
�IIASA
Interna t ional Ins t i t ute fo r App l ied Sys tems Ana lys is • A-2361 Laxenburg • Aus t r i a
Tel: +43 2236 807 • Fax: +43 2236 71313 • E-mail: info@iiasa.ac.at • Web: www.iiasa.ac.at

INTERIM REPORT IR-98-061 / September

Insurer’s Portfolios of Risks: Approximating
Infinite Horizon Stochastic Dynamic
Optimization Problems

Lisa A. Korf (korf@math.ucdavis.edu)

Approved by
Joanne Linnerooth-Bayer (bayer@iiasa.ac.at)
Co-Leader, Risk, Modeling and Policy Project

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited
review. Views or opinions expressed herein do not necessarily represent those of the Institute, its
National Member Organizations, or other organizations supporting the work.



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

2. Optimizing an insurer’s portfolio of catastrophic risk regions . . . . . . . . . . . . . . . . . 4

3. The value function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Approximation theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Epi-convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Approximation theorems I: domain of Q known a priori . . . . . . . . . . . . . . . . . . . 17

4.3 Approximation theorems II: domain of Q unknown . . . . . . . . . . . . . . . . . . . . . . . .24

5. Finite horizon approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Bounds via approximation theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Lower bounds via averaging the future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6. Piecewise linear-quadratic costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

i



Abstract

Many optimal portfolio problems, due to uncertainties with rare occurrences and

the need to bypass so-called “end of the world effects” require considering an infinite

time horizon. Among these in particular are insurer’s portfolios which may include

catastrophic risks such as earthquakes, floods, etc. This paper sets up an approx-

imation framework, and obtains bounds for a class of infinite horizon stochastic

dynamic optimization problems with discounted cost criterion, in the framework of

stochastic programming. The resulting framework is applied to an insurer’s portfo-

lio of risk contracts.

Keywords: infinite-horizon, stochastic programming, epi-convergence, portfolio se-

lection, catastrophic risk, utility, premium, claim reserves
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Insurer’s Portfolios of Risks:
Approximating Infinite Horizon Stochastic
Dynamic Optimization Problems

Lisa A. Korf (korf@math.ucdavis.edu)

1.1 Introduction

Optimal portfolios of insurers, in particular those that include rare events such

as catastrophic risks, provide one of many examples of optimization problems in

the presence of uncertainty, whose dynamic nature requires considering many, even

an infinite number of time periods in order to have an accurate description of

the problem. Multistage stochastic programs are well-suited for such problems,

in particular when one needs to include various constraints (e.g. nonnegativity,

limits on investments, etc.). The constraints, dynamics and uncertainty combine to

make complex and ungainly problems. Stochastic programming methods which rely

heavily on convexity and duality, problem structure, and decomposition techniques

provide a possible means of approaching and eventually solving them.

Here we develop an approximation framework for stationary infinite horizon

stochastic dynamic optimation problems with discounted costs. Stationarity means

that the solution is independent of shifts in time, i.e. an action optimal in the

present state will also be optimal in the same state at a future time period. In the

insurance setting, gradual changes in the global environment over time (e.g. global

warming) may render this an invalid assumption for the portfolio that depends on

events linked to such changes. A further treatise on infinite horizon problems that

are not necesarily stationary would therefore be of interest, but we restrict our

attention to the stationary case here since it covers many problems that have not

before been handled in this setting, and can provide the basis for further study.

“Infinite horizon” refers to a problem with an infinite number of stages, or

time periods. This is an important consideration for the insurer who wants to

optimize a portfolio of risks (contracts, regions, classes or...) for two reasons. One

reason is that certain risks, such as earthquakes, floods, volcanic eruptions, etc. are

extremely rare events that may occur only once in a few thousand years but with

catastrophic effects. An extended time horizon is therefore essential in order to
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allow the magnitude of such events to affect the insurer’s long-range objectives (e.g.

of avoiding ruin) and hence the optimal portfolio appropriately.

The second reason an infinite time horizon is crucial in the description of the

problem is to deal with what is known in the economics literature as “end of the

world effects.” Intuitively, a portfolio optimization problem with a finite time hori-

zon will have a solution that uses up all resources in the final period. This has

the effect of putting undue and unrealistic emphasis on the evaluation of the final

stage of the problem. Anyway, a final period is often not in the insurer’s interests,

who likely wants to keep his company running indefinitely. The description of the

problem via an infinite horizon circumvents this problem, as well as that of rare

events, by taking into account the extended future.

In addition to the future, one must also model the underlying uncertainty of

these problems. In the case of an insurer insuring risks and possibly borrowing and

making investments, uncertainty comes in the form of claims and interest rates.

Modeling these stochastic processes accurately is a formidable task, that warrants a

separate development, cf. [2], [3], [6] and [7]. In the presentation here, it is assumed

that one has the ability to simulate or approximate the claims and interest rates

environments in a manner consistent with the problem, as in the above referenced

situations.

The problems to be considered have an underlying natural dynamic structure

of alternating states and decisions. This means that at the present state, a decision

is made, then the world (uncertainty) is observed. A new state is obtained according

to an equation governing the dynamics, from the previous state, the decision, and

the world observations, and the process repeats. In terms of optimizing portfolios,

the state might keep track of the current amounts insured, invested, borrowed, etc.,

while the decision at each time period might correspond to changes in each of the

above sectors that adjust the system to optimize the objective.

Generally speaking this objective may be expressed as an expectation of an in-

finite sum of “utility functions” that is progressively discounted at each successive

time period to take into account the greater importance of the “here and now” deci-

sion and the decreasing importance of future decisions. An important consideration

is that the utility function may include more than one qualitative objective. In the

insurer’s portfolio problem, we will consider a utility function that maximizes the

insurer’s financial strength (measured in claim reserves).

Section 2 opens with a step-by-step development of the problem of optimizing
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a portfolio of catastrophic risk regions for an insurer. A discrete time formula-

tion of the problem as a stationary infinite horizon stochastic dynamic optimization

problem with discounted costs is presented. The insurer’s attitude toward risk (util-

ity), and constraints can naturally be modeled with certain quite flexible piecewise

linear-quadratic monitoring functions. Such infinite horizon stochastic optimization

problems arise naturally in many economic and financial planning as well as other

important applications. In order to actually solve these problems, one must some-

how approximate them by computationally more tractable ones. Finite horizon

approximations are proposed which are validated in the remainder of the paper.

The focus is on ways of analyzing and approximating a general class of convex

infinite-horizon stochastic dynamic optimization problems with discounted costs.

Section 3 introduces a recursively defined value function associated with such a

problem. This differs from the value function of the stochastic control literature [1,

12] in that here, infinite values are permissible (and identifiable with constraints). In

addition, the eventual goal is not the pointwise evaluation of this value function as it

would be in the control setting. Instead, the focus will be to approximate the value

function so that it may serve as an “end term” for a finite-horizon approximation of

the original problem that may eventually be solved using techniques of stochastic

programming. Existence and optimality results are obtained that relate the value

function to the original problem.

The major contributions of the fourth section are the approximation theorems.

Here an iterative procedure is set up, and it is shown that one may approximate the

value function via these iterations to obtain approximations including lower bounds

that converge almost monotonically (see §4.1) to the value function. The conver-

gence is shown to hold in the sense of epi-convergence, which in turn ensures the

convergence of solutions to a solution of the original problem. A fixed point theorem

is obtained when the domain of the value function is known a priori. Properties of

the value function (e.g. convexity, lower semicontinuity, etc.) are also derived.

Section 5 is devoted to various finite-horizon approximations to the infinite-

horizon problems considered. The focus is on bounds. The first technique introduces

rough lower and upper bounds that do not take the extended future into considera-

tion, but then proposes using the approximation theorems in §1.3 to obtain better

and better bounds (in the epigraphical sense) that progressively take the future

into account. The second technique extends the approximation methods of Grinold

[10], and Fl̊am and Wets [8, 9] which take the future into account via taking convex
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combinations and averaging.

Section 6 is devoted to a particular class of infinite-horizon stochastic dynamic

optimization problems in which the cost function is piecewise linear-quadratic. Such

problems are quite flexible, yet have a highly exploitable structure. The main

result here shows that approximation of an infinite-horizon problem with piece-

wise linear-quadratic costs via the approximation theorems preserves the piecewise

linear-quadraticity of the problem. The theoretical implication is that one can keep

the number of stages of a problem low, and still obtain explicit bounds as close as

one would like to the original problem, though the end term may become increas-

ingly more difficult to compute. All of the results in this paper are applicable to

various problems, in particular to the problem we focus on here, of optimizing an

insurer’s portfolio of catastrophic risks.

2. Optimizing an insurer’s portfolio of catastrophic risk regions

We consider a problem of an insurer who insures catastrophic risks in various ge-

ographic locations. The problem is one of optimizing a portfolio to determine the

optimal amount of each region to insure based on the insurer’s objectives. An

expected utility approach over an infinite time horizon is taken, with the goal of

maximizing financial strength. In addition to the risk contracts, the insurer may

make investments in risky stocks and a riskless bond, and borrow at a fixed rate.

Let’s suppose there are G regions to insure. To each region corresponds a fixed

premium pi, i = 1, . . . , G. The claims rate process, ξt = ( ξ1
t . . . ξGt )∗ describes

the aggregate claims per period t = 1, 2, . . . in each of the regions 1, . . . , G. This

will in practice be given by a simulation of the catastrophes in each region, which

takes into account dependencies between geographic locations.

