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Abstract

This paper is motivated by two ’stylized facts’ concerning the dynamics of diffusion of
different technologies competing for the same market niche. a) A stable pattern of mar-
ket sharing with no overwhelming dominant position is rarely observed in markets with
network esternalities. Unbounded increasing returns to adoption are often called for an
explanation of this fact. However the argument is generally based on an incorrect inter-
pretation of the popular Brian Arthur (1989) model. As we show with a simple coun-
terexample unbounded increasing returns are neither necessary nor sufficient to lead to
technological monopolies even in a stable external environment. b) International diffusion
may lead sometimes to different standards in different countries (the archetypical case
is the diffusion of typewriter-computer keyboards - AZERTY vs. QWERTY) or to the
diffusion of the same standard in every country (the archetypical example being VCRs
- Beta vs. VHS), even without intervention of any regulatory agency. Intuitively when
convergence to the same standard is not an accident of history, it is an outcome of the rela-
tive weight of international spillovers as compared to nationwide esternalities. The crucial
question is: can a model that account for the former fact accomodate also the latter? In
this paper, by establishing some mathematical properties of generalized urn schemes, we
build on a class of competing technology dynamics models to develop an explanation for
the former ”fact” and to provide sufficient conditions for convergence to the same or to
different technological monopolies in different countries. Our explanation for the empiri-
cal tendency to converge to technological monopoly relies on convergence rate differentials
to limit market shares: We show that a market can approach a monopoly with a higher
speed than it approaches any feasible limit market share where both technologies coexist.
Convergence to market sharing, we conclude, is in general so slow that the environment
changes before the market share trajectory becomes stable in a neighborhood of its limit.
The empirical implication is that among markets with high rate of technological change
and increasing returns to adoption, a prevalence of stable monopolies over stable market
sharing should be expected.

JEL classification numbers: O30, O33.
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Competing Technologies, International Diffusion

and the Rate of Convergence to a Stable Market

Structure

Andrea P. Bassanini
Giovanni Dosi

1 Introduction

In this paper we address the dynamics competing technologies. Two stylized facts are at
the origin of this work:

a) A stable pattern of market sharing between competing technologies with no over-
whelming dominant position has been rarely observed in markets with positive feedbacks.
For example, even in the case of operating systems, which is often quoted as a case of
market sharing, Apple MacIntosh has never held a market share larger than 1/5 (a partial
exception being the submarket of personal computer for educational institutions). This
fact has also triggered suspicion of market inefficiencies: Technological monopolies may
prevail even when the survival of more than one technology may be socially optimal [Katz
and Shapiro (1986), David (1992)]. Think for example to the competition between Java-
based architectures and ActiveX architectures for web-based applets: Given that with any
of the two paradigms the standard tasks that can be performed are different, the general
impression of experts is that society would benefit from the survival of both.

b) International diffusion may sometimes lead to different standards in different coun-
tries or conversely to the diffusion of the same standard in every country. For example,
while in all the English-speaking world the QWERTY keyboard represents the standard,
in the French-speaking world a slightly different version (the AZERTY keyboard) is by
far the more adopted one. On the contrary in the VCR market VHS is the worldwide
technological leader while the original competitor, Beta, has disappeared.

In turn, from the point of view of interpretation of the processes of diffusion of new
products and technologies, it is acknowledged that, in many modern markets, they are
characterised by increasing returns to adoption or positive feedbacks. This has partly to
do with supply-side causes: the increasing amount of knowledge and skills that are dy-
namically accumulated through the expansion of markets and production usually reduce
the hedonic price of production or consumption goods, thus increasing the net benefit for
the user of a particular technology. Boeing 727, for example, which has been on the jet
aircraft market for years, has undergone constant modification of the design and improve-
ment in structural soundness, wing design, payload capacity and engine efficiency as it
accumulates airline adoption and hours of flight [Rosenberg (1982), Arthur (1989)]. Sim-
ilar observations can be made for many helicopter designs [Saviotti and Trickett (1992)].

Supply-side causes of this type have received some attention in the economic literature
for quite a while. However in the last fifteen years a great deal of attention has been
devoted also to demand-side positive feedbacks, so-called network esternalities or (more
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neutrally) network effects [Katz and Shapiro (1994), Liebowitz and Margolis (1994)]. For
example, telecommunication devices and networks (for instance fax machines), as a first
approximation, tend not to provide any utility per se but only as a function of the number
of adopters of compatible technologies with whom the communication is possible [Rohlfs
(1974), Oren and Smith (1981), Economides (1996)]. The benefits accruing to a user of
a particular hardware system depend on the availability of software whose quantity and
variety may depend on the size of the market if there are increasing returns in software
production. This is the case of VCRs, microprocessors, hi-fi devices and in general sys-
tems made of complementary products which need not be consumed in fixed proportions
[Cusumano et al. (1992), Church and Gandal (1993), Katz and Shapiro (1985, 1994)].
A similar story can be told for the provision of postpurchase service for durable goods.
In automobile markets, for example, the diffusion of foreign models has often been slow
because of consumers’ perception of a thinner and less experienced network of repair ser-
vices [Katz and Shapiro (1985)]. Standardization implies also saving out of the cost of
investment in complementary capital if returns from investment are not completely ap-
propriable: In software adoption firms can draw from a large pool of experienced users if
they adopt software belonging to a widespread standard, thus de facto sharing the cost of
training [Farrell and Saloner (1986), Brynjolfsson and Kemerer (1996)]. Moreover product
information may be more easily available for more popular brands or, finally, there may
be conformity or psychological bandwagon effects [Katz and Shapiro (1985), Glaziev and
Kaniovski (1991), Banerjee (1992), Arthur and Lane (1993), Bernheim (1994), Dosi and
Kaniovski (1994), Brock and Durlauf (1995)].

Katz and Shapiro (1994) in their review of the literature on systems competition and
dynamics of adoption under increasing returns distinguish between technology adoption
decision and product selection decision.

The former refers to the choice of a potential user to place a demand in a particular
market. Relevant questions in this case are the conditions for an actual market of positive
size, the notional features of a ”socially optimal” market size and the conditions allowing
penetration of a new (more advanced) technology into the market of an already established
one [Rohlfs (1974), Oren and Smith (1981), Farrell and Saloner (1985,1986), Katz and
Shapiro (1992)]. For example purchasing or not a fax or substituting a compact disc
player for an analogical record player are technology adoption decisions.

Conversely product selection refers to the choice between different technological so-
lutions which perform (approximately) the same function and are therefore close substi-
tutes. Relevant questions here are whether the market enhances variety or standardiza-
tion, whether the emerging market structure is normatively desirable and what is the
role of history in the selection of market structure [Arthur (1983,1989), Katz and Shapiro
(1985,1986), David (1985), Church and Gandal (1993), Dosi et al. (1994)]. Choosing
between VHS or Beta in the VCR market or between Word or Wordperfect in the word-
processors market are typical examples of product selection decisions.

This work is concerned with the dynamics of product selection. To explain the two
stylized facts recalled above we analyze properties of a fairly general and nowadays rather
standard class of models of competing technologies, originally suggested by Arthur (1983)
and Arthur et al. (1983) and subsequently made popular by Arthur (1989) [and further
explored by Cowan (1991), Dosi et al. (1994), Dosi and Kaniovski (1994) and Kaniovski
and Young (1995) among others]. This class of models will be presented in details in
section 2.

Despite mixed results of some pioneering work on the dynamics of markets with net-
work effects [e.g. Katz and Shapiro (1986)], unbounded increasing returns are commonly
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called for as an explanation of the emergence of technological monopolies. Usually the
argument is based on the results of the model set forth by Arthur (1989). For instance
Robin Cowan summarizes it in the following way:

“If technologies operate under dynamic increasing returns (often thought of in terms

of learning-by-doing or learning-by-using), then early use of one technology can create

a snowballing effect by which that technology quickly becomes preferred to others and

comes to dominate the market.

“Following Arthur, consider a market in which two types of consumers adopt technol-

ogy sequentially. As a result of dynamic increasing returns arising from learning-by-

using, the payoff to adopting a technology is an increasing function of the number of

times it has been adopted in the past. Important with regard to which technology is

chosen next is how many times each of the technologies has been chosen in the past.

Arthur shows that if the order of adopters is random (that is, the type of the next

adopter is not predictable) then with certainty one technology will claim the entire

market” [Cowan (1990) p. 543, italics added].

