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ADN

The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Abstract

Understanding which phenotypes are accessible from which genotypes is fundamen-
tal for understanding the evolutionary process. This notion of accessibility can be
used to define a relation of nearness among phenotypes, independently of their sim-
ilarity. Because of neutrality, phenotypes denote equivalence classes of genotypes.
The definition of neighborhood relations among phenotypes relies, therefore, on the
statistics of neighborhood relations among equivalence classes of genotypes in geno-
type space. The folding of RNA sequences (genotypes) into secondary structures
(phenotypes) is an ideal case to implement these concepts. We study the extent to
which the folding of RNA sequences induces a “statistical topology” on the set of
minimum free energy secondary structures. The resulting nearness relation suggests
a notion of “continuous” structure transformation. We can, then, rationalize major
transitions in evolutionary trajectories at the level of RNA structures by identify-
ing those transformations which are irreducibly discontinuous. This is shown by
means of computer simulations. The statistical topology organizing the set of RNA
shapes explains why neutral drift in sequence space plays a key role in evolutionary
optimization.

Keywords: evolutionary trajectories, neutral evolution, neutral networks, opti-
mization, RNA secondary structures, statistical topology



1. Introduction

Molecular genetics views the course of evolution as a lineage of genotypes, while

paleontology sees a lineage of phenotypes as manifested in the fossil record. The

problem is to understand how the two are related. There is widespread agreement

that the temporal succession of phenotypes reflects the selective boundary con-

ditions operating during the evolutionary process. In this context the notion of

“fitness” proved useful to reason about the conditions under which a given mu-

tant can invade a population. However, some would contend that an evolutionary

history also reflects the variational constraints which are intrinsic to an evolving

entity. The term “variational constraints” is used to collectively denote causes

which channel evolution in fitness-independent ways. “Fitness” is a notion which

emphasizes the fate of a genotype mediated by the reproductive success of its

phenotype in a given demographic and environmental context, while variational

constraints point at the fact that not all possible phenotypes are equally accessible

(or accessible at all) through variation of a given genotype. When focussing on

the variational process, the objective of understanding successions of evolutionary

innovations becomes one of explaining how each innovation affects the potential

for further evolution [1]. This requires reasoning about the “evolutionary poten-

tial” of an evolving entity. The primary theoretical difficulty derives from finding

adequate representations of phenotypes, and a model of how they are generated

from genotypes.

In the present paper we pursue these issues in the context of a very spe-

cial phenotype and genotype-to-phenotype map. We show how a rather obvious

concept of “phenotypic nearness” induces a meaningful topology on the set of

possible phenotypes. This topology enables us to understand some key features

of evolutionary trajectories as observed, for example, in computer experiments.

Extensions to in vitro evolution appear feasible and straightforward.
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Seen from a wider perspective, our contribution is limited in several regards.

First, we are concerned with the simplest relevant (and the only currently avail-

able) genotype-phenotype mapping we know of: RNA folding. The situation is

extreme in that we are dealing with a single molecule which can play both parts in

the game, being simultaneously genotype and phenotype. An RNA molecule is a

sequence that can be replicated. By folding back on itself it forms a shape which is

the target of selection [19]. Furthermore, evolution is here reduced to the simplest

case: independent (asexual) replication in a constant environment. Accordingly,

we shall not be concerned with networks of interacting molecules, but rather focus

on the problem of how individual RNA shapes evolve within a population under

selection for a specific target shape. Understanding the “evolutionary potential”

of an evolving entity may certainly be more interesting and daunting for complex

functional organizations, such as cells or multicellular organisms. Nevertheless,

we believe that the RNA case is fundamental and at least of heuristic interest

in thinking about the bigger picture, because it combines conceptual simplicity

with realism and experimental accessibility. Second, our present study is mostly

a numerical investigation of the properties of RNA folding as captured by present

day computational techniques and empirical parameters. The level of molecular

shape we are concerned with is known as the secondary structure of RNA. It rep-

resents a biologically meaningful and widely used notion of structure which can be

predicted from sequences by fast algorithms. Our work is, therefore, intermediate

in abstraction: it approximates an empirical situation, while aiming at generally

valid regularities which may serve as axioms for more abstract mathematical mod-

els (see, for example, [15]).