In addition to risk contracts, the insurer may also invest in S stocks. The

return rate of the stocks is given by a random vector ζt = ( ζ1
t . . . ζSt )

∗
, which

describes the gain (or loss) in stock price per period t = 1, 2, . . . for each of the

stocks 1, . . . , S. The investor may also invest in riskless assets (bonds) at a fixed

rate r > 0, and finance transactions at an interest rate R ≥ r.
The insurer’s objective is to maximize the total expected discounted utility of

claim reserves over an infinite time horizon. The utility function U : IR → IR should

be nondecreasing, concave, continuous on its domain, IR+, with limc→∞U ′(c) = 0.

This indicates a preference for higher claim reserves, attitude towards risk, no jumps

in utility, and that the importance of having more claim reserves decreases to zero

as the claim reserves get arbitrarily high.
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(i) (Utility function). Accordingly, we will use the following piecewise linear-

quadratic utility function,

U(c) =

{−c2 + 2ac if 0 ≤ c ≤ a
a2 if c > a
−∞ if c < 0

.

Note that this choice is somewhat arbitrary, in that other piecewise-linear quadratic

functions (for example, with more pieces) may have as easily been chosen. Also

note that U is increasing, concave and continuous on its domain, and satisfies

limc→∞U ′(c) = 0.

(ii) (States, Controls, and Dynamics). We set up the variables as follows. Let

the state of the system be given by xt = ( ct r1
t . . . rGt s1

t . . . sSt bt dt )
∗,

where

ct = total amount of claim reserves at time t ,

rit = total amount (units) of region i insured at time t ,

sit = total amount invested in stock i at time t ,

bt = total amount invested in the bond at time t ,

dt = total amount borrowed (debt) at time t .

Let the controls be given by

ut = ( ∆r1
t . . . ∆rGt ∆s1

t . . . ∆sSt ∆bt ∆dt )
∗
,

where

∆rit = change in units of region i insured at time t ,

∆sit = change in investment in stock i at time t ,

∆bt = change in investment in the bond at time t ,

∆dt = change in the amount borrowed (debt) at time t .

Then the dynamics become

xt = A(ξt, ζt)xt−1 +But P -a.s.,

x0 = x,
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for t = 1, 2, . . ., where

A(ξ, ζ) =



1 p1 − ξ1
t · · · pG − ξGt

1
. . .

1
1 + ζ1

t

. . .

1 + ζSt
1 + r

1 +R


,

and B =



−1 · · · −1 −1 1
1

. . .

1
1

. . .

1
1

1


.

(iii) (Constraints). The problem requires nonnegativity constraints for amounts

(units) insured, investments, borrowing, and wealth, as well as upper bounds on the

insurable units in each region. This amounts to requiring that xt ≥ 0,
∑S
i=1 s

i
t +

bt − dt + ct ≥ 0, and rit ≤M i almost surely, or in matrix form, C̄xt + q̄ ≥ 0 almost

surely, where C̄ =



1
I

I
1

1
1 0 e∗ 1 −1
−I


, q̄ = ( 0 . . . 0 M1 . . . MG )∗,

and e = ( 1 . . . 1 )∗. These constraints will be imposed as part of the objective

function, which will take on the value +∞ wherever the constraints are violated.

(iv) (Objective function). The objective is to maximize the total expected dis-

counted utility of claim reserves, which in the discrete setting may be written as

max
ut

E

∞∑
t=1

δt−1U(ct)

subject to the aforementioned dynamics and constraints. To write this in the de-

sired piecewise linear-quadratic form, we need the utility function to include the
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constraints and to have the form ρV,Q(q − Cx−Du), where ρV,Q(x) = supv∈V {x ·
v − 1

2v ·Qv}. Since we work in the setting of minimization, we will actually obtain

the negative of the utility, plus a constant which is superfluous in the problem since

it will not affect the solution. We begin by letting

V = IR− × IR2G+S+4
+ , Q =


1
2

0
. . .

0

 ,

C =

(
−1 0 · · · 0

C̄

)
, and D = 0.

Now, observe that

ρV,Q(q − Cx−Du) = ρ
IR−,

1
2
(−a+ c) + ρIR2G+S+4

+
,0(q̄ − C̄x)

= ρ
IR−,

1
2
(−a+ c) + δIR2G+S+4

+
(−q̄ + C̄x).

The last term, δIR2G+S+4
+

(−q̄ + C̄x), is the indicator function of the set
{
x
∣∣ − q̄ +

C̄x ≥ 0
}
, and gives all the constraints of the system, so we need only check that

ρ
IR−,

1
2
(−a+ c) = −U(c)+ a constant. We compute:

ρ
IR−,

1
2
(−a+ c) = sup

v∈IR−
{−av + cv − 1

4
v2}.

The optimality conditions for this problem are

0 ∈ ∇(−av + cv − 1

4
v2)−NIR−(v),

where NIR−(v) is the normal cone to IR− at the point v, which is given by

NIR−(v) =

{
IR+ if v = 0
0 if v < 0

.

So we arrive at the conditions v = −2a+ 2c < 0 and v = 0 ≥ a− c, whereby

ρ
IR−,

1
2
(−a+ c) =

{
−2ac+ a2 + c2 if c < a
0 if c ≥ a

= −U(c) + a2,

as claimed.
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Hence the problem now becomes

minimize E
∞∑
t=1

δt−1ρV,Q(q − Cxt−1 −Dut)

subject to xt = A(ξt)xt−1 +But P -a.s. for t = 1, 2, . . .

x0 = x,

ut Gt measurable for t = 1, 2, . . .

which is of the form P (x) to be presented in the following sections.

(v) (Finite-horizon approximations). We are now ready to derive a finite horizon

approximation to the problem. With c(x, u) = ρV,Q(q − Cx−Du) as our starting

point, we may apply the techniques of this chapter, and obtain the finite-horizon

problem in piecewise linear-quadratic form,

minimize E
T∑
t=1

δt−1ρV,Q(q − Cxt−1 −Dut) +
δT

1− δ ρV,Q(q −CxT −DuT+1)

subject to xt = A(ξt)xt−1 +B(ξt)ut + bt P -a.s. for t = 1, . . . , T − 1(
I − δEA(ξ)

)
xT − δEB(ξ)uT+1

= (1− δ)
(
A(ξT )xT−1 +B(ξT )uT + b(ξT )

)
+ δEb(ξ)

ut Gt measurable for t = 1, . . . , T,

from the results of §5.2. An alternative, if the assumption in (4) is satisfied, relies

on the approximation theorems to obtain

minimize E
T∑
t=1

δt−1ρV,Q(q −Cxt−1 −Dut) +EδTρVT ,QT (qT −CTxT )

subject to xt = A(ξt)xt−1 +B(ξt)ut P -a.s. for t = 1, . . . , T,

x0 = x,

ut Gt measurable for t = 1, . . . , T.

where ρVT ,QT (qT − CTxT ) is derived from Theorem 6.4.

Problems of this form are highly decomposable, and therefore amenable to

highly parallelizable stochastic programming techniques, c.f. [14], [13], [11]. We

now investigate the details and justification for approximating the problem in these

two ways.
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3. The value function

We work in the following setting. Let c : IRs × IRn → IR be a convex, proper

(6= −∞, 6≡ +∞), lower semicontinuous (lsc) function, bounded on its domain (i.e.

where it is finite-valued), δ ∈ (0, 1) a discount factor, (Ω,F , P ) a probability space,

ξ : Ω → Ξ ⊂ IRd a random vector and ξt, t ∈ IN , i.i.d. copies of ξ that represent

a sequence of observations. Let Gt = σ-(ξ1, . . . , ξt−1), i.e. the σ-field generated by

the first t−1 observations. Then the stationary infinite-horizon stochastic dynamic

optimization problem with discounted cost is given by

minimize E
∞∑
t=1

δt−1c(xt−1, ut)

subject to xt = A(ξt)xt−1 +B(ξt)ut + b(ξt) P -a.s. for t = 1, 2, . . .

x0 = x

ut Gt measurable for t = 1, 2, . . .

P (x)

Here E
∑∞
t=1 δ

t−1c(xt−1, ut) is understood to mean limT→∞E
∑T

t=1 δ
t−1c(xt−1, ut),

which will always exist (possibly = +∞) by the assumption that c is bounded

on its domain, and the expectation is taken with respect to the sequence space,

(Ω∞,F∞, P∞). A, B, and b are all mappings on Ξ with matrix values of appropriate

dimensions, and such that EA(ξ), EB(ξ) and Eb(ξ) all exist and are finite. We

can think of the ut’s as the primary decisions, or controls, at each time period,

while the xt’s keep track of the evolution of the state of the system. The xt’s may

be thought of in tandem both as problem variables and as a tracking mechanism

for the dynamics of the system. We let minP (x) denote the optimal value of the

problem P (x). Similarly, we let feasP denote the set of feasible states, or the set of

x ∈ IRs such that minP (x) <∞.

A solution (u1, u2, . . .) to P (x) is stationary with respect to shifts in time, if

for any corresponding trajectory (x0, x1, . . .),

ut(ξ1, . . . , ξt−1) = us(ξ1, . . . , ξs−1)

whenever

xt−1(ξ1, . . . ξt−1) = xs−1(ξ1, . . . , ξs−1)P -a.s.

for any s, t ∈ IN . That stationary solutions exist when P is feasible will follow

straightforwardly from the assumption that the ξt’s are i.i.d. and because c does
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not depend on time. An optimal policy for P (·) is then a function u :feasP → IRn

such that any sequence (u1, u2, . . .) defined by

x0 = x, u1 = u(x0)

xt = A(ξt)xt−1 +B(ξt)ut + b(ξt) P -a.s. ut+1 = u(xt)
(1)

for any such trajectory (x0, x1, . . .), solves P (x) for every x ∈ IRs. Note that such

a solution (u1, u2, . . .) is stationary.

Now let us consider the following recursively defined function,

Q(x) = inf
u

{
c(x, u) + δEQ

(
A(ξ)x+B(ξ)u + b(ξ)

)}
.