It will be shown in the following that this statement does not always hold. Unbounded
increasing returns to adoption are neither necessary nor sufficient to lead to the emergence
of technological monopolies. As proved in the next section, strictly speaking, Arthur’s re-
sult applies only when returns are linearly increasing and the degree of heterogeneity of
agents is, in a sense, small. Moreover it cannot be easily generalized further: Some mean-
ingful counterexamples will be provided. More generally the emergence of technological
monopolies depends on the nature of increasing returns with respect to the degree of het-
erogeneity of the population. Relatedly, given a sufficiently high heterogeneity amongst
economic agents, limit market sharing may occur even in the presence of unbounded in-
creasing returns. The bearing of our analysis, in terms of the interpretation of the empirical
evidence, stems from the results presented in section three: In essence, we suggest that the
observation of the widespread emergence of monopolies is intimately related to the prop-
erties of different rates of convergence (to monopoly and to market sharing respectively)
more than to the properties of limit states as such. It will be shown that a market can
approach a monopoly with a higher speed than it approaches any feasible limit market
shares where both technologies coexist. Following a line of reasoning put forward by Win-
ter (1986) among others, our argument proceeds by noticing that when convergence is too
slow the external environment is likely to change before any sufficiently small neighbor-
hood of the limit can be attained. The result that we obtain, based on some mathematical
properties of generalized urn schemes1, is general for this class of models. The empirical
implication is that among markets with high rate of technological change and increasing
return to adoption, a prevalence of stable monopolies over stable market-sharing should
be observed.

How does one reconcile this result with the second ”stylized fact” on the emergence of
different technological monopolies in different interdependent countries? Start by noticing
that a system of local monopolies is quite different from a system with prevailing worldwide
market sharing (even if at high level of aggregation they may look alike). Intuitively
convergence to the same standard is an outcome of the relative weight and strength of
international spillovers as compared to nationwide (or regional) esternalities. For example,

1Throughout this paper we label the generalization of Polya urn schemes set forth by Hill et al. (1980)
as generalized urn scheme. That generalization is the most popular in economics but obviously it is not
the only possible one [see e.g. Walker and Muliere (1997)].
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in the case of typewriter keyboards, geographical areas with the same language tend to be
reflected in spillover clusters due to free “migration” of typists, similar training institutions,
etc.... On the other hand, historically, gaining leadership in the European market, with
the consequent bias in the related home video market, was crucial to VHS to resolve in its
favor the battle for leadership in the Japanese market as well [Cusumano et al. (1992)].
However very little modeling effort has been made so far to formally explore this intuitive
explanation. In the fourth section we will consider a generalization of one-market models
of competing technologies in order to establish the conditions of convergence to the same
or different technological monopolies in different but interrelated markets.

2 Competing Technologies Revisited: Are Unbounded In-
creasing Returns Sufficient for the Emergence of Techno-
logical Monopolies?

The standard story of the class of competing technology dynamics models considered by
Arthur (1983,1989) is the following.

Every period a new agent enters the market and chooses the technology which is best
suited to its needs, given its preferences, information structure and the available technolo-
gies. Preferences are heterogeneous and a distribution of preferences in the population is
given. Information and preferences determine a vector of payoff functions (whose dimen-
sion is equal to the number of available technologies) for every type of agent. Because of
positive (negative) feedbacks, these functions depend on the number of previous adoptions.
When an agent enters the market it compares the values of these functions (given its pref-
erences, the available information, and previous adoptions) and chooses the technology
which yields the maximum perceived payoff. Which ”type” of agent enters the market
at any given time is a stochastic event whose probability depends on the distribution of
types (i.e. of preferences) in the population. Because of positive (negative) feedbacks, the
probability of adoption of a particular technology is an increasing (decreasing) function of
the number of previous adoptions of that technology.

The resulting stochastic process of adoptions can be easily represented as a Markov
process with discrete state space [see e.g. Arthur (1983)]. Usually it is claimed that any
such process can be represented and analyzed as a generalized urn scheme or Polya urn
[Arthur (1988,1989)] - the advantage being that the theory of Polya urns provides general
tools which, when applicable, greatly simplify the analysis of asymptotic patterns.

Consider the simplest case where two technologies, say A and B, compete for a market.
Think of an urn of infinite capacity with white and black (A and B) balls. Starting with
nw white balls and nb black ones, nw, nb ≥ 1, in the urn, a ball is added into the urn at
time t = 1, 2 . . .. The number of balls of one colour represents the number of units of the
corresponding technology that have been adopted at time t. A white ball will be added
with probability f(X(t)). Here f(·) is a function (sometimes called urn function) which
maps R(0, 1) in [0, 1] and R(0, 1) stands for the set of rational numbers in (0, 1); X(t) is
the proportion of white balls in the urn at time t. The dynamics of X(t) is given by the
relation

X(t+ 1) = X(t) +
ξt(X(t))−X(t)

t+ nw + nb
, (1)

Here ξt(x), t≥ 1 are random variables independent in t such that

ξt(x) =

{
1 with probability f(x)
0 with probability 1− f(x)

(2)
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ξt(·) is a function of market shares dependent on the feedbacks in adoption. Designat-
ing ξt(x)− E(ξt(x)) = ξt(x)− f(x) by ζt(x) we have

X(t+ 1) = X(t) +
[f(X(t))−X(t)] + ζt(x)

t+ nw + nb
, (3)

Asymptotic patterns of this process can be studied by analyzing the properties of the
function g(X(t)) = f(X(t)) − X(t) [See Dosi et al. (1994) for a review of the relevant
theorems in the one dimensional case].

In the most general model, positive (negative) feedbacks in adoption should imply
that the probability of adoption is an increasing (decreasing) function of the number of
previous adoptions and not only of current market shares. However the general case can
be handled if the basic model set forth above is amended by setting a two-argument
urn function, dependent also on t, given the relationships between (a) total number of
adoptions of both technologies t+nw +nb, (b) current market share X(t), and (c) number
of adoptions of one specific technology, ni(t), i = A,B, that is nA(t) = (t+ nw + nb)X(t).
Note in this respect that, from an interpretative point of view, total numbers and shares
are likely to capture quite distinct economic and technological phenomena. For example,
sheer collective externalities (related to e.g. the case of a common network) are easily
captured by the shared dynamics, while more idiosyncratic, cumulative and type-specific
processes of learning are more naturally represented as functions of varying numbers of
adopters (learning-by-doing and learning-by-using being classical cases to the point).

As shown by Arthur et al. (1986, theorem 3.1) [see also Dosi et al. (1994)] the relevant
theorems to study asymptotic patterns of convergence still hold provided that there exist
a limit urn function f(·) (defined as that function f such that ft tends to it as t tends to
∞) and the following condition is satisfied:∑

t≥1

t−1 sup
x∈[0,1]∩R(0,1)

| ft(x)− f(x) |<∞. (4)

Arthur (1983,1989) considers a payoff function of the following type:

Πi
j(n

j(t)) = aij + r(nj(t)), (5)

where j = A,B, i ∈ S, S is the set of possible types [in the simplest case, considered also in
the foregoing quotation from Cowan (1990), S = {1, 2}], nj(t) is the number of adoptions
of technology j at time t, a

j
i identifies a baseline payoff for agents of type i from technology

j (every agent is associated to a pair (aiA, a
i
B) which represents the network-independent

component of its preferences), and r is an increasing function (common for every agent)
capturing increasing returns to adoption. If, at time t, an agent of type i comes to the
market, it compares the two payoff functions choosing A if and only if2:

ΠA(nA) ≥ ΠB(nB). (6)

that is

aiA + r(nA(t)) ≥ aiB + r(nB(t)). (7)

Suppose that which type of agent enters the market at time t is the realization of an
iid random variable i(t). Thus (3) implies that the agent coming to the market chooses A
with probability

2We assume that, if there is a tie, agents choose technology A. Qualitatively, breaking the tie in a
different way would not make any difference.
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P(A(t)) = Fθ(r(n
A(t)− r(nB(t))), (8)

where Fθ(·) denotes the distribution function of θ(t) = aiB(t)− aiA(t).
From these considerations Arthur’s main theorem can be derived:

Theorem 1 [Arthur (1989), theorem 3] If the improvement function r increases at least
at rate ε > 0 as nj increases, the adoption process converges to the dominance of a single
technology, with probability one.

The proof of the theorem is based on theorem 3.1 of Arthur et al. (1986). In fact it is
easy to check that in this case, whatever the distribution of aj is, the limit urn function
f(·) is a step function defined in the following way:

f(x) =


1 if x > 1/2
Fθ(0) if x = 1/2
0 if x < 1/2

(9)

By applying standard properties of generalized urn schemes [see e.g. Dosi et al. (1994),
theorems 1 and 3], it is trivial to show that a process with an urn function defined as above
converge to S = {0, 1} with probability 1.