2. Generic properties of folding

The term “folding” is used here to denote a surjection f : S 7→ Σ from the set

S of all sequences of fixed length over the AUGC-alphabet onto the set Σ of

all minimum free energy (mfe) secondary structures for that length. The map is
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established implicitly by a state-of-the-art folding algorithm based on thermody-

namic data [8, 11, 21]. In past work we have found three generic properties of

the RNA folding map [18]. They are surveyed in this paragraph, since they are of

immediate interest in the context of the current study. By “generic properties” we

mean statistically robust features obtained by folding large samples of sequences.

The folding map is many-to-one, reflecting sequence redundancy of structures.

Property 1 (“frequent structures”) is a statement about the size of equivalence

classes of sequences with respect to structure: Some structures occur significantly

more frequently than others. The property of being “frequent” is made more

precise by the observation that in the limit of long chains the fraction of such

structures tends to zero (their number grows nevertheless exponentially), while

the fraction of sequences folding into them tends to one [7]1. The remaining prop-

erties hold only for frequent structures.

Property 2 (“neutral networks”) is a statement about the connectivity within

an equivalence class: Two sequences in a class are connected by paths of se-

quences within the same class which differ by one or two point mutations [18]. The

structure-neutral sequences, therefore, form connected and extended networks in

sequence space.

Property 3 (“shape space covering”) is a statement about the mutual entangle-

ment of networks belonging to different structures in the high dimensional sequence

space: All frequent structures are realized within a small neighborhood of any ar-

bitrarily chosen sequence (for example, 15 mutations are sufficient for a chain of

length l = 100, see [16]).

It is important to realize that the contemplated features are largely indepen-

dent of the predictive accuracy of the algorithm for individual sequences. That

is, even if the algorithm fails to reproduce details of the actual secondary struc-

ture of a particular sequence (as determined, say, by phylogenetic comparisons),

1A particular definition of “frequent” is given by the notion of “common” [17]: A structure

is common, when it its formed by more sequences than the average, #(all sequences)
/

#(all

structures).
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it still captures the logic of constrained base-pair optimization characteristic of

RNA folding. There is indeed evidence that properties 2 and 3 hold in nature [2,

14]. Our claims are further substantiated by observing that the properties we call

“generic” have been found to be insensitive to the choice of the criteria of structure

formation (minimizing free energy or maximizing base pairing or kinetic folding),

as long as one structure is assigned to every sequence. They are also numerically

robust to variations in the set of empirical energy parameters or the thermody-

namic level of description (one mfe structure versus the Boltzmann ensemble for

a given sequence)2 [20].

These statistical properties, in particular neutrality, have led to a mathemat-

ical model based on percolation in random graphs [15]. In recent work we began

to link the properties of the folding map with features observed in evolutionary

dynamics. Model RNA populations in a flow reactor were subject to selection for

a prespecified target structure. In particular, we found diffusion of the population

on a neutral network, and recovered the fixation rates expected from Kimura’s

theory [12], thus establishing a microscopic model for neutral evolution [10].

3. Secondary structure

In what follows it will be very useful to shift back and forth between two levels

of resolution for secondary structures, fine grained and coarse grained structures.

The fine grained level corresponds to the conventional definition of secondary struc-

ture, as the set P of paired positions which minimize free energy subject to the

condition that if (i, j) and (k, l) are both in P , then i < k < j implies i < l < j.

This condition means that no pseudoknots are being considered. For example,

a line-oriented representation of a “Y”-shaped secondary structure of length 29

would look like “((((.(((...))).(((...))).))))”. Matching parentheses indi-

cate positions which are paired with one another.

