procedure so that for each iteration the best combination of bands are selected as
input to the classification. They find no significant difference in the band combina-
tions obtained when using either TD or JM. They recommend JM as it requires less
computing time.

The Classification Stage. The signatures created by the training stage are the input
to the classification stage. Pixels and/or regions are then assigned to classes based on
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a decision rule. Different decision rules are developed and these are either parametric
or non-parametric rules. The last part of the classification step is the accuracy
assessment which is not described in this report.

Minimum distance (to means) classifier. This decision rule is considered to be the
simplest one. The distance between the candidate pixel, the pixel to be classified,
and the mean of the classes defined, is considered. The pixel is assigned to the class
which has the closest mean. The minimum distance is based on the equation for
Euclidean distance (Swain and Davis, 1978, referred to in [6]):

SDxyc =

√√√√ n∑
i=1

(µci −Xxyi)2 (9)

where:

n = number of bands (dimensions)
i = a particular band
c = a particular class
Xxyi = data file value of pixel x,y in band i
µci = mean of data file values in band i for the sample for class c
SDxyc = spectral distance from pixel x,y to the mean of class c

The only parameter used to decide the class for the candidate pixel is the mean and
other important parameters, such as covariance and correlation, are not considered.
Misclassification is likely if there are big differences in the variance of the classes
and if the candidate pixel is closer to the mean of the low variance class.

Mahalanobis distance classifier. This method assumes a normal distribution of the
band histograms. In addition to the mean value of the signature class the covariance
matrix (covariance and variance) is included in the calculation which tends to over-
classify signatures with relatively large values in the covariance matrix.

D = (X −MT
c )(cov−1

c )(X −Mc) (10)

where:

D = Mahalonobis distance
c = a particular class
X = the measurement vector of a candidate pixel
Mc = the mean vector of the signature of class c
Covc = the covariance matrix of the pixels in the signature of class c
Cov−1

c = the inverse of Covc
T = transposition function

Maximum likelihood/Bayesian classifier. This method requires a normal distribution
of the bands included in the classification and is based on the probability that a pixel
belongs to a particular class. The maximum likelihood equation assumes that the
probabilities for all the classes are equal. If the class probabilities are known it is
possible to include these by using the Bayesian classifier. In the same way as the
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Mahalanobis classifier, this method also tends to over-classify signatures with large
values in the covariance matrix.

D = ln(ac)− [0.5ln(|Covc|)]− [0.5(X −Mc)T (Cov−1
c (X −Mc)] (11)

where:

D = weighted distance (likelihood)
c = a particular class
X = the measurement vector of the candidate pixel
ac = percent probability that any candidtate pixel is a member of class

c (defaults to 1.0, or is entered from a priori knowledge)
Covc = the covariance matrix of the pixel in the sample of class c
|Covc| = determinant of Covc (matrix algebra)
ln = natural logarithm function
T = transposition function (matrix algebra)

Several authors apply maximum likelihood [8, 12, 16, 21, 22]. Kadro [12] and Schnei-
der [22] use maximum likelihood to differentiate damage levels in boreal forest in
TM imagery. Ayanz and Biging [21] explore an iterative maximum likelihood clas-
sifier. One or two cover types are classified in each iteration according to the band
combination score on the different separability indices. Test classification using only
signature pixels, is used to list cover types according to their accuracy. Those with
the highest accuracies are classified first and are then masked. A new iteration se-
lects the next cover class to be classified and the optimal band combination. This
type of classification is compared with the conventional type, both when using and
omitting prior probability. However, including prior probability does not increase
the overall accuracy but there is a significant improvement by using the iterative
method; accuracies increased from 58 to 66%.