Here the expectation is taken with respect to (Ξ,F , P ). This looks similar to the

“value function” of the optimal control literature, c.f. [1, 12], the primary distinction

being that Q has possibly infinite values. Note also that no smoothness assumptions

have been imposed on c. Our first goal is to set up the correspondence between P

and Q, in the process verifying the existence of Q.

Theorem 3.1 (existence of recursive value function). For each x ∈ IRs, let Q(x) =

minP (x), the value of the problem P (x) at optimality (note Q(x) could be +∞).

Then Q(x) = infu
{
c(x, u) + δEQ

(
A(ξ)x +B(ξ)u + b(ξ)

)}
.

Proof. We can first express infu
{
c(x, u) + δEQ

(
A(ξ)x + B(ξ)u + b(ξ)

)}
as the

optimal value of the problem

minimize c(x0, u) + δEQ(x1)

subject to x1 = A(ξ)x0 +B(ξ)u + b(ξ) P -a.s.

x0 = x.

Then it suffices to show that this problem is equivalent to P (x). It may again be

rewritten as

minimize c(x0, u1) + δEξ1 min
ut,t≥2

lim
T→∞

Eξ2,ξ3,...

∞∑
t=2

δt−2c(xt−1, ut)

subject to xt = A(ξt)xt−1 +B(ξt)ut + b(ξt)P -a.s. for t = 1, 2, . . .

x0 = x

ut Gt measurable for t = 1, 2, . . .

By a straightforward exchange of the expectation and the minimization, and the

bounded convergence theorem [4], this problem is equivalent to P (x), hence it’s

optimal value is Q(x).
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We have established the existence of a particular recursively defined function

Q which we will from now on refer to as the value function for P . The next

theorem establishes the equivalence between optimal policies of P and functions u

that “solve” Q.

Theorem 3.2 (equivalence between P and Q). u is an optimal policy for P if and

only if for all x ∈feasP , u(x) ∈ argmin
u

{
c(x, u) + δEQ

(
A(ξ)x+B(ξ)u + b(ξ)

)}
.

Proof. Suppose first that u is an optimal policy for P . For fixed x, consider a

sequence (u1, u2, . . .) defined by u via

x0 = x, u1 = u(x0)

xt = A(ξt)xt−1 +B(ξt)ut + b(ξt) P -a.s. ut+1 = u(xt)

Then, using the fact that Q is the value function for P , i.e. Q(x) = minP (x), we

obtain,

inf
u

{
c(x, u) + δEQ

(
A(ξ)x +B(ξ)u + b(ξ)

)}
= Q(x)

= E

∞∑
t=1

δt−1c(xt−1, ut) = c(x0, u1) + δEQ(x1)

= c(x, u(x)) + δEQ
(
A(ξ)x +B(ξ)u(x) + b(ξ)

)
,

whereby u(x) ∈ argmin
u

{
c(x, u) + δEQ

(
A(ξ)x +B(ξ)u+ b(ξ)

)}
.

To proceed in the other direction, assuming now that u(x) ∈ argmin
u

{
c(x, u)+

δEQ
(
A(ξ)x + B(ξ)u + b(ξ)

)}
, and letting (u1, u2, . . .) be a sequence obtained by

the same identifications as above, we have that

minP (x) = Q(x) = c(x0, u1) + δEQ
(
A(ξ)x0 +B(ξ)u1 + b(ξ)

)
= E

∞∑
t=1

δt−1c(xt−1, ut),

whereby u is an optimal policy for P .

The next theorem establishes the existence of optimal policies (and therefore

stationary solutions) when P is feasible.
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Theorem 3.3 (optimal policies from solutions). Suppose that for each x ∈feasP ,

P (x) has an optimal solution (ux1 , u
x
2, . . .), with an associated trajectory (xx0 , x

x
2 , . . .).

Let u :feasP → IRn be defined by u(x) = ux1. Then u is an optimal policy for P .

Proof. The proof relies on the previous development by observing that the function

u minimizes

c
(
x, u(x)

)
+ δEQ

(
A(ξ)x +B(ξ)u(x) + b(ξ)

)
,

for all x ∈feasP , through the fact that u(x) = ux1. Therefore u is an optimal policy

for P by Theorem 3.2.

This theorem brings up the important question of when optimal policies (or

equivalently solutions) for P exist. We next address an important criterion that

will guarantee that P will have a solution.

Definition 3.4 (uniform level-boundedness). A function f : IRs × IRn → IR with

values f(x, u) is level-bounded in u locally uniformly in x if for each x̄ ∈ IRs and

α ∈ IR there is a neighborhood V of x̄ along with a bounded set B ⊂ IRs such that{
u
∣∣ f(x, u) ≤ α

}
⊂ B for all x ∈ V ; or equivalently, there is a neighborhood V of

x̄ such that the set
{
(x, u)

∣∣ x ∈ V, f(x, u) ≤ α
}

is bounded in IRs × IRn.

We make use of the following Theorem from [15].

Theorem 3.5 (parametric minimization). Consider

p(x) := infu f(x, u), U(x) := argminu f(x, u),

in the case of a proper, lsc function f : IRs × IRn → IR such that f(x, u) is level-

bounded in u locally uniformly in x. Then the function p is proper and lsc on IRs,

and for each x ∈ domp the set U(x) is nonempty and compact, whereas U(x) = ∅
when x /∈ dom p.

Lemma 3.6 (boundedness of value function). If the cost function , c : IRs×IRn → IR

is bounded on its domain so that sup(x,u)∈domc |c(x, u)| ≤ K, then the value function

Q : IRs → IR is also bounded on its domain; in particular

sup
x∈domQ

|Q(x)| ≤ K

1− δ .

Proof. Using the fact that Q is the value function for P ,

|Q(x)| = |minP (x)| ≤
∞∑
t=1

δt−1 sup
(x,u)∈domc

|c(x, u)| ≤ K

1− δ ,
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which provides the desired bound.

Theorem 3.7 (attainment of minimum). Suppose c is level bounded in u locally

uniformly in x, feasP 6= ∅, and Q is lsc. Then there exists an optimal policy

u :feasP → IRn.

Proof. This applies Theorem 3.5 to the function g : IRs × IRn → IR defined by

g(x, u) = c(x, u) + δEQ
(
A(ξ)x+B(ξ)u + b(ξ)

)
,

once we can show that g is uniformly level-bounded, lsc and proper. The lower

semicontinuity comes out of that of c and Q via Fatou’s Lemma. The properness

comes out of the observation that for any u such that c(x, u) < ∞, dom c(·, u) ⊃
domQ =feasP . For the uniform level-boundedness, fix x̄ ∈ IRs, α ∈ IR, and let V

be a neighborhood of x̄, B a bounded set, such that

{
u
∣∣ c(x, u) ≤ α+

K

1− δ
}
⊂ B for all x ∈ V,

which is possible by the uniform level-boundedness of c. Next, observe through

Lemma 3.6 that{
u
∣∣ g(x, u) ≤ α

}
=
{
u
∣∣ c(x, u) + δEQ

(
A(ξ)x +B(ξ)u+ b(ξ)

)
≤ α

}
⊂
{
u
∣∣ c(x, u) ≤ α+

K

1− δ
}

⊂ B.

We have shown that g is lsc, proper, and uniformly level-bounded. Hence it satisfies

the assumptions of Theorem 3.5, which implies that an optimal policy for P exists

by the fact that argmin
u

g(x, u) is nonempty (and compact) for each x in domQ.
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4. Approximation theorems

Now that we have established the existence of the value function Q and its relation

to P , we may proceed with approximation theorems for Q. In particular, our

interest is in obtaining approximations and lower and upper bounds for Q to aid in

the development of finite horizon approximations of P . Some properties of Q will

come out of this development that are of interest by themselves.

The results of Section 3 have shown that the finite-horizon problem,

minimize E
T∑
t=1

δt−1c(xt−1, ut) + EδTh(xT )

subject to xt = A(ξt)xt−1 +B(ξt)ut + b(ξt) P -a.s. for t = 1, . . . , T

x0 = x

ut Gt measurable for t = 1, . . . , T

PTh (x)

is equivalent to P when h = Q for any T (in particular T = 1) in the sense that

minP (x) is equal to minPTQ (x), and an optimal policy for P also solves PTQ , i.e. if

u is an optimal policy for P , and we let

x0 = x, u1 = u(x0)

xt = A(ξt)xt−1 +B(ξt)ut + b(ξt) P -a.s. ut+1 = u(xt)

for t = 1, . . . , T , then (u1, . . . , uT ) with trajectory (x0, . . . , xT ) solves PTQ (x). So,

we have an exact finite-horizon representation of P that theoretically could be

amenable to computational schemes. The only problem is that we have no explicit

representation forQ. If we could obtain an explicit functionQa that approximatesQ

in the right sense, to obtain the problem PTQa , we would be set. This is precisely the

motivation for the approximation results set forth in the remainder of this chapter.
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4.1 Epi-convergence

When referring to “approximation” for a minimization problem, the appropriate

notion of convergence is epi-convergence, which ensures the convergence of infima

and solutions to those of the original problem. A sequence of functions, fν : IRn →
IR is said to epi-converge to f : IRn → IR, written fν→e f , if

i) ∀ xν → x, lim infν fν (xν) ≥ f(x),

ii) ∃ xν → x, lim supν f
ν (xν) ≤ f(x).

Epi-convergence is so-named because it corresponds to the set-convergence of

the epigraphs of sequences of functions. A basic theorem relating epi-convergence

to the convergence of infima and solutions is given below.

Theorem 4.1 (epi-convergence in minimization). Let
{
f, fν : IRn → IR

∣∣ ν ∈ IN} be

such that fν→e f . Then

lim sup
ν

(inf fν ) ≤ inf f.