2Similar properties have been recently discovered in lattice models of protein folding [5, 6, 13].
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The coarse grained level is defined by discarding information about the size

of stacks and loops. The only information retained about a structural element is

its type: stack (symbolized by a pair of matching parentheses ()), hairpin loop

(H), internal loop (I), left (B) or right (b) bulge, and multiloop with more than

two branches (M). Thus, the above “Y”-structure would read as “((H)(H)M)”.

Renderings which better convey the topological nature of secondary structure at

both levels of graining can be seen in figure 1.

4. A relation of accessibility

A natural metric for sequences is given by the Hamming distance indicating the

number of positions d(a, b) at which two sequences a and b differ. This metric

is natural for situations conserving chain length where point mutations are the

exclusive source of variation. The Hamming metric then mirrors the physical

processes interconverting sequences. In natural populations point mutations are

indeed more frequent than insertions and deletions.

It is, however, far less clear what constitutes a natural metric for structures.

Common practice defines distance measures for structures directly on some suit-

able representation of structure. For example, the root mean square deviation

between two sets of three-dimensional coordinates, or the edit distance between

tree representations of RNA secondary structures, or overlaps between contact

maps of protein structures. However, from an evolutionary point of view any defi-

nition based on a syntactic notion of (dis)similarity is bound to be artificial, since

there are no physical processes which directly and inheritably modify structures

at this level of representation. To modify a structure evolutionarily, requires mod-

ifying its underlying sequence. It is at once clear, then, that a structure β which

is highly dissimilar from a structure α on syntactic grounds might nonetheless be

“near” to α on the count of being accessible from α by a small mutation in α’s

sequence. Alternatively, among two syntactically highly similar structures, one

might nonetheless fail to be evolutionarily “accessible” from the other. Notice
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that such a relation of accessibility does not quantify distance, but expresses a

weaker notion of neighborhood. Pursuing this line we are led to a topology rather

than a metric on the set of phenotypes.

More specifically, we consider the set Sα of sequences which fold into a given

structure α and define its boundary Bα ⊂ S to consist of all sequences at Hamming

distance 1 from any sequence in Sα. Similarly, we call the set of sequences at

distance d from Sα its d-boundary, and let “boundary” stand as a shorthand for

1-boundary. We next fold all sequences in Bα to obtain their set Σα ⊂ Σ of

mfe structures. We refer to Σα as the set of 1-accessible structures of α. The

d-accessible structures are defined similarly. We will, however, focus only on 1-

accessibility, or accessibility for short, since it turns out to be sufficient for the

interpretation of computer experiments at low mutation rates.

In sum, we shall say that β is accessible from α, or β ← α, if there exists a

pair a, b ∈ S with d(a, b) = 1 and f(a) = α and f(b) = β. In this notation the

set of structures accessible from α is written as Σα = {β | β ← α}. We defer a

definition of “nearness” to a later section.

Recall that the generic property 2 above states that we can think of Sα as an

extended network of neighboring points in sequence space having equal structure

α. This view is quite useful at times, but unless otherwise noted we continue

thinking in terms of the set Sα. The only difference is that in the latter case the

shape α is included in Σα (Sα∩ Bα 6= ∅, but {neutral network}∩Bα = ∅), and the

existence of neutral neighbors is expressed by the reflexivity of the accessibility

relation.

5. Boundary statistics

No resources are available to completely identify the set of structure-neutral se-

quences, Sα, not even for moderate chain lengths, let alone to exhaustively fold

its boundary. We must, therefore, resort to sampling Sα. We start by fixing a

secondary structure α of length l, and generate by “inverse folding” [8] a sample
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of n sequences which have α as their mfe configuration. For each sequence in the

sample we fold all its 3l neighbors, obtaining the structures of 3ln sequences in

the boundary of Sα. These structures constitute a sample of Σα.