However theorem 3.1 of Arthur et al. (1986) is not applicable here because condition
(4) does not hold in this case. Actually the urn functions are defined by:

ft(x) = Fθ(r[x(t+ nw + nb))− r[(1− x)(t+ nw + nb)]). (10)

Moreover for t > K > 0, t even, they are such that ft(0) = 0, ft(1/2) = Fθ(0),
ft(1) = 1 and they are continuous in a left neighborhood (which depends on t) of 1/2;
therefore supx∈[0,1]∩R(0,1) | ft(x) − f(x) |= max{F (0), 1− F (0)} which is constant with

respect to t 3.
Even though Arthur’s proof is wrong, the theorem is right and an ad hoc proof can

be constructed by showing that nA(t)− nB(t) is a time-homogeneous Markov chain with
two absorbing barriers [Bassanini (1997), proposition 2.1, provides a complete proof along
these lines]. However this result strictly depends on the fact that the function r(·) is
asymptotically linear or more than linear. Arthur’s result is not generalizable to any
type of unbounded increasing returns. Both in the case of increasing returns that are
diminishing at the margin and in the case of heterogeneous increasing returns it is possible
to find simple examples where convergence to technological monopolies is not an event with
probability 1.

Let us illustrate all this by means of two straightforward counterexamples.

Example 1 Let us assume that increasing returns have the common sense property
that the marginal contribution to social benefit of, say, the 100th adopters is larger than
that of, say, the 100,000th and that this contribution tends asymptotically to zero; formally
this means that d

dnj
f(nj) > 0, d2

dnj2
f(nj) < 0 and limnj→∞

d
dnj

f(nj) = 0 [this class of
functions has been considered by Katz and Shapiro (1985)].

Focusing on the case set forth by Robin Cowan in the foregoing quotation, let us assume
that there are only two types of agents (i = 1, 2) and two technologies. Recall Arthur’s
payoff functions (7), Πj(n

j(t)) = aij+r(n
j(t)), and assume that r(·) = s log(·) is a function

(which is common for every agent: s is a constant) that formalizes unbounded increasing

3To be precise Arthur (1989) quotes also Arthur et al. (1983), though there the properties are stated
only as yet-to-be-proved good sense conjectures.
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returns to adoption. Agents choose technology A if and only if ΠA(nA) ≥ ΠB(nB). By
taking the exponential on both sides and rearranging we have:

X(t)

1−X(t)
≥ e

1
r
(aiB(t)−aiA(t)). (11)

The function of the attributes of agent’s type which is on the right hand side can
be considered a random variable because, as discussed above, i(t) is a random variable.
Moreover they are iid because i(t) is iid. Denoting the random variables on the right hand
side with ς(t), from (11) we have that the adoption process can be seen as a generalized
urn scheme with urn function given by:

f(x) = Fς(x/(1− x)), (12)

where Fς(·) is the distribution function of ς(t). Because i(t) takes just two values (1, 2),
also ς(t) takes just two values:

ς(t) =

{
e

1
r
(a1
B(t)−a1

A(t)) with probability α

e
1
r
(a2
B(t)−a2

A(t)) with probability 1− α
(13)

where we have assumed without loss of generality that

a1
B(t)− a1

A(t) ≤ a2
B(t)− a2

A(t). (14)

Thus Fς is by construction a step function with two steps:

Fς(y) =


0 if y ≤ e 1

r
(a1
B(t)−a1

A(t))

α if e
1
r
(a1
B(t)−a1

A(t)) < y ≤ e 1
r
(a2
B(t)−a2

A(t))

1 if y > e
1
r
(a2
B(t)−a2

A(t))

(15)

Therefore, taking into account (12), we have that the urn function has two steps and
is defined in the following way:

f(x) =



0 if x ≤ e
1
r (a1

B
(t)−a1

A
(t))

1+e
1
r (a1

B
(t)−a1

A
(t))

α if e
1
r (a1

B
(t)−a1

A
(t))

1+e
1
r (a1

B
(t)−a1

A
(t))

< x ≤ e
1
r (a2

B
(t)−a2

A
(t))

1+e
1
r (a2

B
(t)−a2

A
(t))

1 if x > e
1
r (a2

B
(t)−a2

A
(t))

1+e
1
r (a2

B
(t)−a2

A
(t))

(16)

Denoting with x∗ and x∗∗ the two points where the urn functions jumps, we can apply
the results from from Dosi et al. (1994) and show that, if the following condition is satisfied

x∗ < α < x∗∗ (17)

then there is a set of initial conditions (that imply giving both technologies a chance
to be chosen ”at the beginning of history”) for which market sharing is asymptotically
attainable with positive probability.

Technically speaking [in the jargon introduced by Hill et al. (1980)] under the above
condition we have five fixed points, three of which are downcrossing. The above condition
imply that the ratios (ea

i
A)1/r/(ea

i
B)1/r are sufficiently different between the two types.

In other words there might be sufficient heterogeneity among agents to counterbalance the
effect of increasing returns to adoption.
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Example 2 Consider now payoff functions of this type:

Πj(n
j) = aj + rjn

j , (18)

where rj is a bounded random variable which admits density. Such a function allows
agents to be heterogeneous also in terms of the degree of increasing returns which they
experience. First, let us take the case of aj = 0, j = A,B. By deviding payoff functions
by total number of adoptions we obtain as before that agents choose A if and only if:

X(t)

1−X(t)
≥ rB
rA
. (19)

Now suppose that rA and rB are highly correlated and both have bimodal distributions
very concentrated around the two modes, so that the distribution of rA/rB is also bimodal
and very concentrated around the two modes. If the two modes are sufficiently far away,
by repeating the same argument of the example above, we obtain that the urn function,
though continuous, has a graph not too different from the graph of a step function with
at least three downcrossing fixed point; thus there exists a market share x0 /∈ {0, 1} which
can be asymptotically attained with positive probability. Moreover if aj 6= 0 but have
bounded support and admit density, then condition (4) applies and the same argument
holds.

The two examples above show that the degree of increasing returns needs to be com-
pared to the degree of heterogeneity. Unbounded increasing returns that are diminishing
fast at the margin are not sufficient to generate asymptotic survival of only one technol-
ogy, provided that agents are not completely homogeneous [see also Farrell and Saloner
(1985,1986) for early models with homogeneous agents that leads to the survival of only
one technology]. Even more interesting, when heterogeneity is so wide that there are agent-
specific increasing returns, the emergence of technological monopolies is not guaranteed
even with returns that are linearly increasing.

To summarize, the foregoing examples show that if preferences are sufficiently hetero-
geneous and/or increasing returns to adoption are less than asymptotically linear, then
Arthur’s result cannot be generalized and variety in the asymptotic distribution of tech-
nologies can be an outcome with positive probability.

From the point of view of empirical predictions, at first look, the foregoing results
might sound, if anything, as a further pessimistic note on ”indeterminacy”. That is, not
only ”history matters” in the sense that initial small events might determine which of
the notional, technologically attainable, asymptotic states the system might ”choose”:
More troubling, the argument so far suggests that, further, the very distribution of the
fine characteristics and preferences of the population of agents might determine the very
nature of the attainable asymptotic states themselves. Short of empirically convincing
restrictions on the distribution of agents (normally unobservable) characteristics, what we
propose is instead an interpretation of the general occurrence of technological monopolies
(cum increasing returns of some kind) grounded on the relative speed of convergence to
the underlying (but unobservable) limit states.

3 Rate of Convergence in One-Dimensional Models of Com-
peting Technologies

Consider the celebrated example of the VCR market. JVC’s VHS and Sony’s Beta
were commercialized approximately at the same time. According to many studies [see
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Cusumano et al. (1992) and Liebowitz and Margolis (1994)] none of the two standards
has ever been perceived as unambiguously better and, despite their incompatibility, their
features were more or less the same, due to the common derivation from the U-matic
design. For these reasons the relevant decisions were likely to be sequential. First, a con-
sumer chooses whether or not to adopt a VCR - technology adoption decision in Katz and
Shapiro’s terminology -, then, once the adoption decision has been made, it devotes its
mind to choose which type of VCR to purchase - product selection decision - (in general
it can be expected that most of the consumers buy one single item and not both). Net-
work effects in this market come mainly from increasing returns in design specialization
and production of VCR models (so that historically all firms specialized just in one single
standard) on the supply side, and from increasing returns externalities and consequent
availability of home video rental services on the demand side [Cusumano et al. (1992)].
Despite technical similarities between the two standards, preferences were strongly het-
erogeneous, due mainly to a brand-name-loyalty type of consumer behavior, which was
exploited (especially by JVC) through Original Equipment Manufacturers (OEM) agree-
ments with firms with well-established market shares in electronic durable goods.