Moreover, if there exists xk → x and a subsequence
{
xνk
}
k∈IN such that xνk ∈

argminfνk , k ∈ IN , then

x ∈ argminf and inf fνk → inf f.

These results are well-known. For a proof one could consult [15]. We begin with

some useful properties of epi-convergence, the proofs of which can also be found in

[15].

Theorem 4.2 (properties of epi-limits). The following properties hold for any se-

quence {fν}ν∈IN of functions on IRn.

(a) The functions e-lim infνfν and e-lim supνf
ν are lower semicontinuous, and

so too is e-limνf
ν when it exists.

(b) The functions e-lim infνfν and e-lim supνf
ν depend only on the sequence

{cl fν}ν∈IN ; thus, if cl gν = cl fν for all ν, one has both e-lim infν gν = e-lim infνfν

and e-lim supν g
ν = e-lim supνf

ν .

(c) If the sequence {fν}ν∈IN is nonincreasing (fν ≥ fν+1), then e-limνf
ν exists

and equals cl[infνf
ν ];

(d) If the sequence {fν}ν∈IN is nondecreasing (fν ≤ fν+1), then e-limνf
ν exists

and equals supν [cl f
ν ] (rather than cl[supν f

ν ]).
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Theorem 4.3 (epi-limits of convex functions). For any sequence {fν}ν∈IN of convex

functions on IRn, the function e-lim supνf
ν is convex, and so too is the function

e-limνf
ν when it exists.

Moreover, under the assumption that f is a convex, lsc function on IRn such

that dom f has nonempty interior, the following are equivalent:

(a) f = e-limνf
ν ;

(b) there is a dense subset D of IRn such that fν (x)→ f(x) for all x in D;

(c) fν converges uniformly to f on every compact set C that does not contain a

boundary point of dom f .

Theorem 4.4 (epi-limits of sums of functions). For sequences of functions fν1 and

fν2 on IRn one has

e-lim infν f
ν
1 + e-lim infν f

ν
2 ≤ e-lim infν(f

ν
1 + fν2 ).

When fν1 →e f1 and fν2 →e f2, either one of the following conditions is sufficient to

ensure that fν1 + fν2 →e f1 + f2:

(a) fν1 → f1 pointwise and fν2 → f2 pointwise;

(b) one of the two sequences converges continuously.

The result presented next is new, and provides a test for epi-convergence when a

sequence of functions is almost monotonic. A sequence of functions fν : IRn → IR is

said to be almost nonincreasing if there exists a nonnegative sequence
{
αν
}
ν∈IN such

that
∑∞
k=1 α

k < ∞, and for all ν ∈ IN , fν ≥ fν+1 − αν . A sequence of functions

fν : IRn → IR is said to be almost nondecreasing if there exists a nonnegative

sequence
{
αν
}
ν∈IN such that

∑∞
k=1 α

k <∞, and for all ν ∈ IN , fν ≤ fν+1 + αν .

Theorem 4.5 (epi-limits of almost monotonic functions). Let fν : IRn → IR be a

sequence of lsc functions that converges pointwise to f : IRn → IR.

(a) If
{
fν
}
ν∈IN is almost nonincreasing, and f is lsc, then fν→e f .

(b) If
{
fν
}
ν∈IN is almost nondecreasing, then f is lsc and fν→e f .

Proof. For part (a), let gν = fν −
∑ν−1

k=1 α
k, and g = f −

∑∞
k=1 α

k. Then gν is

nonincreasing since

gν = fν −
ν−1∑
k=1

αk ≥ fν+1 −
ν∑
k=1

αk = gν+1.

By Theorem 4.2 (c) and the lower semicontinuity of f , e-limν g
ν exists and

e-lim
ν
gν = cl

[
inf
ν
gν
]

= f −
∞∑
k=1

αk = g.
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Now observe that fν = gν+
∑ν−1

k=1 α
k and f = g+

∑∞
k=1 α

k, where now gν converges

to g both epigraphically and pointwise, and
∑ν−1

k=1 α
k →

∑∞
k=1 α

k (both epigraphi-

cally and pointwise when considered as constant functions). Applying Theorem 4.4

(a) for epi-limits of sums of functions gives us that fν→e f .

In part (b), the approach is similar. Let gν = fν +
∑ν−1
k=1 α

k, and g = f +∑∞
k=1 α

k. Then gν is nondecreasing since

gν = fν +
ν−1∑
k=1

αk ≤ fν+1 +
ν∑
k=1

αk = gν+1.

Theorem 4.2 (d) says that e-limν g
ν exists and equals supν g

ν = f +
∑∞
k=1 α

k = g.

We have that fν = gν−
∑ν−1

k=1 α
k and f = g−

∑∞
k=1 α

k, and gν converges to g both

pointwise and epigraphically. Also, because −
∑ν−1

k=1 α
k → −

∑∞
k=1 α

k, applying

Theorem 4.4 (a) gives us that fν→e f , and Theorem 4.2 (a) implies that f is lsc.

4.2 Approximation theorems I: domain of Q known a priori

With these tools in hand, we are ready to investigate approximations to Q. The

first instance we consider is when domQ is known a priori. This might happen,

for example, if there are no induced constraints, i.e. implicit constraints on u1 that

if violated show up in later stages in the form of future infeasible decisions and

trajectories. In this case a standard fixed-point approach is possible. We begin

by establishing a complete space of functions to which the fixed-point theorem will

apply.

For a given problem P with cost c, let B denote the space of functions h :

IRs → IR such that domh = domQ and supx∈domQ |h(x)| ≤ K
1−δ , where K satisfies

sup(x,u)∈domc |c(x, u)| ≤ K. We know Q ∈ B by Lemma 3.6. Equip B with the sup

norm, i.e. ‖h‖ = supx∈domQ |h(x)|.

Lemma 4.6. B is a complete metric space.

Proof. Let
{
hν ∈ B

∣∣ ν ∈ IN} be a Cauchy sequence, i.e. for all ε > 0, there exists

an N such that µ, ν > N implies |hν(x) − hµ(x)| < ε for all x ∈ domQ. First

we show that the pointwise limit exists and is in B, which will then necessarily be

the uniform limit. Suppose the pointwise limit does not exist. Then there is some

x ∈ domQ, γ > 0 such that lim infν hν(x) + γ < lim supν h
ν(x). Find N such that

for all µ, ν > N , supx∈domQ |hν(x)−hµ(x)| < γ. Then for our particular x, we also

have that for all µ, ν > N , |hν(x)− hµ(x)| < γ. This implies that

| lim sup
ν

hν(x) − lim inf
ν

hν(x)| ≤ γ,
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and this is a contradiction. That the pointwise limit h is in B follows from

|h(x)| ≤ lim
ν
|hν(x)| ≤ K

1− δ ,

for any x ∈ domQ.

To show that the pointwise limit h is also a uniform limit, fix ε > 0 and choose

N such that µ, ν > N implies |hν(x) − hµ(x)| < ε
2 for all x ∈ domQ. For each

x ∈ domQ, find µ(x) > N such that |hµ(x)(x) − h(x)| < ε
2 . Then for ν > N , for

any x ∈ domQ,

|hν(x)− h(x)| ≤ |hν(x) − hµ(x)(x)| + |hµ(x)(x)− h(x)|

<
ε

2
+
ε

2
= ε,

whereby hν → h uniformly on domQ. Therefore, B is a complete space.

Next we define a mapping on B and show that it is a contraction mapping; a

mapping T : X → X on a metric space (X, d) is a contraction mapping if for all

f, g in X, d(Tf, Tg) < αd(f, g) for some α ∈ (0, 1). Let T : B → B be defined for

h ∈ B by

Th(x) =

{
infu

{
c(x, u) + δEh

(
A(ξ)x +B(ξ)u + b(ξ)

)}
if x ∈ domQ

+∞ otherwise.

T maps B into itself since for any x ∈ domQ,

|Th(x)| ≤ sup
(x,u)∈domc

|c(x, u)|+ δ sup
x∈domQ

|h(x)|

≤ K +
δK

1− δ

=
K

1− δ .

We will also need to extend the notion of uniform convergence to take into

account functions with values equal to +∞. For any function f : IRn → IR and any

ρ ∈ (0,∞), the ρ-truncation of f is the function f∧ρ defined by

f∧ρ(x) =

−ρ if f(x) ∈ (−∞,−ρ),
f(x) if f(x) ∈ [−ρ, ρ],
ρ if f(x) ∈ (ρ,∞).

A sequence of functions fν will be said to converge uniformly to f on a set X ⊂ IRn

if, for every ρ > 0, their truncations fν∧ρ converge uniformly to f∧ρ on X in the

bounded sense.
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Theorem 4.7 (fixed point theorem). T is a contraction mapping onB. Consequently,

Q is the unique fixed point of T in B, and T νh→ Q uniformly.

Proof. Let g, h ∈ B. Then for fixed x ∈ domQ, ε > 0, suppose without loss of

generality that Th(x) ≥ Tg(x), and let ū ∈ IRn satisfy

c(x, ū) + δEg
(
A(ξ)x +B(ξ)ū+ b(ξ)

)
≤ Tg(x) + ε,

which will always be possible by the definition of T (ū is just an approximate

minimizer). Then

|Th(x)− Tg(x)| ≤ |δEh
(
A(ξ)x+B(ξ)ū + b(ξ)

)
− δEg

(
A(ξ)x+B(ξ)ū + b(ξ)

)
|

≤ δE|h
(
A(ξ)x+B(ξ)ū + b(ξ)

)
− g
(
A(ξ)x +B(ξ)ū+ b(ξ)

)
|+ ε.

This implies that

sup
x∈domQ

|Th(x)− Tg(x)|

≤ sup
x∈domQ

δE|h
(
A(ξ)x +B(ξ)ū + b(ξ)

)
− g
(
A(ξ)x+B(ξ)ū + b(ξ)

)
|+ ε

≤ δ sup
x∈domQ

|h(x)− g(x)| + ε.