Our interest is not just in the accessible structures, but also in how often they

occur. Each structure β ← α has two multiplicities associated with it. One multi-

plicity, N(β, α), counts the total number of sequence-neighborhoods of α in which

structure β occurs at least once. We normalize it by the size Nα of Sα, and call

it the neighborhood frequency: ν(β, α) = N(β, α)/Nα. It reflects the likelihood

of finding structure β in the one-mutation neighborhood of a randomly chosen

sequence of Sα. The other multiplicity refers to the total number of occurrences,

Nt(β, α), of structure β in Bα. Each neighborhood of a sequence in Sα is, there-

fore, weighted with the actual instances of β in that neighborhood. We normalize

it by 3lNα, and call it the occurrence frequency: ϑ(β, α) = Nt(β, α)/3lNα. ν(β, α)

and ϑ(β, α) are estimated by sampling Σα as mentioned above.

6. Statistical topology

In discussing the topological structure of a set, we may start with a notion of

neighborhood for each member of that set. Often the set one starts with is already

a metric space, and the neighborhoods of a point x are defined by means of ε-balls

consisting of all points at a distance less than ε from x. As remarked previously,

we lack an evolutionarily relevant metric on the set of shapes, and there need not

exist one. Instead, we define sets playing a role similar to ε-balls as a neighborhood

base. Let α ∈ Σ and consider the sets

Ψε(α) = {β ∈ Σα | ρ(β, α) ≥ ε} ,

where 0 < ε ≤ 1 and 0 ≤ ρ(β, α) ≤ 1 denotes a measure for the frequency of β

in the boundary of Sα, such as ν(β, α) or ϑ(β, α) defined above. Clearly, ε1 > ε2

implies Ψε1(α) ⊂ Ψε2(α). We note that ρ(β, α) is not a metric; in general ρ(β, α)
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is neither symmetric, nor does the triangle inequality hold. Technically speaking,

a neighborhood of α is any set Ψε(·) containing α.

The actual topology of Σ depends on exactly what shapes those Ψε(α) contain

for any α ∈ Σ. The contents of these sets are not arbitrary, but rather a property

of RNA folding (as captured by the folding algorithm), and must be obtained from

a numerical investigation of ρ(β, α). A rigorous topology is invariably spoiled by

the complexities of folding, and, hence, what matters here are statistical patterns.

Moreover, given the combinatorial vastness of the space of possible sequences, we

can only proceed by example. This means in particular, that our findings can

be reasonably expected to hold only for the set of frequent shapes referred to

previously.

Neighborhoods in shape space can also be thought of as “correlation sets”,

reflecting conditional structure correlations between pairs of nearest neighbors in

sequence space, one of them folding into a fixed structure α. We call the topology

based on such correlation sets a statistical topology. In the remainder of this

paper we describe the contents of the Ψε(α), we then give a simple interpretation

of the emerging topology, and make the connection with evolutionary trajectories

obtained from computer simulations.

7. The set of all boundary shapes

As an example we start with the statistical profile of the shapes realized in the

boundary of a tRNA clover-leaf structure, and consider first the contents of the

biggest set in the neighborhood basis - the set of all shapes realized in the boundary

of StRNA, ΣtRNA = {β ∈ Σ | ρ(β, tRNA) > 0} (= Ψε(tRNA), where ε is the

smallest frequency greater than zero, a lower bound being simply 1/4l). It is

difficult to say something precise about the contents of this set, since our sample

never catches all the shapes which occur just once in the boundary of StRNA.

Some useful information, however, can be obtained by looking at the considerably

smaller universe of coarse grained secondary structures defined previously. The
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question we ask is whether there is anything tRNA-specific to ΣtRNA at the coarse

grained level.

Our sample (described in figure 1) yielded 5,882 distinct coarse grained shapes.

We denote the coarse grained ΣtRNA with Σc
tRNA, and probe specificity by inter-

secting Σc
tRNA with a pool of coarse grained random structures. The pool con-

sisted of 1,578 unique shapes based on the coarse grained folds of 11,000 random

sequences of length l = 76. 90.4% of the shapes in the random pool were found

in Σc
tRNA. The same procedure was applied to four other structures α of the same

length l = 76. The sample size of their Σc
α sets was about half the size of the

tRNA sample. Their overlaps with the random pool were 82.4%, 78.5%, 73.3%,

and 81.7%3.