The fact that the decision is sequential makes product selection decisions naturally
dependent on market shares rather than on the absolute size of the network. Moreover
the size of VCR market is sufficiently large (hundreds of millions of sold units) to make it
approximable by the abstract concept of an infinite capacity market. Therefore, following
the presentation given in the previous section, it is clear that the dynamics of this market
can be represented by a generalized urn scheme with urn function independent of t. Het-
erogeneity of preferences and the degrees of increasing returns affect only the functional
form of the urn function but do not jeopardize the possibility of representing the dynamics
through this type of models.

Many other markets display somewhat similar characteristics (for instance spread-
sheets, wordprocessors, computer keyboards, pc-hardwares, automobiles etc...); particu-
larly in many markets product selection can be assumed to sequentially follow technology
adoption decisions [for instance in the data set of Computer Intelligence InfoCorp em-
ployed by Breuhan (1996), more than 80% of the firms in the sample report using a single
word processing package]. Provided that product selection is likely to be dependent on
market shares rather than absolute size of installed base, the analysis that follows could
go through even in the absence of a clear pattern of increasing returns to adoption. Sim-
ply enough, in the presence of constant returns to adoption, the urn function would be
completely constant but the following theorems would still hold.

Theorems 2 and 3 represent the main result of this paper: their comparison allow us
to make the relevant statements on the rate of convergence to technological monopoly or
to a limit market share where both technologies coexist.

As above, denote with f(·) the urn function; the following theorem gives the results
on the rate of convergence to 0 and 1.

Theorem 2 Let ε > 0 and c < 1 be such that

f(x) ≤ cx for x ∈ (0, ε) (f(x)) ≥ 1− c(1− x) for x ∈ (1− ε, 1)).

Then for any δ ∈ (0, 1− c) and τ > 0

limt→∞ P{t1−c−δX(t) < τ |X(t)→ 0} = 1(
limt→∞ P{t1−c−δ[1−X(t)] < τ |X(t)→ 1} = 1

)
,

where X(·) stands for the random process given by (3).
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The theorem is proved in the appendix.
As shown by Hill et al. (1980) and Arthur et al. (1987) [see also the review in Dosi et

al. (1994)] the market share trajectoryX(·) converges almost surely, as t tends to infinity,
to the set of appropriately defined zeroes of the function g(x) = f(x)− x. However since
we are not going to restrict ourselves to the case when g(·) is a continuous function, we
need some standard definition concerning equations with discontinuous functions.

For a function g(·) given on R(0, 1) and a point x ∈ [0, 1] set

a(x, g) = inf{yk}∈R(0,1) lim infk→∞ g(yk),
ā(x, g) = sup{yk}∈R(0,1) lim supk→∞ g(yk),

(20)

where {yk} is an arbitrary sequence converging to x. Then the set of zeroes A(g) of
g(·) on [0, 1] is defined by the following relation A(g) = {x ∈ [0, 1] : [a(x, g), ā(x, g)] 3 0} .
Note that for a continuous g(·) this definition gives the roots of the equation g(x) = 0 in
the conventional meaning.

Applying the results known for the generalized urn scheme, we can provide conditions
of convergence with positive probability to subintervals and certain singleton components
of A(g) and also with zero probability to other singleton components of this set. The com-
ponents of the first kind are called attainable, while those of the second kind unattainable.
For our model of competing technologies they would mean a separation of all possible limit
market shares (given by the roots of equation g(x) = x) into feasible (i.e. which realize
with some positive probability) and infeasible (i.e. which never realize).

One particular class of attainable singleton components comprises the stable ones, i.e.
the points where f(x)−x changes its sign from plus to minus. We are going to characterize
the (relative) rate of convergence to them.

From the theory of urn schemes with balls of two colors [see Hill et al. (1980)] we know
that if θ is a stable root [or a downcrossing point as it is called in Hill et al. (1980)] of
f(x)− x = 0, that is there is ε > 0 such that for every δ ∈ (0, ε)

inf
δ≤|x−θ|≤ε

[f(x)− x](x− θ) < 0, (21)

then X(·) converges to θ with positive probability for some initial numbers of balls in the
urn.

But if in addition to (21)

f(x) ∈ (0, 1) for all x ∈ R(0, 1), (22)

then it converges with positive probability to θ for any initial combination of balls in the
urn.

Finally if the urn function does not have touchpoints and the set A(g) with g(x) =
f(x)−x is composed only of singleton components then almost surely the process converges
to the set of stable components.

One would like to derive a counterpart of theorem 2 for the case of stable roots. But
(21) is not enough to do this. Let us consider the hypotheses of that theorem in details.
These have the form

f(x) ≤ cx for x ∈ (0, ε) (f(x) ≥ 1− c(1− x) for x ∈ (1− ε, 1)). (23)

This is implies a sort of sensitivity conditions concerning the deviations of f(x) from
f(0) = 0 (f(1) = 1) in a neighborhood of 0(1). Hence, to ensure compatibility of the
results we are going to obtain, with theorem 2 we need the following hypothesis

[f(x)− θ](x− θ) ≤ k(x− θ)2 for x ∈ (θ− ε, θ + ε). (24)
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Here k < 1 is a constant and ε is a small positive number. Indeed this, as well as (23),
implies the continuity of f(·) at θ and a linear bound in |x− θ| bound for the deviation of
f(x) from f(θ) = θ.

Now we are ready to formulate the theorem concerning convergence rates to stable
roots.

Theorem 3 Let θ ∈ (0, 1) be a stable root and (24) take place for some ε > 0 and
k < 1. Then for every δ ∈ (0,min(1− k, 1/2)) and τ > 0

lim
t→∞
P{tmin(1−k,1/2)−δ|X(t)− θ| < τ |X(t)→ θ} = 1.

This theorem can be proved by essentially the same methods as theorem 2, and we do
it in the appendix.

Theorems 2 and 3 show that convergence to 0 and 1 can be much faster (almost of order
1/t as t→∞) than to an interior limit (which can be almost of order 1/

√
t only). Here t

stands for the number of adoptions to the urn. That is, we are talking about relative rates
(the ideal time which is considered here is the time of product selection choices). This
result is however stronger than it may seem at first glance. In fact it has also implications
for the patterns of product selection in ”real” (empirical) time where plausibly the speed
of the market share trajectory depends also on technology adoption decisions. There is
much qualitative evidence and some econometric results [e.g. Koski and Nijkamp (1997)]
showing that technology adoption is at the very least independent of market shares if not
enhanced by increasing asymmetry in their distribution. Thus a fortiori we can conclude
that there is a natural tendency of this class of processes to converge faster to 0 or 1 rather
than to an interior limit. The explanation is that the variance of ζt(x), which characterizes
the level of random disturbances in the process (3), is f(x)(1 − f(x)). Under condition
(23) this value vanishes at 0 and 1 but it does not vanish at θ, being equal to θ(1 − θ),
under condition (24). Notice also that in example 1 c = 0 and in example 2 c ≈ 0.

For a differentiable f(·) at 0(1), (23) holds with c arbitrarily close to d
dxf(0)( ddxf(1));

similarly, if f(·) is differentiable at θ, then k in (24) can be arbitrarily close to d
dxf(θ); ac-

tually for a differentiable f(·) the conditional limit theorem for the generalized urn scheme
(see Arthur et al. (1987)) gives an even better characterization of the lowest possible con-
vergence rate. We put this result as a remark to theorem 3.

Remark Let θ ∈ (0, 1) be a stable root of f(x) − x = 0 and f(·) is differentiable at
θ. Then for every y ∈ (−∞,∞)

lim
t→∞
P
{√√√√t1 − 2 d

dxf(θ)

2θ(1− θ) [X(t)− θ] < y|X(t)→ θ

}
= Φ(y),

where Φ(·) stands for the Gaussian distribution function having zero mean and variance
1.

Note that, even if the foregoing results are known to mathematicians in the case of
a differentiable f(·), the analysis of their economic implications, we suggest, brings novel
insights into the nature of diffusion processes.

As shown in the previous section, the urn function can have any shape and there is no
reason to believe that problems characterized by 0 and 1 as the only stable points are the
only ones that we can expect. Therefore, in principle, an asymptotic outcome where both
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technologies survive should be observable with positive frequency in real markets. As dis-
cussed in the previous section the tendency to converge to market sharing or technological
monopolies is an outcome induced by the relative impact of heterogeneity of preferences
and increasing returns to adoption. What tendency is realized depends on which of the
two prevails. Notice however that the prevalence of one of the two factors is not always
predictable ex ante even for a nearly omniscient agent fully aware of all fundamentals of
the economy: in the examples of the previous section both type of outcomes are possible,
but which one is realized depends on the actual sequence of historical events that lead to
it. In these type of models, in general, when multiple asymptotic equilibria are attainable,
history plays a major role in the selection of the actual one4.