Since ε was arbitrary, and δ ∈ (0, 1), T is a contraction mapping.

It is well-known that a contraction mapping on a complete metric space has

a unique fixed point, and that repeated applications of the mapping to any point

in the space will converge to this fixed point. In this case, T has a unique fixed

point which must therefore be Q, and also T νh → Q uniformly on domQ. Since

the approximations are equal to +∞ outside domQ, it follows from the extended

definition of uniform convergence that T νh→ Q uniformly on all of IRs.

This gives a starting point for approximations to Q. If domQ is known a

priori, and T νh is computable, then T νh may serve as the end term of a finite-

horizon problem PT νh, as proposed at the beginning of §4. We next derive the

epi-convergence of T νh to Q. We begin this development with some results about

convexity.

Theorem 4.8. domQ is convex.

Proof. domQ coincides with feasP , which is convex by the convexity of c and the

affine dynamic equations: Given two feasible points x1, x2 ∈ feasP , and α ∈ (0, 1),
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let xα = (1−α)x1+αx2. For i = 1, 2, there existXi = (xi0, x
i
1, . . .), Ui = (ui1, u

i
2, . . .)

such that
xit = A(ξt)x

i
t−1 +B(ξt)u

i
t + b(ξt),

xi0 = xi,

uit Gt measurable ,

and E

∞∑
t=1

c(xit−1, u
i
t) <∞.

Letting Xα = (1 − α)X1 + αX2, and Uα = (1 − α)U1 + αU2, observe that they

satisfy
xαt = A(ξt)x

α
t−1 +B(ξt)u

α
t + b(ξt),

xα0 = xα,

uαt Gt measurable ,

and

E

∞∑
t=1

c(xαt−1, u
α
t ) ≤ (1− α)E

∞∑
t=1

δt−1c(x1
t−1, u

1
t−1) + αE

∞∑
t=1

δt−1c(x2
t−1, u

2
t ) <∞,

whereby xα ∈ feasP , which shows that feasP (hence domQ) is convex.

Lemma 4.9. If h : IRs → IR in B is convex, then T νh : IRs → IR is convex.

Proof. By induction, it suffices to show that Th is convex. Let x1, x2 ∈ domQ,

α ∈ (0, 1), and let xα = (1 − α)x1 + αx2 which is also in domQ by Theorem 4.8.

Then

Th(xα) = inf
u

{
c(xα, u) + δEh

(
A(ξ)xα +B(ξ)u + b(ξ)

)}
≤ inf
u1,u2

{
c
(
xα, (1− α)u1 + αu2

)
+δEh

(
(1− α)

(
A(ξ)x1 +B(ξ)u1 + b(ξ)

)
+ α

(
A(ξ)x2 +B(ξ)u2 + b(ξ)

))}
≤ inf
u1,u2

{
(1 − α)c(x1, u1) + αc(x2, u2)

+(1− α)δEh
(
A(ξ)x1 +B(ξ)u1 + b(ξ)

)
+ αδEh

(
A(ξ)x2 +B(ξ)u2 + b(ξ)

)}
= (1 − α) inf

u1

{
c(x1, u1) + δEh

(
A(ξ)x1 +B(ξ)u1 + b(ξ)

)}
+α inf

u2

{
c(x2, u2) + δEh

(
A(ξ)x2 +B(ξ)u2 + b(ξ)

)}
= (1 − α)Th(x1) + αTh(x2),

which completes the proof.
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Corollary 4.10. Q is convex.

Proof. This comes out of the uniform convergence in Theorem 4.7, and the convexity

results that follow in Theorem 4.8 and Lemma 4.9, since limits of convex functions

are convex.

Corollary 4.11 (epi-convergence of iterates). Let h ∈ B be convex. If Q is lsc and

domQ has nonempty interior, then T νh epi-converges to Q.

Proof. The epi-convergence of T νh to Q just applies Theorem 4.3 to the uniform

convergence result of Theorem 4.7, through the fact that Q is convex and Lemma

4.9 which provides the convexity of T νh.

Q

Th

h

Fig. 1. Epi-convergence of iterates to Q

Conditions under which Q is lsc will be established a bit later in this section.

For now, we keep it in the theorem statements as an assumption. The next goal is

to obtain the convergence of optimal policies for P . Equivalently, what is needed is

that solutions uν(x) of

minimize c(x, u) + δET νh
(
A(ξ)x+B(ξ)u + b(ξ)

)
P 1
T νh(x)

converge to a solution u(x) of

minimize c(x, u) + δEQ
(
A(ξ)x +B(ξ)u + b(ξ)

)
P 1
Q(x)

for every x ∈ domQ. And for this we will appeal once again to epi-convergence.
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Theorem 4.12 (convergence of optimal policies). Suppose that Q is lsc, domQ has

nonempty interior, and the matrices, B(ξ) have full row rank for all ξ ∈ Ξ. For each

x ∈ domQ, let gx, gνx : IRn → IR be defined by

gνx(u) = c(x, u) + δET νh
(
A(ξ)x+B(ξ)u + b(ξ)

)
,

gx(u) = c(x, u) + δEQ
(
A(ξ)x +B(ξ)u + b(ξ)

)
.

Then gνx→e gx. In particular, the conclusions of Theorem 4.1 are valid.

Proof. Fix x ∈ domQ. First let’s examine the terms

fνx (u) = ET νh
(
A(ξ)x+B(ξ)u + b(ξ)

)
,

fx(u) = EQ
(
A(ξ)x +B(ξ)u+ b(ξ)

)
.

The bounded convergence theorem [4] along with the uniform convergence of T νh

to Q implies that fνx → fx pointwise. Let u ∈ IRn, and let uν → u. Then for

all ξ ∈ Ξ, A(ξ)x + B(ξ)uν + b(ξ) → A(ξ)x +B(ξ)u + b(ξ). By Corollary 4.11 and

Fatou’s Lemma we obtain

lim inf
ν

fνx (uν) = lim inf
ν

ET νh
(
A(ξ)x +B(ξ)uν + b(ξ)

)
≥ E lim inf

ν
T νh

(
A(ξ)x +B(ξ)uν + b(ξ)

)
≥ EQ

(
A(ξ)x +B(ξ)u + b(ξ)

)
= fx(u).

For the lim sup direction, there is a sequence xν → EA(ξ)x+EB(ξ)u+Eb(ξ) such

that
lim sup

ν
T νh

(
xν(ξ)

)
≤ Q

(
EA(ξ)x + EB(ξ)u+ Eb(ξ)

)
≤ EQ

(
A(ξ)x +B(ξ)u+ b(ξ)

)
by Corollary 4.11 and Jensen’s inequality. Since B(ξ) has full row rank for all

ξ ∈ Ξ, we can find a sequence of integrable uν : Ξ→ IRn that satisfies B(ξ)uν (ξ) =

xν−A(ξ)x−b(ξ). Let uν = Euν(ξ). Then applying first Jensen’s inequality followed

by Corollary 4.11 we obtain

lim sup
ν

fνx (uν) = lim sup
ν

ET νh
(
A(ξ)x +B(ξ)uν + b(ξ)

)
≤ lim sup

ν
ET νh

(
A(ξ)x +B(ξ)uν (ξ) + b(ξ)

)
= lim sup

ν
T νh

(
xν
)

≤ EQ
(
A(ξ)x +B(ξ)u+ b(ξ)

)
= fx(u)
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Thus we have that fνx →e fx. For fixed x, gνx = c(x, ·) + δfνx and gx = c(x, ·) + δfx.

Theorem 4.4 (a) may now be applied to obtain that gνx→e gx, which completes the

proof.

Observe in this theorem that gνx are the objective functions for the problems

P 1
T νh(x) and their epi-limit gx is the objective function for the problem P 1

Q(x).

We have already shown that the optimal policies of P 1
Q (as well as PTQ for any

T ∈ IN) coincide with those of P . Thus, this theorem sets up a pointwise (in

x) approximation framework for optimal policies of P by appealing to the epi-

convergence in minimization properties set forth in Theorem 4.1.
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4.3 Approximation theorems II: domain of Q unknown

Thus far, we have restricted our attention to the case when domQ is known ahead of

time. Many problems are not so simple however, and the subject of determining the

domain a priori is an important area to investigate in its own right. We proceed now

to develop approximation theorems for P and Q which do not depend on knowing

the set of feasible initial points. We restrict our attention to approximations from

below, with an emphasis on drawing out the almost monotonic convergence (see

§4.1 for the definition) that is inherent in the approximations.

Our setting is the same as in §4.2 except that instead of considering the com-

plete space B which depended on knowing domQ, we work in the space C of func-

tions h : IRs → IR that are bounded by K
1−δ on their domains, and also bounded

above by Q (i.e. supx∈domh |h(x)| ≤ K
1−δ and h ≤ Q). Define the operator W for

h ∈ C by

Wh(x) = inf
u

{
c(x, u) + δEh

(
A(ξ)x +B(ξ)u + b(ξ)

)}
.

If we begin with a given function h ∈ C , every iteration W νh will be a lower

bound of Q. In addition, we can obtain the almost monotonicity of these iterates.

Theorem 4.13 (almost nondecreasing iterates). For any h ∈ C , we have Wh ∈ C
and

{
W νh

}
ν∈IN is almost nondecreasing; specifically, for αν = δν 2K

1−δ , W
νh ≤

W ν+1h+ αν .

Proof. We first demonstrate that W : C → C . W maps C into itself since for any

x ∈ domWh, there exists a u ∈ IRn such that x ∈ dom c(·, u) and Eh
(
A(ξ)x +

B(ξ)u + b(ξ)
)
<∞, so that

|Wh(x)| ≤ sup
(x,u)∈domc

|c(x, u)|+ δ sup
x∈domh

|h(x)|

≤ K +
δK

1− δ

=
K

1− δ .