A further test set of 169 coarse grained structures was obtained from 10,000

random sequences of length l = 45. It’s overlap with the Σc
α-sample of a randomly

chosen structure α of that length was 87.6%. Similarly, a pool of 32 shapes,

generated by 20,000 random sequences of length l = 29, was intersected with

the Σc
Y-sample (74 shapes) of the “Y” shape,“((((.(((...))).(((...))).))))”.

The overlap was 100%.

We draw the conclusion that the set of coarse grained shapes realized in the

boundary of a random structure contains the overwhelming majority of all coarse

grained shapes realized by sequences of fixed length. While feasible sample sizes

remain insufficient to collect true low frequency shapes, it is nonetheless tempting

to conjecture that the boundary of a shape does contain all frequent coarse

grained shapes realized by a given chain length.

Let us recall the generic property 3, shape space covering, which states that for

any two frequent structures α and β, the distance between two sequences folding

into α and β will not be larger than a certain value which is small compared to

3The corresponding structures were:
“.........((((........)))).(((((.......))))).....(((((.......)))))...........”,
“...((((.((((((....))))))..)).))....(((((...)))))......((.((((......))))))...”,
“....((((................))))((((((((.(((.........))).)))..((((...)))).))))).”,
“.......(((((((....))))))).(((((.((((((.....))))))....(((......))).....))))).”.
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Figure 1: Shapes in the tRNA neighborhood. Part A shows the 12 highest ranked

shapes with regard to neighborhood frequency (left to right, top to bottom). The

series is the same with regard to the frequency of occurrence, except that #8 ranks

first (and all others are shifted by one rank).

Part B shows the set of 12 topmost coarse grained structures ranked according to

frequency of occurrence. All but the last shape are also found (in somewhat different

ranking) within the top 15 with regard to neighborhood frequency. The last shape

ranks 25th. All structures of A are represented by the first two coarse grained struc-

tures of this list. (The sample comprised 5,051 sequences with tRNA fine grained

structure. Of the 1,151,628 one-error mutants a fraction of 0.39 were neutral with re-

spect to the coarse grained tRNA structure, the remaining 703,476 sequences realized

5,881 different coarse grained structures.)

the diameter of sequence space. Our conjecture here corresponds to the obviously

much stronger claim that this value is Hamming-distance one. Let us refer to it

as the adjacency conjecture. At the fine grained level of secondary structure

the adjacency conjecture is unlikely to hold. In fact, for the binary GC-only

sequence space of length l = 25 the claim is false. Exhaustive folding of that space

reveals, however, that there is a substantial fraction of shapes which are common

to the shape boundaries Σα of the most frequent shapes α. This shared subset

comprises between 30% and 70% of the individual Σα. It is likely to be even

larger for AUGC sequences. In contrast, the intersection of the Σα of several rare

structures turns out to be empty. It turns out that for coarse grained secondary

structures the picture is different: In the case of GC-only sequences of length 25

the adjacency conjecture was found to hold.

As a consequence of the shape space covering property, an evolutionary pro-

cess has to explore only a restriced (yet still substantial) l-dimensional volume

of sequence space, in order to find an arbitrary frequent shape. However, when

advantageous mutants are not immediatley accessible to a given population of se-

quences, mutation dynamics and selection pressure confine the population to drift

on a (much) lower dimensional slice of sequence space given by the neutral network

of the temporarily fittest shape [10]. Huynen [9] pointed out that while drifting, a

population keeps exploring the network’s one-error boundary. The point added by

the adjacency conjecture is that selective confinement to a neutral network does,
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in principle, not preempt the process from eventually reaching any of the frequent

coarse grained shapes.

8. Not all shapes are equally important

The contents of the other Ψε(tRNA) depend on the frequency of accessible shapes.