If asymptotic patterns were observable, the results of the previous section would imply
that we should observe both stable market sharing and technological monopolies. However
for the interpretation of empirical stylized facts, the point where the process eventually
would converge may be irrelevant. Indeed, the rate of change of the technological and
economic environment can be sufficiently high that one can always observe diffusion dy-
namics well short of any meaningful neighborhood of the limit it would have attained
under forever constant external conditions. So while it is true that a convergent process
should generate a long-lasting stable pattern, the time required to generate it may be
too long to actually observe it: the world is likely to change well before convergence is
actually attained. In a sense these changes can be viewed as resetting the game to its
starting point.

On the basis of the mathematical results of this section we have that convergence to
technological monopolies tends to be much faster (in probabilistic terms) than to any
stable market sharing where both technologies coexist, because of the intrinsic variability
that market sharing carries over. Thus the empirical prediction of these results can be
stated as follows: in market with increasing returns to adoption and a high rate of tech-
nological change we expect to observe a prevalence of unstable market sharing (persistent
fluctuations in the market shares) and technological quasi-monopolies (which are stable
patterns by definition) over stable patterns of market sharing. The reason for this being
that technological monopolies can be easily attained in a reasonably short time, i.e. suf-
ficiently before any significative change in the underlying basic technological paradigms
[Dosi (1982)].

Our final point is that these predictions are not contradicted by the observation of the
emergence of different monopolies in different related markets (e.g. different geographical
areas). Of course it is trivially true that, with mutually independent markets, different
trajectories could emerge in different markets as if they were different realizations of the
same experiment, since the trajectory selection is often the outcome of the realization of
historical events. However, in the next section we will show that the foregoing logical
construction can be extended also when markets are interdependent. Not contrary to the
intuition, it is the balance between local and global feedbacks which determines whether
the system converges to the same or different monopolies in every market. However a
system that converges to different local monopolies has qualitative features more similar
to those of a ”univariate” system converging to a monopoly, rather than to those of a
system converging to market sharing.

4For a general discussion on this point see also Dosi (1997).
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4 International Diffusion and the Emergence of Technolog-
ical Monopolies

Suppose that two technologies, say A and B, compete for a complex market which consists
of m interacting parts (which can be thought of as economic regions or even countries)
of infinite capacity. At any time t = 1, 2, . . . a new agent enters one of the markets and
has to adopt one unit of one technology. The type of agent and the region are randomly
determined on the basis of the distribution of agents in the population. There can be
positive (negative) feedbacks not only inside every single region but also across them.
Thus the probability of adoption is a function of the vector of previous adoptions in all
regions. For the i-th region we consider the following indicators: xi(1− xi) – the current
market share of A(B); γi – the frequency of additions to the region (i.e. this is the
ratio of the current number of units of the technologies in the region to the total current
number of units of the technologies in the market). We assume also that initially, at
t = 1, there are nAi (nBi ) units of the technology A(B) in the i-th region and nAi , n

B
i ≥ 1.

Finally n stands for the initial number of units of the technologies on the market, i.e.
n = nA1 + nB1 + nA2 + nB2 + . . .+ nAm + nBm.

Similarly to the setup above we can conceive m urns of infinite capacity with black
and white balls which correspond respectively to technologies A and B. Starting with nwi
white balls and nbi black balls, nwi , n

b
i ≥ 1, in the i-th urn a ball is added into one of the

urns at time instants t = 1, 2 . . .. It will be added with probability fi( ~X(t), ~γ(t)) to the
i-th urn. Also it will be white with probability fwi ( ~X(t), ~γ(t)) and black with probability

f bi (
~X(t), ~γ(t)). Here ~f(·, ·) is a vector function which maps R(~0,~1) × R(Sm) in Sm and

~f(·, ·) = ~fw(·, ·) + ~f b(·, ·). By R(~0,~1) we designate the Cartesian product of m copies of
R(0, 1). Sm is defined by the following relation

Sm = {~x ∈ Rm : xi ≥ 0,
m∑
i=1

xi = 1}. (25)

Here R(0, 1) and R(Sm) stand for the sets of rational numbers from (0, 1) and, cor-
respondingly, vectors with rational coordinates from Sm. By ~X(t) we designate the m-
dimensional vector whose i-th coordinate Xi(t) represents the proportion of white balls in
the i-th urn at time t. Also ~γ(t) stands for the m-dimensional vector whose i-th coordinate
γi(t) is the frequency of balls’ additions to the i-th urn by the time t 5. The dynamics of
~X(·) and ~γ(·) can be described as a scheme of multiple urns with balls of two colors, in
analogy with to the one-dimensional case.

Consider the process of adoptions of technology A at time t in market i, which is
obviously a stochastic variable:

ξti(~x, ~γ) = E[ξti,1(~x, ~γ)|ξti,1(~x, ~γ) + ξti,2(~x, ~γ) = 1]. (26)

Then

ξti(~x, ~γ) =

{
1 with probability gi(~x, ~γ)
0 with probability 1− gi(~x, ~γ)

(27)

where gi(~x, ~γ) = fwi (~x, ~γ)[fi(~x, ~γ)]
−16 .

5It is clear that among the frequencies of balls’ additions to the m urns only m − 1 are independent.
Consequently, to operate with independent variables only, we can study, for example, the dynamics of the
first m− 1, expressing the last through the rest.

6Throughout this section we assume that fi(~x, ~γ) > 0 for all possible ~x and ~γ.
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Let us ignore the time instants t when Xi(·) does not undergo any changes. Then we
obtain a new process Yi(·) which has the same convergence properties as Xi(·) providing
that balls are added into the i-th urn infinitely many times with probability one. We will
implicitly assume the latter condition throughout this section7. For particular cases Yi(·)
turns out to be a conventional urn process, or anyhow can be studied by means of some
associated urn process.

To implement this idea, introduce τi(k) – the moment of the k-th addition of a ball
into the i-th urn, i.e.

τi(1) = min t : ξti,1(
~X(t), ~γ(t)) + ξti,2(

~X(t), ~γ(t)) = 1,

τi(k) = min t > τi(k − 1) :

ξti,1(
~X(t), ~γ(t)) + ξti,2(

~X(t), ~γ(t)) = 1, k ≥ 2.

(28)

Designate Xi(τi(k)) by Yi(k) and ξ
τi(k)
i ( ~X(τi(k)), ~γ(τi(k))) by ζki (Yi(k)). Then for Yi(·)

we have the following recursion

Yi(k + 1) = Yi(k) +
1

k +Gi
[ζki (Yi(k))− Yi(k)], k ≥ 1, Yi(1) =

nwi
Gi
. (29)

Note the Yi(·) indeed carries all information about changes of Xi(·). By definition Yi(k) =
Xi(τi(k)), but between τi(k) and τi(k + 1) the process Xi(·) preserves its value. Con-
sequently, should we know that Yi(k) converges with probability one (or converges with
positive probability to a certain value, or converges to a certain value with zero probabil-
ity, i.e. does not converge) as k → ∞, the same would be true for Xi(t) as t → ∞. (We
will systematically use this observation below without further explicit mention).

The next theorem provides sufficient conditions for convergence of Yi(·) (and conse-
quently Xi(·)) to 0 and 1 with positive (zero) probability.

Theorem 4 Let gi(·) : R(0, 1)→ [0, 1] be a function such that for all possible ~x ∈ R(~0,~1)
and ~γ ∈ R(Sm)

gi(~x, ~γ) ≤ gi(xi). (30)

Designate by Zi(·) a conventional urn process with gi(·) as the urn-function and nwi , n
b
i as

the initial numbers of balls. Then P{Yi(k) → 0} > 0 (P{Yi(k) → 1} = 0) if P{Zi(k) →
0} > 0 (P{Zi(k)→ 1} = 0). Also, when

gi(~x, ~γ) ≥ gi(xi), (31)

the statement reads: if P{Zi(k) → 1} > 0 (P{Zi(k) → 0} = 0), then P{Yi(k) → 1} > 0
(P{Yi(k)→ 0} = 0).

The theorem is proved in the appendix.
The next statement gives slightly more sophisticated conditions of convergence and

nonconvergence to 0 and 1 of the process (29) and, consequently, Xi(·).

Theorem 5 Set Ui(~x) = sup~γ gi(~x, ~γ), Li(~x) = inf~γ gi(~x, ~γ). If there is ε > 0 such
that Li(~x) ≥ xi (Ui(~x) ≤ xi) for xi ∈ (0, ε) (xi ∈ (1 − ε, 1)), then P{Xi(t) → 0} = 0
(P{Xi(t) → 1} = 0) for any initial combination of balls in the urn. Let gi(~x, ~γ) < 1
(gi(~x, ~γ) > 0) for all ~x ∈ R(~0,~1) and ~γ ∈ R(Sm). Also let ε > 0, c < 1 and a function
fi(·) be such that Ui(~x) ≤ fi(xi) ≤ cxi (Li(~x) ≥ fi(xi) ≥ 1 − c(1 − xi)) for xi ∈ (0, ε)

7This assumption, which in the spirit of the population models does not appear to be too strong, is
needed in order to obtain asymptotic results.
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(xi ∈ (1− ε, 1)). Then P{Xi(t)→ 0} > 0 (P{Xi(t)→ 1} > 0) for any initial numbers of
balls in the i-th urn.