Parallelepiped and feature space classifier. The parallelepiped and the feature space
decision rule can deal with both parametric and non-parametric signatures. Basi-
cally both of these methods decide whether a candidate pixel is within a set of given
limits. In the parallelepiped method the limits are described by constants (non-
parametric) or by mean values and standard deviations. The feature space method
allows the user to draw these limits in a scattergram. The only geometric feature
which gives parametric signatures is the ellipse. Depending on the kind of limits
given or drawn, it is possible to include correlation/covariance into the decision rule.
The parallelepiped classifier leaves a group of unclassified pixels.

This method is used by several authors for different purposes [2, 3, 21, 28]. Burger
and Steinwendner [2] and Burger, et al. [3] use a decision tree to classify defined
segments and finally extract the forest. Williams, et al. [28] use parallelepiped limits
to distinguish three different insect damage levels in a Landsat MSS image. Ayanz
and Biging [21] use the parallelepiped classifier as a first step of the classification to
quicken the next steps which are done by the maximum likelihood classifier.

Characteristics of the different classification methods are summed up in Table 2.
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Table 2: Some characteristics of the different classification methods.

Parallel-
epiped

Feature
Space

Minimum
Distance

Mahalanobis
Distance

Maximum
Likelihood

Parametric
Signature

possible possible yes yes yes

Non-
parametric
Signature

yes yes no no no

Variance yes depends no yes yes
Covariance/
Correlation

no/
stepped
borders

depends/
yes

no yes yes

Unclassified yes yes no no no
Normal
Distribution

no no no yes yes

The trend in remote sensing studies of landcover classification is towards combining
methods, including original and derived bands (vegetation indices, principal com-
ponents, tasseled cap transformation and filtered bands) as well as auxiliary data
from GIS [21].

Woodcock, et al. [31] represents a good example. This investigation comprises
both segmentation, unsupervised and supervised classification, inversion of the Li-
Strahler canopy model and terrain based rules to differentiate species associations,
and a fuzzy set to evaluate the map accuracy. One of their conclusions is, however,
that this system is too complicated and requires too much equipment and training
to be implemented by small mapping projects and is only recommended for the
national or regional level.

Fuzzy membership rules are also applied to improve the classification itself. Stolz
and Mauser [25] use such rules to better distinguish land cover types in steep terrain.
The combined probability from a maximum likelihood classification and the mem-
bership functions assigns the final class value. They conclude that the classification
results can be considerably increased by using this approach and suggest further
investigations into geofactors and the fuzzy membership functions.

A three stage classifier is applied by Wilson and Franklin [29]. This algorithm uses
spatial statistics, minimum distance to mean tests and spectral and geomorphomtric
curve test. The geomorphometric variables are derived from a elevation model.

Another type of combination of methods is given by Donchenko, et al. [5] who also
combine different sensors. They use both opticals, NOAA/AVHRR and Landsat
MSS, and data from the radar ERS/SAR. They conclude that the appearance of
ecological anomalies in boreal forests as a result aerotechnogenic pollution can be
effectively revealed, identified and investigated making synergistic use of remotely
sensed data.
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2.2 Results of classification and segmentation

In contrast to the methods, the variables of interest have been quite uniform in most
of the investigations. Some of the biometric variables studied are crown closure, vol-
ume (per area), species composition, age classes, and stand density [1, 3]. Different
sensors and band combinations have been tried and the results vary considerably.

Schneider [22] applies TM data and recognizes channels 5 and 4 as being most
important and valuable for separating forest categories. Brockhaus and Khorram
[1] find that the basal area is significantly correlated to XS3 and TM bands 2-5
and 7 but the correlation coefficients are low. In addition, these TM bands are
significantly, but weakly, correlated to age classes [1]. The same investigation finds
no correlation between age class and SPOT XS bands. However, both SPOT XS
and Landsat TM bands show a general negative correlation with wood volume and
volume related parameters [27]. The near infrared band is, perhaps, an exception
showing positive, negative or flat correlation (referred to in [27]). The trend depends
upon shadowing, subcanopy and water content. The mid-infrared band is recognized
by many authors as being the most sensitive to changes in forest wood volume.