Figure 2 shows a log-log plot of the rank ordered distributions of the neighborhood

frequency, ν(β, α) (curve 1), and the occurrence frequency, ϑ(β, α) (curve 3), for

fine grained structures. The main feature is the existence of two regimes with

distinct exponents. The first regime includes a small set of about 30 shapes which

are considerably more frequent (and thin out substantially faster with increasing

rank) than the dominant tail regime which covers several orders of magnitude.

This signals the existence of structures which are characteristic neighbors of the

tRNA, in the sense of occurring with high probability among the one-error mutants

of only those random sequences which fold into the tRNA structure.

The most frequent structure is the reference structure α, and percolating

neutrality is expressed by the fact that ν(α,α) = 1. This being the case for

any frequent shape α (generic property 2), we will omit the reference structure

α from its fine grained distribution data and the rankings. Figure 1A shows the

12 most frequent fine grained structures ranked according to ν(β, α). Figure 1B

summarizes the top neighboring structures at the coarse grained level. The coarse

grained “neutral” is included here, because it represents a variety of distinct fine

grained variants. However, in the corresponding frequency distributions, figure 2A

curves 3 and 4, the contribution due to fine grained, or “true”, neutrality has been

subtracted. The two topmost coarse grained structures in figure 1B represent most

of the high frequency fine grained neighborhood. Other frequent coarse grained

structures include variants lacking the multiloop, or having stems interrupted by

(small) internal loops.

With one exception, all high ranking fine grained structures are very similar

to the reference. They arise from shortening or lengthening a stacking region by
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Figure 2: Shapes in the tRNA boundary. 2199 sequences folding into the tRNA

clover-leaf reference structure (length l=76, inset of plot A) were sampled. All their

one-error mutants (2199·76·3=501,372 sequences) were folded. A fraction of 0.28

(142,847 sequences) had the same structure as the reference. The remaining 358,525

sequences folded into 141,907 distinct shapes. Curve 1 is a log-log plot of their rank

ordered neighborhood frequency (thick line, left ordinate) and curve 3 shows their

rank ordered frequency of occurrence (thin line, right ordinate). The dotted vertical

line is meant to separate regions with different scaling. In a second sample (of 5,051

sequences with reference structure) we collected the statistics pertaining to coarse

grained shapes. The corresponding data sets 2 and 4 are analogous to curves 1 and

3, respectively. The fraction of fine grained neutrals was subtracted from the coarse

grained neutral.

Plot B shows the neutral mutation frequency as a function of the position mutated

(sample of 6,597 sequences per position) for the fine grained case (black impulses) and

for the coarse grained case (sample of 15,153 sequences per position; grey impulses).

The abscissa shows the reference structure with pairs of matching parentheses repre-

senting base pairs at the corresponding positions along the sequence. Note the lower,

but non-zero, level of neutrality in the paired regions due to GU pairing.

one base pair with the concomitant lengthening or shortening of the affected loop

region. These structures all share the same coarse grained shape. In reference

structures with long stacks, the blocking of a base pair often produces small “bub-

bles” (internal loops or bulges), while conserving the overall hairpin architecture.

In figure 2B the high frequency neighbors of the tRNA shape can be immediately

identified by comparing the fraction of neutral mutations per position of the fine

grained (black) and the coarse grained (grey) case. Large differences between both

levels flag exactly those positions whose modification yields fine grained variants

indistinguishable from the coarse grained reference structure.

The notable exception to the series of slight variants is the three-hairpin

structure ranked #8 in terms of neighborhood frequency (0.52). It even ranks

first in terms of frequency of occurrence (0.03; all others shown in figure 1A shift

down in rank by one). This shape deserves further attention and we shall give it

the name: tRNA8.

Consider now the Ψε of tRNA8 (see figure 3 for shapes and figure 4, curve 1, for

the frequency distribution). Observations analogous to those made for the tRNA

case apply here as well. The main point, however, concerns the relation between

14



the two structures: the tRNA structure was never sampled in the boundary of

tRNA8. Every second sequence in StRNA is susceptible to the destruction of the

multiloop closing stem upon a single point mutation in that region. In strong

contrast, extremely few sequences in StRNA8 meet the constraints for the creation

of any closing stem from an open region in one mutation. Evidently, the relation

between phenotypes induced by a frequency weigthed genotypic accessibility is not

symmetric.