The theorem is proved in the appendix.
Theorem 5 gives sufficient conditions of convergence with positive probability to 0 and

1. The assumptions of the theorem, anyway, are compatible with the case of independent
urns (independent markets) as a particular case. More generally they represent conditions
of weak feedbacks across markets (across regions) as compared to the extent of intramar-
kets (intraregion) spillovers: Local feedbacks are so important that a single market may
converge to one technology, say A, even though all the related markets converge to the
other one. In a sense, for the function gi(~x, ~γ), the most important argument is xi.

Conversely let us now consider the case of strong positive cross-regional feedbacks:
Strong positive feedbacks can be characterized in terms of the urn function as follows: We
can say that spillovers are strong if ∃~δ, ~χ, ~δ > ~0, ~χ < 1, such that ~δ < g(~x, ~γ) < ~χ when
xj = 0 and xk = 1 for some k 6= i. In other words strong positive spatial feedbacks are
such that adoptions of one type in other regions can be a partial substitute for adoptions
of that type in the same region: even if a region has always chosen technology A(B) in the
past, technology B(A) can still be chosen in the future, if it has been frequently chosen in
at least another region.

Let us define a set A ⊂ [0, 1]m as reachable if there exists t such that P{ ~X(t) ∈
A
∣∣∣ ~X(0)} > 0. We can derive the following result:

Theorem 6 If g(~0, .) = ~0 and ∀i = 1, . . . , m ∃ηi > 0 and ci ∈ [0, 1), such that 0 <

gi(~x, .) ≤ cixi, ∀~x ∈
∏m
i=1[0, ηi] and

∏m
i=1[0, ηi] is reachable, then P{Xi(t) → 0} > 0. If

g(~1, .) = ~1 and ∀i = 1, . . . , m ∃ηi > 0 and ci ∈ (0, 1), such that 1 > gi(~x, .) ≥ 1−ci(1−xi),
∀~x ∈ ∏m

i=1[1 − ηi, 1] and
∏m
i=1[1 − ηi, 1] is reachable, then P{Xi(t) → 1} > 0. Also if

gi(~x, .) ≥ α > 0 in a neighborhood of every ~y such that yi = 0, yk = 1 for some k 6= i, then
P{Xk(t) → 1, Xi(t) → 0} = 0 and if gi(~x, .) ≤ β < 1 in a neighborhood of every ~y such
that yi = 1, yk = 0 for some k 6= i, then P{Xi(t)→ 1, Xk(t)→ 0} = 0 .

The theorem is proved in the appendix.
If ~0 < g(~x, ~γ) < ~1 when ~x ∈ [R(0, 1)]m then any neighborhood of ~x = ~0 and ~x = ~1

are reachable and therefore complete worldwide monopoly of technology A or B may
emerge with positive probability. Moreover theorem 6 tells us that, if feedbacks are strong,
asymptotically either one technology emerges everywhere, or the other does, or market
sharing is the only other possible outcome.

Subject to these conditions of weak or strong spillovers we can provide a generalization
of theorem 2 to study the rate of convergence to technological monopolies.

Theorem 7 Let ε, ηi > 0 and c, ci < 1 be such that either the assumptions of theo-
rem 5 or those of theorem 6 hold. Denote maxi{ci} with c. Then for any δ ∈ (0, 1− c)
and τ > 0

limn→∞ P{n1−c−δYi(n) < τ |Yi(t)→ 0} = 1(
limn→∞ P{n1−c−δ[1− Yi(n)] < τ |Yi(t)→ 1} = 1

)
,

where Yi(·) stands for the random process given by (29).

The line of the proof is identical to that of theorem 2, from which it can be obtained
by substituting Yi(·) for X(·).

Again, as in section 3, an important observation, which theorems 7 provides, is that



–16 –

convergence to 0 and 1 can be much faster (almost of order 1/t as t → ∞) than to an
interior limit (which can be almost of order 1/

√
t only). The explanation, at least when

gi(~x, ~γ) = gi(xi), is that the variance of ζki (x), which characterizes the level of random
disturbances in the process (29), is gi(x)[1− gi(x)]. This value vanishes at 0 and 1 but it
does not vanish at θ, being equal to θ(1− θ). So all the remarks that concluded section 3
can be repeated.

5 Conclusions

This paper has reassessed the empirical evidence on prevalence of technological monopo-
lies over market-sharing in the dynamics of competing technologies. First, we have argued
that the dominant explanation in the literature, namely that unbounded increasing returns
can be identified as the factor responsible for this pattern, does not always hold. Arthur’s
results - we have shown - hold only when increasing returns to adoption are linear or more
than linear and the degree of heterogeneity of agents is small. The presented counterexam-
ples suggest that asymptotic patterns of the dynamics of competing technologies depend
on the relative impact of (unbounded) increasing returns and the degree of heterogeneity
of the population of adopters. Second, given all this, we have proposed that in a mar-
ket with high technological dynamism, no interesting predictions can be made by simply
looking at theoretical asymptotic patterns: If convergence is too slow the environment
changes before the limit can be actually approached. Conversely, developing upon some
mathematical properties of Polya urns, we have shown that convergence to technological
monopolies tends to be (in probabilistic terms) much faster than to a limit where both
technologies coexist, the empirical implication being that in markets with high turnover
of basic technologies, a prevalence of technological monopolies over stable market sharing
is likely to be observed. Third, we have shown that the fact that a system of different
local monopolies often appears does not contradict the previous argument: Even though
at high level of aggregation a system of different monopolies looks like a stable market
sharing, we have shown that it has the same rate-of-convergence properties of a single
technological monopoly.

6 Appendix

Proof of theorem 2. Consider only the first case – convergence to 0. Without loss of
generality we can assume that P{X(t)→ 0} > 0. Indeed, on the one hand, the theorem,
being a statement about the convergence rate to 0, does not make any sense if X(·)
does not converge to 0, on the other hand convergence with positive probability will be
guaranteed if we additionally require that f(x) < 1 for all possible x ∈ R(0, 1) [see Dosi
et al. (1994), theorem 4].

Let Z(·) be a conventional urn process with cx as the urn-function and the same initial
numbers of balls. Then

EZ(t+ 1) ≤ [1− 1− c
t+ n

]EZ(t), t ≥ 1,

and consequently

EZ(t) ≤ Z(1)
t−1∏
j=1

(1− 1− c
j + n

) = Z(1)tc−1[1 + ot(1)],
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where ot(1)→ 0 as t→∞. Hence from Chebychev’s inequality

P{t1−c−δZ(t) < τ} → 1 as t→∞ (32)

for every δ ∈ (0, 1− c) and τ > 0.
For arbitrary σ ∈ (0, ε) and v > 0 there is N depending on these variables such that

P{{X(t)→ 0}∆{X(t) ≤ σ, t ≥ N}} < v,

where A∆B = (A\B) ∪ (B\A). Also since Z(t)→ 0 with probability 1 as t→∞, we can
choose this N so large that

P{{X(t)→ 0}∆{X(t) ≤ σ, Z(t) ≤ σ, t ≥ N}} < v. (33)

To prove the theorem it is enough to show that

lim
t→∞
P{t1−c−δX(t) < τ, X(t)→ 0} = P{X(t)→ 0},

or, taking into account that v in (33) can be arbitrary small, that

limt→∞P{t1−c−δX(t) < τ, X(t) ≤ σ, Z(t) ≤ σ, t ≥ N} =
P{X(n) ≤ σ, Z(t) ≤ σ, t ≥ N}. (34)

Due to lemma 2.2 of Hill et al. (1980), Z(·) majorizes X(·) on the event Z(t) ≤ σ, t ≥
N , providing that these processes start from the same point. Hence

P{X(t) ≤ σ, Z(t) ≤ σ, t ≥ N} ≥

lim sup
t→∞

P{t1−c−δX(t) < τ, X(t) ≤ σ, Z(t) ≤ σ, t ≥ N} ≥

lim inf
t→∞

P{t1−c−δX(t) < τ, X(t) ≤ σ, Z(t) ≤ σ, t ≥ N} =

lim inf
t→∞

EP{t1−c−δX(t) < τ, X(t) ≤ σ, Z(t) ≤ σ, t ≥ N |X(N )} ≥

lim inf
t→∞

EP{{t1−c−δZ(t) < τ, X(t) ≤ σ,

Z(t) ≤ σ, t ≥ N |Z(N ) = X(N )}|X(N)}=

EP{X(t)≤ σ, Z(t) ≤ σ, t ≥ N |X(N )}=

P{X(t) ≤ σ, Z(t) ≤ σ, t ≥ N},

i.e. (34) holds true. q.e.d.