Forest damage has been studied by several authors [12, 13, 22, 28]. However, moni-
toring damage is not necessarily related to damage symptoms [13]. The best relation
is found between individual damage classes and TM bands 5 and 7. These are posi-
tive correlations. The results also show that ratios and indices are poorer estimates
than the single bands themselves. A ratio is, however, applied by some authors
[12, 22] using the ratio between TM5 and TM4 to separate damaged areas from
non-damaged areas. TM5 has a higher reflection and TM4 a lower reflection for
a damaged forest. Kadro [12] concludes that three different damage levels can be
distinguished: healthy/slightly damaged, damaged, and severely damaged stands.
Schneider [22] uses multitemporal data, consisting of three TM5/TM4 ratios. A
correlation between crown closure and crown damage is found in the data and he
concludes that it is impossible to say whether the spectral correlation is due to crown
condition or crown closure. Several investigators have found a relationship between
spectral data and crown cover (referred to in [31]). Williams, et al. [28] also apply a
ratio, the IR/R vegetation index, to distinguish damage levels in a defoliated forest
image. This vegetation index is used by Nelson (1981) (referred to in [28]) with 75%
accuracy.

The slope between the green and red MSS band is studied by Mayer and Fox [17].
This slope, which is similar to a simple vegetation index, is found to be a significant
factor in determining resource identity. The digital number is related to tree size
and stocking level. For low density stands (e.g., less than 40% for lodgepole and
knobcone pine) it is difficult to identify unique spectral responses. In these cases
the background contributes significantly to the pixel reflectance. A similar effect
is identified by Schneider [22] where the main problem is to distinguish between
broadleaved trees and young coniferous stands.

Franklin and McDermid [7] use TM data to discriminate regeneration sites which
are highly dominated by Kalmia angustifolia. They apply six of the TM bands and
manage to accurately separate K. angustifolia from other land cover classes by 85%.
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In fact, 85% accuracy is suggested to be the minimum acceptable when classifying
remotely sensed data (Andersen, et al., 1976, referred to in [1]). However, a broad
number of studies do not operate with this level of accuracy [11]. Mayer and Fox
[17] identify that the accuracy (including both omission and commission errors) for
tree species, size and density ranges from 56 to 96%. Brockhaus and Khorram [1]
evaluate the reliability of satellite data alone. Three different images are classified,
SPOT XS, Landsat TM only using bands comparable to SPOT, and Landsat TM
applying all bands. The overall classification accuracy for seven forest cover types
were 73.4%, 70.8% and 88.5% respectively.

Wilson and Franklin [29] experience an increase in the overall accuracy from 85%,
when applying a maximum likelihood classification, to 88% using the three stage
algorithm.

Burger, et al. [3] apply a segmentation algorithm and thus completes a region based
classification. The overall accuracy is 85% correctly classified pixels for differentia-
tion between forests and non-forests. Differentiating between species composition is
concluded as acceptable, although the percentages are not convincing: pure spruce
52.8%, mixed conifer 60.2%, and alpine pine 26.8%. The accuracies for the age
classes are 84.2% for mature/old and 41.9% young. The authors judge the low ac-
curacies of the image subset as not being representable. They also suggest that the
results can be improved by lowering the threshold for segmentation.

Hagner [10] quantifies the accuracy of the stand delineation as being the proportion
of the stand characteristic variance explained by the delineation. He finds very
similar accuracy for the t-ratio segmentation and manual delineation.

Woodcock, et al. [31] apply a fuzzy set to assess the accuracy of their segmentation
based approach. The fuzzy set was based on two questions:

1. How frequently is the category assigned in the map the best choice for the
site?

2. How frequently is the category assigned in the map acceptable?

The accuracy connected to the questions are the maximum and the right operator,
respectively. They also assess their results by a more commonly used confusion ma-
trix [15]. The overall accuracy of the map measured by the maximum and the right
operator was 79% and 88% respectively. The species associations have generally
good accuracies, the numbers for hardwood are: maximum 78% and right 89%, and
for conifer species: maximum 68% and right 80%.