This statistical asymmetry has a counterpart in sequence space at the level of

the corresponding neutral networks. The neutral network of the tRNA8 structure

is substantially larger than the one of the tRNA. The fact that the tRNA8 network

is persistently found one step away from the tRNA network, suggests a kind of

“embedding”: seen from the smaller network, the larger one appears almost ev-

erywhere in its boundary, while from the viewpoint of the larger one, the smaller

appears almost nowhere.

Similar asymmetric relations hold between the tRNA8 structure and some

of its topmost boundary shapes. For example, with high frequency any of the

remaining stacks of tRNA8 can disappear in a single point mutation (see the shape

ranked #4 in the coarse grained neighborhood, figure 3). Two-stack structures of

this kind are even found among the high frequency ranks of the tRNA boundary.

This is due to the existence of sequences whose tRNA structure contains a hairpin

stem which is stabilized only in the context of the multiloop. If a mutation destroys

the multiloop, the multiloop sensitive stack opens as well.

At the coarse grained level, the intersection of Σc
tRNA with Σc

tRNA8
(3,344

coarse grained structures in the sample) shows an overlap of 81.1%, as expected

from the previous intersection results with random pools. All top 30 coarse grained

structures realized in the boundary of StRNA8 occur among the top 91 realized in

the boundary of StRNA.
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A

B

Figure 3: Shapes in the tRNA8 neighborhood. The arrangement of shapes is as

in figure 1. The highest ranked shape not shown (#13) in terms of neighborhood

frequency lacks the 5′ hairpin stem. The sample consisted of 2,200 sequences folding

into the tRNA8 structure. Of the 501,600 one-error mutants a fraction of 0.36 were

neutral with respect to the fine grained structure. The remaining sequences in the

boundary sample realized 130,668 distinct fine grained shapes and 3,344 distinct coarse

grained shapes.
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Figure 4: RNA boundary distributions for non-tRNA structures. Log-log plots of

rank ordered neighborhood frequency distributions of other RNA shapes. Curve 1

(thick line) belongs to tRNA8, curve 2 belongs to a randomly chosen structure of the

same length (l=76), and curve 3 to a Y-shaped structure of length l=29.

9. The choice of frequency

Consider a structure which occurs once among the one-error mutants of each of

10,000 sequences in the sample, and one that occurs 100 times around 100 se-

quences. Both are indistinguishable in terms of the occurrence frequency, ϑ(β, α),

but the former ranks much higher with respect to the neigborhood frequency,

ν(β, α). Whether the two frequencies emphasize different notions of neighborhood,

depends on the actual distribution of occurrences of β per sequence neighborhood

of α.

Figure 5 shows three typical scenarios for the tRNA case. The neutral struc-

ture has a wide distribution ranging from 25 to as much as 109 occurrences per
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one-error neighborhood. This is in contrast to most accessible variants, an exam-

ple of which is shown in the inset of figure 5. Their occurrences range typically

between 1 and less than 10 per sequence neighborhood, which doesn’t make a

big difference between ν(β, α) and ϑ(β, α). The exception is again tRNA8, whose

distribution is bimodal. This bimodality is found with all accessible structures

lacking the multiloop closing stem, and indicates that there are many sequences in

which an extended shape feature – here the multiloop closing stem – is marginally

stable. For example, the tRNA multiloop closing stem comprises 12 nucleotides,

yielding 36 possible one-error mutants each of them blocking the affected base

pair with probability 4/6 or 5/6, depending on whether or not it is a GU pair.

Assuming the limiting case that the stack is so marginally stable that removal of

any one pair destroys the entire stem, one expects 24 to 30 instances per sequence

neighborhood. The maximum for tRNA8 in figure 5 is 31. In general, one ex-

pects the frequency with which an extended shape feature is marginally realized

to match roughly the frequency with which it is stably realized (giving rise to only

few occurrences per neighborhood), since strong and weak stacking interactions

between Watson-Crick pairs are balanced. Non-Watson-Crick GU pairing affects

this balance only slightly, because excessive GU pairing destabilizes a stack to

such an extent that it doesn’t form at all.