Proof of theorem 3. The proof is based on the following lemmas8:

Lemma 8 Let f(.) be an urn function such that

[f(x)− x](x− θ) ≥ k(x− θ)2

8We are much indebted to Yuri Kaniovski for suggesting us the following proof; obviously all caveats
apply.
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for some k < 1and θ ∈ (0, 1). Then limt→∞ dt = limt→∞E(X(t)− θ)2, where

dt =


(n+ t)−1 if 2(1− k)− 1 > 0
(n+ t)−1 log(n+ t) if 2(1− k)− 1 = 0

const(n+ t)−2(1−k) if 2(1− k)− 1 < 0

Proof Consider the process (3) and write n = nw + nb, then:

E[(X(t+ 1)− θ)2 |X(t)] = (X(t)− θ)2+
+ 2
N+t [f(X(t)−X(t)] + 1

N+tf(X(t))[1− f(X(t))].

Setting ∆t = E(X(t)− θ)2, from the assumptions ofthe lemma, taking into account that
f(X(t)[1− f(X(t))] ≤ 1, we have

∆t+1 ≤ ∆t

[
1− 2(1− k)

n+ t

]
+

1

(n+ t)2
.

Thus

∆t+1 ≤ ∆1

t∏
i=1

[
1− 2(1− k)

n+ i

]
+

t∑
i=1

1

(n+ i)2

t∏
j=i+1

[
1− 2(1− k)

n+ j

]
.

Since

t∏
j=i+1

[
1− 2(1− k)

n+ j

]
= e
−2(1−k)

t∑
j=i+1

1
(n+j)2

(1 + αit) =

= e−2(1−k)[log(n+t)−log(n+i)(1 + βit) =

(
n+ i

n+ t

)2(1−k)
(1 + γit),

where αit, βit and γit are small terms, then

∆t+1 ≤ ∆1

(
n+ i

n+ t

)2(1−k)
(1 + γit) +

+(n+ t)−2(1−k)
t∑
i=1

(n+ i)−2+2(1−k)(1 + γit).

Since

t∑
i=1

(n+ i)−2+2(1−k) ≈


1

2(1−k)−1(n+ t)2(1−k)−1 if 2(1− k)− 1 > 0

log(n+ t) if 2(1− k)− 1 = 0
const if 2(1− k)− 1 < 0

we have that

∆t+1 ≈


1

2(1−k)−1(n+ t)−1 if 2(1− k)− 1 > 0

(n+ t)−1 log(n+ t) if 2(1− k)− 1 = 0

const(n+ t)−2(1−k) if 2(1− k)− 1 < 0

,

which implies the statement of the lemma. q.e.d.

Lemma 9 For every δ ∈ (0,min{1− k, 1/2}), subject to the assumption of lemma 8,

tmin{1−k,1/2}−δ(X(t)− θ)→ 0
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in probability.

Proof From Chebychev’s inequality and lemma 8:

P
{
tmin{1−k,1/2}−δ |X(t)− θ| ≥ ε

}
≤ tmin{2−2k,1}−2δE(X(t)− θ)2

ε2
→ 0

as t→∞. q.e.d.

Set

f̃(x)


f(θ − ε) if x < θ − ε
f(x) if θ − ε < x < θ + ε

f(θ + ε) if x > θ + ε

,

X̃(t+ 1) = X̃(t) +
ξ̃t(X̃(t))− X̃(t)

t+ n
,

X̃(1) = X(1).

Then with probability 1 X̃(t)→ θ as t→∞. Also by lemma 9,

P
{
tmin{1−k,1/2}−δ

∣∣∣X̃(t)− θ
∣∣∣ < τ

}
→ 0 as t→∞. (35)

As for theorem 2 we can ignore the case when X(t) does not converge with positive
probability. Set

Y (t) = tmin{1−k,1/2}−δ |X(t)− θ| ,

Ỹ (t) = tmin{1−k,1/2}−δ
∣∣∣X̃(t)− θ

∣∣∣ .
We have to show that as t→∞

P {Y (t) > τ, X(s)→ θ} → 0. (36)

For every σ > 0 there is a t(σ) such that

P {{X(s)→ θ}∆ {|X(t)− θ| < ε, t ≥ t(σ)}} ≤ σ.

Since σ can be arbitrariliy small, (36) holds if

P {Y (t) > τ, |X(s)− θ| < ε, s ≥ t(σ)} → 0.

However

P {Y (t) > τ, |X(s)− θ| < ε, s ≥ t(σ)} =
=

∑
y∈St(σ)

P {Y (t) > τ, |X(s)− θ| < ε, s ≥ t(σ) |X(t(σ)) = y}P {X(t(σ)) = y} , (37)

where St = S̃t =
{
X(1)(n+i)
n+t−1 , 0 ≤ i ≤ t− 1

}
is the set of values that X(t) and X̃(t) can

attain (not necessarily with positive probability). Notice that for any y ∈ St(σ)

P {Y (t) > τ, |X(s)− θ| < ε, s ≥ t(σ) |X(t(σ)) = y} =

= P
{
Ỹ (t) > τ,

∣∣∣X̃(s)− θ
∣∣∣ < ε, s ≥ t(σ)

∣∣∣X̃(t(σ)) = y
}
.

This follows from the fact that f̃(x) and f(x) are the same for x ∈ [θ− ε, θ+ ε]. However
for every y ∈ St(σ)

P
{
Ỹ (t) > τ,

∣∣∣X̃(s)− θ
∣∣∣ < ε, s ≥ t(σ)

}
≤ P

{
Ỹ (t) > τ

}
→ 0
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as t → ∞ by (35). Thus (37) is a sum of a finite number - namely t(σ) - of terms each
converging to zero. This completes the proof. q.e.d.

Proof of theorem 4. The theorem is a straightforward consequence of the following
lemma which generalizes lemma 2.2 from the paper of Hill et al. (1980):

Lemma 10 Assume that we have a scheme of multiple urns, given by a set of the func-
tions fwi (·, ·) and f bi (·, ·), i = 1, 2, . . . , m. Let for some i a function gi(·) be such that
(30) or (31) holds true. Then there is a probability space, where the process (29) and a
conventional urn process Zi(·) can be realized and Yi(k) ≤ Zi(k) or Yi(k) ≥ Zi(k) with
probability 1 for k ≥ 1 depending upon whether (30) or (31) holds. The process Zi(·) has
gi(·) as urn-functions and nwi , : n

b
i as initial numbers of balls.

Proof Fix a probability space with rt, t ≥ 1, a sequence of independent random vari-
ables having the uniform distribution on [0, 1]. For given ~x ∈ R(~0,~1) and ~γ ∈ R(Sm)
introduce a partition of [0, 1] by the points

t0 = 0, t1 = fw1 (~x, ~γ), t2 = f1(~x, ~γ),

t3 = f1(~x, ~γ) + fw2 (~x, ~γ), t4 = f1(~x, ~γ) + f2(~x, ~γ), . . . ,

t2m−1 = f1(~x, ~γ) + f2(~x, ~γ) + . . .+ fm−1(~x, ~γ) + fwm(~x, ~γ), t2m = 1.

Set
ξni,1(~x, ~γ) = χ{rn∈(t2(i−1),t2i−1)}, ξ

n
i,2(~x, ~γ) = χ{rn∈(t2i−1,t2i)},

where χA stands for the indicator of the event A. If τi(·) are defined as above, set

ζ̃ki (xi) = χ{rτi(k)∈(t2(i−1),t2(i−1)+gi(xi)fi(~x,~γ))} (38)

and

Zi(k + 1) = Zi(k) +
1

k +Gi
[ζ̃ki (Zi(k))− Zi(k)], k ≥ 1, Zi(1) =

nwi
Gi
.

Hence Yi(·) and Zi(·) are given on the same probability space. If with F̃ ik we denote the
σ-algebra generated by rt, : t ≤ τi(k), then E[ζ̃ki (Zi(k))|F̃ ik] = gi(Zi(k)). Hence Zi(·) is a
conventional urn process with gi(·) as urn-function.