And additionally,

Wh(x) = inf
u

{
c(x, u) + δEh

(
A(ξ)x +B(ξ)u + b(ξ)

)}
≤ inf

u

{
c(x, u) + δEQ

(
A(ξ)x +B(ξ)u+ b(ξ)

)}
= Q(x).

To show that
{
W νh

}
ν∈IN is almost nondecreasing, we will make use of the

fact that for all ν ∈ IN , for all x ∈ IRs, W νh(x) = minP νh (x). Fix x ∈ IRs. If
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there is no feasible point for P ν+1
h (x), then W ν+1h(x) = +∞ and then trivially

W νh(x) ≤ W ν+1h(x) + αν . Suppose there is a feasible point (u1, . . . , uν+1), with

trajectory (x0, . . . , xν+1) for P ν+1
h (x). then (u1, . . . , uν) and (x0, . . . , xν) are feasible

for P νh (x), and

Eh(xν) ≤
K

1− δ +
(
Ec(xν , uν+1) +K

)
+
(
δEh(xν+1) +

δK

1− δ
)

= Ec(xν , uν+1) + δEh(xν+1) +
2K

1− δ .

This implies that

E

ν∑
t=1

δt−1c(xt−1, ut) + Eδνh(xν ) ≤ E
ν+1∑
t=1

δt−1c(xt−1, ut) + Eδν+1h(xν+1) + αν .

Since this is true of any feasible point of P ν+1
h (x), it follows that

minP νh (x) ≤ minP ν+1
h (x) + αν ,

which translates to W νh(x) ≤W ν+1h(x) + αν as claimed. Next, observe that

∞∑
t=1

αt =
∞∑
t=1

δt
2K

1− δ =
2K

(1− δ)2
<∞,

which implies that
{
W νh

}
ν∈IN is almost nondecreasing.

Lemma 4.14 (pointwise convergence of iterates). W νh converges to Q pointwise.

Proof. Fix x ∈ IRs and let (u1, u2, . . .) be any sequence such that ut is Gt measur-

able and (x0, x1, . . .) the corresponding trajectory. By the boundedness of h on its

domain we have that

lim inf
ν

δνEh(xν) +
ν−1∑
k=1

αk ≥
∞∑
k=1

αk.

This implies that

lim inf
ν

minP νh (x) +
ν−1∑
k=1

αk ≥ minP (x) +
∞∑
k=1

αk.

Using the facts that W νh(x) = minP νh (x) and Q(x) = minP (x), and that W νh+∑ν−1
k=1 α

k is nondecreasing, yields

lim
ν
W νh(x) +

ν−1∑
k=1

αk = Q(x) +
∞∑
k=1

αk,
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whereby limνW
νh(x) = Q(x).

Lemma 4.15 (lower semi-continuity of W νh under uniform level-boundedness). If c

is level-bounded in u locally uniformly in x, and h ∈ C is proper and lsc, then W νh

is proper, lsc, and level-bounded in u locally uniformly in x.

Proof. This follows from Theorem 3.5 via the same arguments used in the proof of

Theorem 3.7, applied first to

g(x, u) = c(x, u) + δEh
(
A(ξ)x +B(ξ)u+ b(ξ)

)
,

and then relying on induction since Wh ∈ C whenever h ∈ C .

Theorem 4.16 (epi-convergence of iterates). If W νh is lsc for all ν ∈ IN , in particular

when c is uniformly level-bounded and h is proper and lsc, then W νh epi-converges

to Q and Q is lsc.

Proof. This applies Theorem 4.5 (b) about the epiconvergence of almost nonde-

creasing functions to W νh through Theorem 4.14. Lemma 4.15 supplies the lower

semi-continuity of W νh when the uniform level-boundedness condition is satisfied.

The lower semi-continuity of Q comes from Theorem 4.2 (a).

It is not in general true that if h is lsc then W νh is lsc. The uniform level-

boundedness of c is one possible sufficient condition for this. In §6 we concentrate on

a broad class of piecewise linear-quadratic functions for which lower semi-continuity

of the iterates holds even when the uniform level-boundedness assumption may fail.

We conclude this section by establishing the convergence of optimal policies for P .

Theorem 4.17 (convergence of optimal policies). Suppose that h : IRs → IR is in C ,

and that for all ν ∈ IN , W νh is lsc (e.g. if c is uniformly level-bounded and h is

proper and lsc). Suppose that the matrices B(ξ) have full row rank for all ξ ∈ Ξ.

For each x ∈ domQ let gx, gνx : IRn → IR be defined by

gνx(u) = c(x, u) + δEW νh
(
A(ξ)x+B(ξ)u + b(ξ)

)
,

gx(u) = c(x, u) + δEQ
(
A(ξ)x +B(ξ)u + b(ξ)

)
.

Then gνx→e gx. In particular, the conclusions of Theorem 4.1 are valid.

Proof. For each x ∈ domQ, let

fνx (u) = EW νh
(
A(ξ)x+B(ξ)u + b(ξ)

)
,
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fx(u) = EQ
(
A(ξ)x +B(ξ)u+ b(ξ)

)
.

The bounded convergence theorem [4] along with the pointwise convergence of W νh

to Q implies that fνx → fx pointwise. Let u ∈ IRn, and let uν → u. Then for all

ξ ∈ Ξ, A(ξ)x+B(ξ)uν +b(ξ)→ A(ξ)x+B(ξ)u+b(ξ). By Theorem 4.16 and Fatou’s

Lemma we obtain

lim inf
ν

fνx (uν) = lim inf
ν

EW νh
(
A(ξ)x+B(ξ)uν + b(ξ)

)
≥ E lim inf

ν
W νh

(
A(ξ)x +B(ξ)uν + b(ξ)

)
≥ EQ

(
A(ξ)x +B(ξ)u + b(ξ)

)
= fx(u).

For the lim sup direction, there is a sequence xν → EA(ξ)x+EB(ξ)u+Eb(ξ) such

that
lim sup

ν
W νh

(
xν(ξ)

)
≤ Q

(
EA(ξ)x +EB(ξ)u + Eb(ξ)

)
≤ EQ

(
A(ξ)x +B(ξ)u + b(ξ)

)
by Theorem 4.16 and Jensen’s inequality. Since B(ξ) has full row rank for all

ξ ∈ Ξ, we can find a sequence of integrable uν : Ξ→ IRn that satisfies B(ξ)uν (ξ) =

xν−A(ξ)x−b(ξ). Let uν = Euν(ξ). Then applying first Jensen’s inequality followed

by Theorem 4.16 we obtain

lim sup
ν

fνx (uν) = lim sup
ν

EW νh
(
A(ξ)x +B(ξ)uν + b(ξ)

)
≤ lim sup

ν
EW νh

(
A(ξ)x +B(ξ)uν (ξ) + b(ξ)

)
= lim sup

ν
W νh

(
xν
)

≤ EQ
(
A(ξ)x +B(ξ)u+ b(ξ)

)
= fx(u)

Thus we have that fνx →e fx. For fixed x, gνx = c(x, ·) + δfνx and gx = c(x, ·) + δfx.

Theorem 4.4 (a) may now be applied to obtain that gνx→e gx, which completes the

proof.
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5. Finite-horizon approximations

The goal of this section is to come up with good approximations to the problem P ,

using two different methods. The first relies on the approximation theorems for Q

that we have been analyzing in the previous sections. The aim is to come up with

a good function h that approximates the future of the system, so that PTh is a good

approximation of the original problem. Lower and upper bounds are considered.

The second method concentrates on approximations from below, by combining a

terminal cost function with terminal dynamics that in some way average the future.

This adds more information to the problem, but removes the possibility of using

the iterated methods of the approximation theorems to obtain better bounds. The

idea of this method stems from the work of Grinold [10], and Fl̊am and Wets [8, 9].

5.1 Bounds via approximation theorems

We begin with a fairly simple lower bound which is significant in that it satisfies

the assumptions which allow iterated convergence to Q, as discussed in the previous

section. Such iterations will be especially useful when some explicit representation

is available for them. This is the case when c is piecewise linear-quadratic, and we

investigate that case in particular in §6.

Recall that the approximating problem takes the form

minimize E

T∑
t=1

δt−1c(xt−1, ut) + δTEh(xT )

subject to xt = Axt−1 +But + b for t = 1, . . . , T

x0 = x

ut Gt measurable for t = 1, . . . , T,

PTh (x)

where h in our context will be a function that provides a lower (or upper) bound

for Q. For each x, given an optimal solution (ux1 , . . . , u
x
T ), we will call a func-

tion u :feasPTh → IRn an optimal first stage policy for PTh if u(x) = ux1 for each

x ∈feasPTh . The main theorems of this section provide some very intuitive bounds

for Q.

Theorem 5.1 (lower bounds when domQ known a priori). Let h : IRs → IR be

defined by {
h(x) = 1

1−δ infu c(x, u) if x ∈ domQ
+∞ otherwise.

Then,
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(a) h ∈ B and h ≤ Q, T νh ≤ Q and T νh→ Q uniformly on IRs. In addition, if

Q is lsc and domQ has nonempty interior, then T νh→e Q on IRs.

(b) If Q is lsc, domQ has nonempty interior, and the matrices B(ξ) have full

row rank for all ξ ∈ Ξ, then for any T ∈ IN , the optimal first stage policies of

PTT νh converge pointwise in x to the optimal policies of P as ν →∞ in the sense of

Theorem 4.1.

Proof. That h ∈ B and h ≤ Q follows from the expansion of h as

h(x) =

{
infu

∑∞
t=1 δ

t−1c(x, u) if x ∈ domQ
+∞ otherwise.