3 Estimation of Forest Variables

Classification is assigning pixels or regions to land cover types, but on a discontinu-
ous scale. However, most important stand variables are continuous and in order to
retain the information they should be expressed on a continuous scale [10, 11, 26].
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Several investigations endeavor to estimate the parameters on a continuous scale,
usually applying different regression and correlation techniques. A N-dimensional
K-nearest neighbor classifier (NK-classification) is also used [26, 27].

The NK-classifier is used to give a continuous estimate of the parameter considered
[26, 27]. This requires ground truth data for the parameter and the companion
pixel value. One assumption to this method is that similar forests exist within
the large reference area covered by a satellite image. In addition, the reflectance
response of the pixels in the reference area should be independent of their location,
and only dependent on the state of the forest (Kilkki and Päivänen, 1987 referred
to in [26]). The candidate pixel is considered in its spectral neighborhood, and its
Euclidean distance to each pixel in the ground truth dataset estimated. Only the K
nearest neighbors are considered for further calculations and these are weighted by
a factor according to the distance. Two values are thus available for the K nearest
ground truth pixels: the weight factor and the parameter itself. The parameter is
then estimated for the pixel to be classified by summing the product of the weight
factor and the parameter over all the nearest K neighbors. Tokola, et al. [26] test
two different distance functions and allocation of weights. This approach has been
successfully applied as part of the national scale boreal forest inventory in Finland.

Trotter, et al. [27] examines the relation between wood volume and Landsat TM
data by linear regression analysis, non-parametric line-fitting and the NK-classification.
Estimations were done both at pixel-scale and by stands which were approximately
40 hectares. Standwise estimations were also done on a 50m3ha−1 increment scale.
Regression methods are tested with volume as both a dependent and independent
variable. Estimates should be within 50m3 of the ground based estimates and pixel
scale estimates are concluded to be unacceptable. The NK-estimates (N=7 and
K=15) are biased. The best performed model on the stand scale is a simple linear
regression using band 4, giving the RMS error of 41m3ha−1. On the increment scale
a simple regression applying band 4 gives a RMS error of 39m3ha−1. One conclu-
sion of this study is that Landsat TM only provides an acceptable data source for
estimating wood volume in plantation forests for areas of about 40 hectares and
larger.

Franklin and McDermid [7] use two regression procedures to show the relation be-
tween spectral variables, filtered and texture data and the forest stand parameters.
They use simple bivariate correlations to explore the relationship among pairs of
variables, and stepwise multiple regression to illustrate the relationship between the
individual forest stand parameters and several combinations of spectral data. Bivari-
ate correlation results for HRV data and stand parameters show a poor correlation
to the infrared band and green band is only significantly correlated to the mean
diameter at breast height, height, age and volume. All parameters are most highly
correlated to the red band.

Hagner [10] estimates stand characteristics as volume/hectare, mean diameter, mean
age, and tree species mixture. This is done by applying regression functions to the
spectral signatures within each delineated stand. The regression function is already
derived from inventory data and spectral data. Stand edge pixels are excluded from
the analysis.
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Lambert, et al. [13] use logit regression and the non-parametric Kruskal-Wallis
test to differentiate forest damage classes. Three categories of damage classes are
classified by regression equations with 71–75% accuracy for stands older than 40
years.

Cohen and Spies [4] developed linear regression models to estimate stand attributes
such as tree bole diameter, tree height, tree density, age and a structural complexity
index. The absolute value of the correlation coefficient for the HRV panchromatic
texture is between 0.45 and 0.88 and for TM wetness the range is 0.51 to 0.90; in
both cases, the lowest correlation is for tree height. For texture, all variables, except
tree density, are positively correlated which is exactly the opposite for TM wetness.