Notice that
ζki (xi) = χ{rτi(k)∈(t2(i−1),t2(i−1)+g(~x,~γ)fi(~x,~γ))},

which, from (38), implies that ζti (xi) ≤ ζ̃ti (xi) or ζti (xi) ≥ ζ̃ti (xi) with probability 1 de-
pending whether (30) or (31) holds. Now to accomplish the proof it is enough to check
that

Yi(t+ 1) =
(t+Gi − 1)Yi(t) + ζti (Yi(t))

t+Gi
,

Zi(t+ 1) =
(t+Gi − 1)Zi(t) + ζ̃ti (Zi(t))

t+Gi
.

The lemma is proved. q.e.d.
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Proof of theorem 5. We need the following lemma:

Lemma 11 Let X(·) be a conventional urn process with f(·) as urn-function. If there
is ε > 0 such that

f(x) ≥ x for x ∈ (0, ε) (f(x) ≤ x for x ∈ (1− ε, 1)),

then P{X(t) → 0} = 0 (P{X(t) → 1} = 0)for any initial numbers of balls. Also, if
f(x) < 1 (f(x) > 0) for x ∈ (0, 1) and there is ε > 0 such that

f(x) < x for x ∈ (0, ε) (f(x) > x for x ∈ (1− ε, 1)),

then P{X(t)→ 0} > 0 (P{X(t)→ 1} > 0) for any initial numbers of balls.

Proof Set that all conventional urn processes appearing here start from the same num-
bers of balls in the urn. Let f(x) > x for x ∈ (0, ε). Set g(x) = max(f(x), x). Define
Y (·)(Z(·)) a conventional urn process corresponding to the urn-function x (g(x)). Since
x ≤ g(x), then due to lemma 2.2 from Hill et al. (1980) one has Y (t) ≤ Z(t), t ≥ 1.
Consequently P{Z(t) → 0} ≤ P{Y (t) → 0}. But Y (·) is a Polya process, i.e. it con-
verges a.s. to a random variable with a beta distribution. The limit, having a density
with respect to the Lebesgue measure, takes every particular value from [0, 1] with prob-
ability 0. Hence P{Y (t) → 0} = 0 and, consequently, P{Z(t) → 0} = 0. But the
urn-functions f(·) and g(·) agree in (0, ε), which due to lemma 4.1 from Hill et al. (1980)
implies that P{X(t) → 0} = 0. Let f(x) < x for x ∈ (0, ε) and f(x) < 1 for all
x ∈ (0, 1). Set g(x) = max(f(x), x/2). Then f(x) ≤ g(x) and due to arguments similar
to those given above P{X(t)→ 0} ≥ P{Z(t)→ 0}, where Z(·) stands for a conventional
urn process corresponding to g(·). Finally let us prove that P{Z(t) → 0} > 0. Put
d(x) = min(g(x), g(ε/2)). The equation d(x)− x = 0 has the only root 0. Hence there is
a conventional urn process corresponding to d(·) which converges to 0 with probability 1.
Since g(x) ∈ (0, 1) and d(x) ∈ (0, 1) for all x ∈ (0, 1), this implies that P{Z(t)→ 0} > 0
for any initial numbers of balls, because of lemma 4.1 of Hill et al. (1980).

Other cases can be handled by similar arguments. q.e.d.

Due to the aforementioned relationship between convergence ofXi(·) and Yi(·), it is enough
to establish the corresponding facts for Yi(·).

The first statement follows by considering a conventional urn process with

di(y) = inf
~x: xi=y

Li(~x) (di(y) = sup
~x: xi=y

Ui(~x))

as the urn-function and applying lemma 11 and theorem 4.
Since convergence to 1 with positive probability can be studied by the same means,

let us prove convergence with positive probability to 0 only. Let Zi(·) be a conventional
urn process having

di(x) =

{
f(x) if x < ε/2
f(ε/2) if x ≥ ε/2

as urn-function and starting from the same numbers of balls. Then

P{Zi(t)→ 0} = 1. (39)
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Set li(t) = nwi (nwi + nbi + t − 1)−1, t ≥ 1. Since we assume that gi(~x, ~γ) < 1 for all
possible ~x and ~γ, the process Yi(·) can move with a positive probability to the left from
any point. Hence

P{Yi(t) = li(t)} > 0 for t ≥ 1. (40)

For any t such that li(t) < ε/2 introduce µi(t) as the first instant after t such that
Zi(·) exits from (0, ε/2) providing that Zi(t) = li(t). Due to (39):

P{µi(t) =∞} → 1 as t→∞. (41)

But due to lemma 10 Yi(n) ≤ Zi(n) for t ≤ n < µi(t) providing that Yi(t) = Zi(t) =
li(t). Thus, taking into account (39) and (41), we get:

P{Yi(n)→ 0|Yi(t) = li(t)} ≥ P{Yi(n)→ 0, µi(t) =∞|Yi(t) = li(t)} ≥

P{Zi(n)→ 0, µi(t) =∞|Zi(t) = li(t)} → 1 as t→∞.

Therefore to accomplish the proof it is enough to refer to (A9). q.e.d.

Proof of theorem 6. We need the following lemma:

Lemma 12 Consider two multiple urn processes ~X(.) and ~Y (.) which agree in a neigh-
borhood N of a point θ ∈ (R[0, 1])m. Then there exists an urn process ~Z(.) with the same
urn function as ~Y (.) such that P{~Z(t) → θ} > 0 if P{ ~X(t) → θ} > 0. Also consider a
neighborhood N0 (N1) of 0 (1); if it is reachable by Xi(.), given the initial number of balls,
and if the urn functions never take the values 0 (1) in that neighborhood (0 (1) excluded),
then P{~Z(t) → ~0} > 0 from every initial number of balls only if P{ ~X(t) → ~0} > 0
(P{~Z(t)→ ~1} > 0 only if P{ ~X(t)→ ~1} > 0).

Proof From almost sure convergence we have that ∃t > 0 and two vectors ~n,~t ∈ Zm+
such that

P


~X(s)→ θ, Xi(t) = ni

ti+Gi
, i = 1, ..., m,

m∑
i=1

(ti +Gi) = t+G, ~X(s) ∈ N, s > t

 > 0,

which implies

P
{

~X(s)→ θ, ~X(s) ∈ N, s > t∣∣∣Xi(t) = ni
ti+Gi

, i = 1, ..., m

}
> 0. (42)

Take Zi(0) = ni
ti+Gi

. Since on N ~X(.) and ~Y (.) agree, from (42) we have

P
{
~Z(t)→ θ, ~Z(t) ∈ N, t > 0

}
> 0,

from which the first statement of the lemma follows.
Since N0 is reachable ∃t̄ > 0 and ∃(~y, ~n,~t) ∈ N0 × Z2m

+ : ni
ti+Gi

= yi, i = 1, ..., m,
m∑
i=1

(ti +Gi) = t̄+G such that

P
{
~X(t̄) = ~y

}
> 0. (43)
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Take ni, ti + Gi as initial conditions of the process ~Z(.). Again from almost sure
convergence we have that P{~Z(t) → ~0} > 0 from every initial number of balls implies
that, ∃~z ∈ N0 and ∃T > 0 such that

P
{
~Z(s)→ ~0, ~Z(s) ∈ N0, s ≥ T, ~Z(T ) = ~z ∈ N0

}
> 0.

Given that the urn functions never reach 0 or 1 in N0, ~z can be reached from ~y without
leaving N0 (through an appropriate sequence of 0 first and 1 afterwards), we have also

P
{
~Z(s)→ ~0, ~Z(s) ∈ N0, ~Z(0) = ~y ∈ N0

}
> 0,

which implies

P
{
~Z(s)→ ~0, ~Z(s) ∈ N0

∣∣∣~Z(0) = ~y ∈ N0

}
> 0. (44)

Given that on N0
~X(.) and ~Y (.) agree, we can choose the process ~Z(t) defined on

the common probability space in such a way that ~X(s + t̄) = ~Z(s) for any s < t̃ =

min
{
t : ~Z(t) /∈ N0

}
. From (44) we have

P
{
~X(s)→ ~0, ~X(s) ∈ N0

∣∣∣ ~X(t̄) = ~y ∈ N0

}
> 0,

which, taking into account (43), implies that ∃t > 0 such that

P
{
~X(s)→ ~0, ~X(s) ∈ N0, s ≥ t

}
> 0.

Convergence to ~1 can be studied with similar arguments. q.e.d.

To prove the first statement of the theorem take a process ~Y (.) with urn function:

d(~x, .) =

{
g(~x, .) if ~x ∈ ∏m

i=1[0, ηi]
0 otherwise

,

the apply lemma 12 and lemma 10. The second statement can be proved with similar
arguments. For the third statement take a process ~Y (.) with urn function:

d(~x, .) =

{
g(~x, .) if ‖~x− ~y‖ < ε

α otherwise
,

then apply lemma 12 and lemma 10. The last statement can be proved with similar
arguments. q.e.d.
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