The fact that h ≤ Q implies that

Th(x) =

{
infu

{
c(x, u) + δEh

(
A(ξ)x +B(ξ)u + b(ξ)

)}
if x ∈ domQ

+∞ otherwise

≤ inf
u

{
c(x, u) + δEQ

(
A(ξ)x +B(ξ)u + b(ξ)

)}
= Q(x),

so by induction T νh ≤ Q for all ν ∈ IN . The remaining facts in (a) follow from

Theorem 4.7, Theorem 4.8 and Corollary 4.11 after observing that h is convex

through the convexity of c. Part (b) just applies Theorem 4.12.

So far we have concentrated only on lower bounds for P . This gives us some

finite-horizon approximates from which approximate solutions may be obtained.

But up to now, we have no way of testing how good these approximate solutions

are. One way of doing this is to obtain finite-horizon approximates that are upper

bounds for P , which may be used to test for optimality. For example, if PTh provides

a lower bound and PT
′

h
provides an upper bound, and ū is an optimal first stage

policy for PTh , then for a given x we may evaluate the value of PTh (x) and compare

it to the optimal value of PT
′

h
(x). If the difference is small, we can be sure that we

are close to a solution of P (x) since

minPTh ≤ minP ≤ minPT
′

h
.

To obtain an upper approximation, what is needed initially is a function h :

IRs → IR that is an upper bound of Q, i.e. h ≥ Q. If domQ is known a priori, we

may set h = +∞ outside domQ. If not, we need to find a set H ⊂ domQ, and let

domh = H, or somehow otherwise be assured that h ≥ Q. We concentrate on the

case in which domQ is known a priori.
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Theorem 5.2 (upper bounds when dom Q known a priori). Let h ∈ B be convex

such that h ≥ Q. Then

(a) T νh ≥ Q and T νh → Q uniformly. In addition, if Q is lsc and domQ has

nonempty interior, then T νh→e Q on IRs.

(b) If Q is lsc, domQ has nonempty interior, and the matrices B(ξ) have full

row rank for all ξ ∈ Ξ, then for any T ∈ IN , at each x ∈feasP , the optimal policies

of PTT νh converge pointwise in x to the optimal policies of P in the sense of Theorem

4.1.

Proof. T νh ≥ Q follows by induction since for any h ∈ B such that h ≥ Q,

Th(x) =

{
infu

{
c(x, u) + δEh

(
A(ξ)x +B(ξ)u + b(ξ)

)}
if x ∈ domQ

+∞ otherwise

≥ inf
u

{
c(x, u) + δEQ

(
A(ξ)x +B(ξ)u + b(ξ)

)}
= Q(x).

By the convexity of h, part (a) follows from Theorem 4.7 and Corollary 4.11, and

part (b) applies Theorem 4.12.

Next we obtain lower bounds when the domain of Q is not known ahead of

time.

Theorem 5.3 (lower bounds when domQ unknown). Let h : IRs → IR be defined by

h(x) =
1

1− δ inf
u
c(x, u).

Then,

(a) h ∈ C , h ≤ Q, W νh ≤ Q, and W νh → Q pointwise. If W νh is lsc for all

ν ∈ IN , in particular if c is level-bounded in u locally uniformly in x, then W νh→e Q

on IRs and Q is lsc.

(b) If W νh is lsc for all ν ∈ IN , in particular if c is uniformly level-bounded, and

the matrices B(ξ) have full row rank for all ξ ∈ Ξ, then for any T ∈ IN , for fixed

x ∈feasP , any sequence of optimal policies of PTWνh converges to an optimal policy

of P in the sense of Theorem 4.1.

Proof. That h ∈ C follows from the expansion of h as

h(x) = inf
u

∞∑
t=1

δt−1c(x, u).
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The remaining facts in (a) come from a direct application of Lemma 4.14 and

Theorem 4.16, observing that h is proper and lsc via Theorem 3.5 in the case that

c is uniformly level-bounded. Part (b) is derived from the results of Theorem 4.17.

These results are going to be significant for computations only when the terms

T νh or W νh are easily computable or explicitly available. The next situation we

deal with may be useful when this is not necessarily the case; i.e., we still want a

good approximation of the problem P that does not necessarily rely on “iterations.”

5.2 Lower bounds via “averaging the future”

For a general convex cost function c, this section examines a possible lower bound

for P in a manner similar to that considered by Grinold [10], Fl̊am and Wets [8,

9] for deterministic and stochastic infinite-horizon optimization problems. In the

paper dealing with the stochastic case, Fl̊am and Wets assume that the (convexi-

fied) problem is convex jointly in x, u, and the ξ variable. We do not make that

assumption here, but rely on the affine structure of the dynamics to compensate

for the lack of joint convexity between (x, u) and ξ. This section consists of results

that give lower bounds for P that rely on “averaging” the future.

We remain interested in optimal policies, so the epi-convergence results we seek

will once again be in u for fixed x. The finite-horizon problems we propose have

the form

minimize E
T∑
t=1

δt−1c(xt−1, ut) +
δT

1− δ c(xT , uT+1)

subject to xt = A(ξt)xt−1 +B(ξt)ut + bt P -a.s. for t = 1, . . . , T − 1(
I − δEA(ξ)

)
xT − δEB(ξ)uT+1

= (1− δ)
(
A(ξT )xT−1 +B(ξT )uT + b(ξT )

)
+ δEb(ξ)

ut Gt measurable for t = 1, . . . , T.

PTF (x)

The unintuitive terminal dynamics will be justified shortly. Through the develop-

ments of the previous sections, the objective functions in u, (inclusive now of all

dynamics and constraints) then have the form, for fixed x ∈ IRs,

gTx (u) = c(x, u) + δEminPTF
(
A(ξ)x +B(ξ)u+ b(ξ)

)
,

gx(u) = c(x, u) + δEQ
(
A(ξ)x +B(ξ)u + b(ξ)

)
.
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We make the assumption throughout that a policy u of P satisfies

E

∞∑
t=1

δt−1|ut| <∞ and E

∞∑
t=1

δt−1|xt−1| <∞, (2)

under the identifications given in (1) for a solution given a policy, where | · | is taken

componentwise. A policy u : IRn → IRs is called a feasible policy for P if for any

x ∈feasP , the associated objective is finite, i.e. gx
(
u(x)

)
<∞.

Theorem 5.4 (feasibility). If P (x) is feasible, then PTF (x) is feasible.

Proof. Suppose x ∈feasP . Let u be a feasible policy for P such that the corre-

sponding solution (u1, u2, . . .) and trajectory (x0, x1, . . .) is feasible for initial state

x. For fixed T ∈ IN , let

x̄T = EGT+1(1− δ)
∞∑
t=T

δt−Txt,

ūT+1 = EGT+1(1− δ)
∞∑
t=T

δt−Tut,

which exist by the assumption (2). What we will now show is that (u1, . . . , uT , ūT+1)

and (x0, . . . , xT−1, x̄T ) are feasible for PTF (x). For this it suffices to show that the

terminal dynamics are satisfied. Observe that

x̄T = EGT+1(1− δ)
∞∑
t=T

δt−Txt

= EGT+1(1− δ)
∞∑
t=T

δt−T
(
A(ξt)xt−1 +B(ξt)ut + b(ξt)

)
= (1− δ)

(
A(ξt)xt−1 +B(ξt)ut + b(ξt)

)
+EA(ξ)(1 − δ)

∞∑
t=T+1

δt−TEGT+1xt−1

+EB(ξ)(1 − δ)
( ∞∑
t=T+1

δt−TEGT+1ut

+δEb(ξ)

= (1− δ)A(ξT )xT−1 + δEA(ξ)x̄T + (1− δ)B(ξT )uT + δEB(ξ)ūT+1

+(1 − δ)b(ξT ) + δEb(ξ).

This is just a rearrangement of the terminal dynamics given for PTF (x), whereby

x ∈feasPTF .

Next, we show that the objective functions are monotonically increasing, and

provide lower bounds for P .
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Theorem 5.5 (monotonically increasing lower bounds). For any x ∈ IRs, T ∈ IN ,

gTx ≤ gT+1
x ≤ gx.

Proof. It suffices to show from the definition of the objectives that minPTF ≤
minPT+1

F ≤ Q. Let u be a feasible policy for P . Fix x ∈ IRs and let (u1, u2, . . .) and

(x0, x1, . . .) be a corresponding solution with x̄T and ūT+1 as in Theorem 5.4. By

Jensen’s inequality for conditional expectations, and a convexity argument based

on the fact that (1− δ)
∑∞

t=1 δ
t−1 = 1, we obtain

1

1− δEc(x̄T , ūT+1)

=
1

1− δEc
(
EGT+1(1 − δ)

∞∑
t=T+1

δt−T−1xt−1, E
GT+1(1 − δ)

∞∑
t=T+1

δt−T−1ut
)

=
1

1− δEc
(
(1 − δ)xT + δ(1 − δ)

∞∑
t=T+1

δt−T−1EGT+2xt,

(1− δ)uT+1 + δ(1− δ)
∞∑

t=T+1

δt−T−1EGT+2ut+1

)
≤ Ec(xT , uT+1) +

δ

1− δEc(x̄T+1, ūT+2).

This immediately implies that gTx ≤ gT+1
x . In the same manner,

1

1− δEc(x̄T , ūT+1)

=
1

1− δEc
(
EGT+1(1 − δ)

∞∑
t=T+1

δt−T−1xt−1, E
GT+1(1 − δ)

∞∑
t=T+1

δt−T−1ut
)

≤ Ec
(
(1 − δ)

∞∑
t=T+1

δt−T−1xt−1, (1 − δ)
∞∑

t=T+1

δt−T−1ut
)

≤
∞∑

t=T+1

δt−T−1Ec(xt−1, ut),

which shows that for any T ∈ IN , minPTF (x) ≤ Q(x). So we may conclude that

gTx ≤ gT+1
x ≤ gx.