Woodcock, et al. [31] use the inverse Li-Strahler forest canopy reflectance model
[14] to estimate the size and cover of trees. However, the success was limited and
they conclude that estimating tree size using a single date TM image is unreliable.
They suggest to improve the results by applying finer spatial resolution, multiple
look angles or possibly multiple sun angles.

4 Conclusions

Reflectance from a forest stand is the total of many factors. Guyot and Riom [9]
divide these into external and internal factors. One of the main challenges for re-
mote sensing of forests is to efficiently extract the internal information content from
the total information content. Holmgren and Thuresson [11] recognize this complex
relationship as being overwhelming. Firstly, several different ground coverages can
give the same spectral signature. This is especially problematic when the canopy
coverage is low. Secondly, similar ground coverages can give different spectral re-
sponses. This can be due not only to factors such as different atmospheric conditions
but also to less obvious ground cover differences such as those recognized by Burger
and Steinwendner [2]. This study finds differences between ecoregions and concludes
that further investigations of forest stand parameters should take ecoregions into ac-
count. In both cases, however, it should be remembered that auxiliary data can be
added and therefore exclude some of the confusion.

One important external factor is the topography of the area. It often causes problems
[2] and results are improved on flat terrain [22]. Cohen and Spies [4] find that SPOT
HRV (panchromatic) texture and Landsat TM wetness exhibit a strong relationship
with stand attributes which is primarily due to their insensitivity to topographically
induced illumination angle.

An additional problem, which is inherent for all remote sensing techniques, is the
fact that interesting forestry parameters are not necessarily correlated to canopy
cover/total ground cover which is monitored by the sensor. Another problem which,
however, should be possible to solve with improved technology is the low dynamic
range of the sensors [22, 27].

Recognition of forest variables and regions by thematic classification is considered as
a dead end by Holmgren and Thuresson [11]. Acceptable accuracies can be achieved
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but the results are not useful for either forestry planning or management [10]. Per-
haps the most important is the difficulty of matching discrete class definitions with
other information sources. Hagner [10] also recognizes the selection of training sam-
ples to be laborious and often subjective.

Despite these facts several promising methods are developed. Perhaps the most
promising is the combination of segmentation techniques with methods of continous
estimation. The topographic correction algorithms also improve the results and seg-
mentation results show high potential for forestry mapping [3]. However, Holmgren
and Thuresson [11] have some remarks to that technique. The precision of the de-
lineation is influenced by the pixel size and thus the mixed border pixels. They also
point out that the basic assumption for segmentation — homogeneity of land cover,
in this case the canopy cover — is not necessarily the same assumption used to de-
limit a forest stand. They also question the future applicability of the stand concept
within forestry. For remote sensing in general this will not be a problem as future
sensors will have a far better spatial resolution. Also the positioning accuracies are
getting better as the differential techniques of GPS (Global Positioning System)
improves. Extracting forest information from pixels and positioning/locating this
pixel is possible with a high degree of accuracy.

When it comes to current sensors used, it appears that TM data is better correlated
to certain variables than SPOT XS [1]. May, et al. [16] explain the greater effective-
ness of TM data resulting from the greater spectral resolution provided by additional
infrared bands. However, the new SPOT4 sensors provide a new mid-infrared band.
The panchromatic SPOT band is recognized as a useful texture measure by several
authors. Perhaps the most crucial problem for optical sensors is not the radiometric,
spatial or spectral resolution, but their limited use in boreal areas due to the high
probability of clouds occurring.

Within forestry groups criticizing the remote sensing applications exist, e.g., [11].
However, more optimistic views also occur. Burger, et al. [3] state that remote sens-
ing is capable of delivering results with high spatial resolution and good geometric
accuracy in a cost-effective way. The statement by Trotter, et al. [27] perhaps sums
up the situation and the capability very well by explaining that the data is not
sufficient for detailed forest inventory purposes but still provides useful information
for areas not visited by a forest inventory. Satellite remote sensing data has to be
considered as additional information which should be used in harmony with other
information sources, and not as an inexhaustible information source itself.
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