We conclude this section by showing that the objective functions epi-converge

as T →∞, which in turn ensures the convergence of optimal policies to an optimal

policy of P . This will follow directly from the results in §4.
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Theorem 5.6 (convergence of optimal policies). If minPTF (·) are lsc for all T ∈ IN ,

in particular if c is uniformly level-bounded and minP 1
F (·) is proper and lsc, and the

matrices B(ξ) have full row rank for all ξ ∈ Ξ, then gTx →e gx, and the conclusions

of Theorem 4.1 are satisfied.

Proof. This applies Theorem 4.17 through the observation that minP 1
F (·) is in C ,

and minPTF = W minPT−1
F .

6. Piecewise linear-quadratic costs

Let’s now consider the case in which the cost function has the form

c(x, u) = p · u+ 1
2u · Pu+ ρV,Q(q − Cx−Du), (3)

where P and Q are (symmetric) positive semidefinite, V is polyhedral convex, and

ρV,Q(x) := sup
v∈V
{v · x− 1

2v ·Qv}.

Note that c is convex, lsc (possibly infinite-valued), and piecewise linear-quadratic

on its domain. This is an important class of problems, due to their flexibility and

exploitable structure, c.f. [11].

Our objective is to investigate the form of the functions h andW νh obtained in

§5 when the cost has the piecewise linear-quadratic form of (3). We will make use of

some facts about symmetric positive semidefinite matrices. For a matrix P that is

positive semidefinite of rank r, we have that P = SΛS∗ where S is orthogonal and

Λ is a diagonal matrix of eigenvalues whose first r entries are nonzero (positive).

Let S2 denote the matrix consisting of the last n − r columns of S, and P ′ the

pseudo-inverse of P . We make use of the following lemma, whose proof relies on

extended linear-quadratic programmming duality, detailed in [11].

Lemma 6.1. Let V be a convex polyhedral subst of IRd, and let J : IRs × V → IR

be defined by

J(u, v) = p · u+ 1
2u · Pu+ q · v − 1

2v ·Qv −Du · v,

where P and Q are symmetric positive semidefinite matrices. Suppose

0 ∈ V and p ∈ colP. (4)
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Then

inf
u

sup
v∈V

J(u, v) = sup
v∈V

inf
u
J(u, v).

Proof. Observe that supv∈V infu J(u, v) is finite since for v = 0,

inf
u
J(u, 0) = inf

u
p · u+ 1

2u · Pu = − 1
2p · P ′p > −∞,

by virtue of p ∈ colP . Applying extended linear-quadratic programming duality to

the fact that supv∈V infu J(u, v) is finite-valued implies that

inf
u

sup
v∈V

J(u, v) = sup
v∈V

inf
u
J(u, v),

which completes the proof.

This leads us to the first main result, which shows that piecewise linear-

quadraticity in the form of (3) is preserved under inf-projection.

Theorem 6.2 (preservation of piecewise linear-quadraticity). With c as above and

g(x) = infu c(x, u), if assumption (4) is satisfied for the p, P , and V in the definition

of c in (3), then

g(x) = ρV 0,Q0(q0 − C0x) + a0,

where V 0 =
{
v ∈ V

∣∣S∗2D∗v − S∗2p = 0
}

is polyhedral convex with 0 ∈ V 0, Q0 :=

DP ′D∗ + Q is symmetric positive semidefinite, q0 = q + DP ′p, C0 = C , and

a0 = − 1
2p · P ′p.

Proof. We begin by letting Jx(u, v) = p ·u+ 1
2u ·Pu+v · (q−Cx)−v ·Du− 1

2v ·Qv.
Observe that

g(x) = inf
u

{
p · u+ 1

2u · Pu+ sup
v∈V
{v · (q − Cx)− v ·Du− 1

2v ·Qv}
}

= inf
u

sup
v∈V

{
p · u+ 1

2u · Pu+ v · (q − Cx)− v ·Du − 1
2v ·Qv

}
.

The assumption in (4) along with the conclusions of Lemma 6.1 allow the limits to

be interchanged, so that

g(x) = sup
v∈V

inf
u
Jx(u, v).

Setting ∇uJx(·, v) = 0 results in the equation Pu = D∗v − p.
If there are no solutions to this equation, then by the symmetry of P , for any

nonzero u ∈ kerP , u ·(D∗v−p) 6= 0. Picking u ∈ kerP such that u ·(D∗v−p) > 0, it
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can be seen that L(νu, v;x)→ −∞ as ν →∞. Otherwise, for P ′ the pseudoinverse

of P (which exists since P is symmetric, hence diagonalizable), whenever D∗v−p ∈
colP (or equivalently S∗2D

∗v − S∗2p = 0), we have that u = P ′(D∗v − p), is a

particular solution of Pu = D∗v − p. This yields

g(x) =


sup
v∈V

{
− 1

2v ·DP ′D∗v + v ·DP ′p

− 1
2p · P ′p+ v · (q − Cx)− 1

2v ·Qv
} if ∃v ∈ V , S∗2D

∗v − S∗2p = 0

−∞ otherwise

= sup
v∈V 0

{
− 1

2v ·DP ′D∗v + v ·DP ′p− 1
2p · P ′p+ v · (q − Cx)− 1

2v ·Qv
}

= ρV 0,Q0

(
DP ′p+ q − Cx

)
− 1

2p · P ′p,

as claimed. Q0 is symmetric positive semidefinite since both Q and P ′ are, the sym-

metry and positive semidefiniteness of P ′ coming from that of P . V 0 is polyhedral

convex since it is the intersection of V with {v
∣∣S∗2D∗v − S∗2p = 0}, an affine set.

0 ∈ V 0 follows immediately from 0 ∈ V and p ∈ colP since then S∗2p = 0.

The next proposition gives an explicit formula for the lower bound h obtained

in Theorem 5.3.

Proposition 6.3 (piecewise linear-quadraticity of end term). Let h : IRs → IR be

defined as in Theorem 5.3 by h(x) = 1
1−δ infu c(x, u). With c piecewise linear-

quadratic of the form (3), if assumption (4) is satisfied, then

h(x) = ρV 0,Q0(q0 −C0x) + a0,

where V 0 =
{
v ∈ V

∣∣S∗2D∗v − S∗2p = 0
}

is polyhedral convex with 0 ∈ V 0, Q0 :=
1

1−δ (DP
′D∗ + Q) is symmetric positive semidefinite, q0 = 1

1−δ (q + DP ′p), C0 =
1

1−δC , and a0 = − 1
2(1−δ)p · P ′p.

Proof. This is a direct consequence of Theorem 6.2, after the observation that for

any α > 0,

αρV,Q(z) = ρV,αQ(αz),

which follows directly from the definition of ρV,Q.

What we have established so far is a rough lower bound for Q that is express-

ible as a piecewise linear-quadratic function. But this may be improved upon by

performing the successive iterations,

Wh(x) := inf
u

{
c(x, u) + δEh(Ax+Bu+ b)

}
,
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W νh(x) := inf
u

{
c(x, u) + δEW ν−1h(Ax+Bu+ b)

}
,

each a better lower bound approximation to Q than its predecessor, and each ex-

pressible explicitly in piecewise linear-quadratic form. The result that follows proves

the piecewise linear-quadraticity for the iterates.

Proposition 6.4 (piecewise linear-quadraticity of iterates). Let Ξ = {1, . . . , L}, and

let pi be the associated probabilities for i = 1, . . . , L. Let c : IRs × IRn → IR

be piecewise linear-quadratic as in (3). Suppose W ν−1h(x) = ρV ν−1,Qν−1(qν−1 −
Cν−1x) + aν−1, and that 0 ∈ V ν−1. If assumption (4) is satisfied, then W νh(x) =

ρV ν ,Qν (qν − Cνx) + aν , where

V ν =
{
v ∈ V × (V ν−1)L : S∗2D̃

∗v − S∗2p = 0
}
, D̃ =


D

δp1C
ν−1B1
...

δpLC
ν−1BL

 ,

Qν = D̃P ′D̃∗ +


Q

δp1Q
ν−1

. . .

δpLQ
ν−1

 ,

qν = D̃P ′p+


q

δp1(qν−1 − Cν−1b1)
...

δpL(qν−1 − Cν−1bL)

 , Cν =


C

δCν−1A1
...

δCν−1AL

 ,

and aν = − 1
2p · P ′p + δaν−1. V ν is polyhedral convex with 0 ∈ V ν, and Qν is

symmetric positive semi-definite.

Proof. Observe that

W νh(x) = inf
u

{
p · u+ 1

2u · Pu+ ρV,Q(q − Cx−Du)

+
L∑
i=1

δpiρV ν−1,Qν−1

(
qν−1 − Cν−1(Aix+Biu+ bi)

)}
+ δaν−1

= inf
u

{
p · u+ 1

2u · Pu+ ρV ν ,Q̃(q̃ −Cνx− D̃u)
}

+ δaν−1,

where Q̃ =


Q

δp1Q
ν−1

. . .

δpLQ
ν−1

, and q̃ =


q

δp1(qν−1 − Cν−1b1)
...

δpL(qν−1 − Cν−1bL)

.

Now apply Theorem 6.2 in this setting to obtain the result.
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These results considered in the framework of the approximation theorems and

finite horizon approximates in §4 and §5, allow one to approximate an infinite-

horizon problem with piecewise linear-quadratic cost with a sequence of almost

nondecreasing finite horizon extended linear-quadratic problems with explicit end

term. These are highly decomposable problems with a fully developed strong duality

theory and flexible structure. For more on extended linear-quadratic programming

for dynamic and stochastic dynamic problems, see [11], [13] and [14].
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