The majority of frequently realized modifications are limited to local shape

features, such as individual base pairs. These can necessarily be realized only a

few times per neighborhood, as there are only few positions for a mutation to

affect the feature in the first place. The corresponding occurrence distributions

are similar to each other, and resemble the one shown in the inset of figure 5.

While the shape space neighborhood structures induced by ν(β, α) and ϑ(β, α)

appear quite similar, we prefer ν(β, α) as it treats large and small shape features

on an equal footing.
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Figure 5: Occurrence distribution in sequence neighborhhoods. The plot shows for

three tRNA boundary shapes how often each of them occurs in how many sequence

neighborhoods (Each neighborhood allows for a maximum of 76·3=228 occurences).

The right side (dark) and the left side (light) of the plot refer to the neutral shape

(tRNA) and the tRNA8, respectively. (The two plots barely overlap). For tRNA8, the

area under the low incidence region roughly equals the area under the high incidence

region (0.54 up to the minimum at 10, separating both regions), indicating that the

multiloop closing stem is realized stably and marginally with approximately the same

frequency. The inset shows the distribution for the most frequent boundary shape

after the neutral one. See text for details.

10. Nearness

The form of the rank-ordered boundary shape distributions (figures 2 and 4) in-

dicates an α-(shape)-dependent value δ separating the characteristic set of high

frequency structures from a low frequency background shared to a large extent with

any other reference shape. This suggests to describe the topological structure of
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RNA shape space by considering for each shape α only the shapes accessible from

α with a frequency of at least δ. For moderate chain lengths, like those considered

here, δ is not sharply defined. The purpose of the procedure, however, is to empha-

size the major qualitative aspects of the shape space organization. In this vein, the

neighborhood base becomes Ψδ
ε(α) = {β ∈ Σα | ρ(β, α) ≥ ε ≥ δ}. We refer to the

largest such set, Ψδ
δ(α), as the characteristic set of α. The set of all boundary

shapes, Σα, is obtained by relaxing the threshold δ, Σα = limδ→0 Ψδ
ε = Ψ0

0.

At both levels of resolution, coarse and fine graining, the highest ranking

structures occur with almost the same frequency, as evidenced by the initial flat

region of the distribution. To caricature the qualitative aspects, we may also

discretize the variation of ε by a suitable step size ξ (ξ−1 integer), ε = 1− nξ, n =

1, 2, . . . , ξ−1, considering Ψδ
[n](α) = {β ∈ Σα | ρ(β, α) ≥ 1−nξ ≥ δ}. The smallest

set, Ψδ
[1](α), contains all shapes accessible from α with frequencies in the top range

[1− ξ, 1].

We finally proceed to define nearness. A shape β is defined to be near a set

of shapes Γ, if every neighborhood Ψδ
[n](β) contains a shape of Γ. By abuse of

language we call a shape β near a shape α, if β is near the characteristic set of

α. In this sense the tRNA8 shape is near the tRNA, but not vice versa. However,

for many shapes β in the top set Ψδ
[1](α) the nearness relation to α is symmetric.

Consider, for example, a hairpin structure α with a single stack of length s. Almost

every sequence folding into α will have among its 1-error mutants some in which

the loop closing terminal base pair of the stack has been destroyed, yielding a

shape β with a single stack of length s − 1. Conversely, given a sequence which

folds into β, it is easy to access α by rebuilding that base pair through a single

mutation.

11. The substructure relation

It is instructive to compare this topology with a different relation. Secondary

structures are partially ordered by the subset relation on the set of their base
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pairs Pα: α < β (read: α is a substructure of β), if Pα ⊂ Pβ . This relation can

be visualized as a directed graph on Σ. In the present context we are interested

only in the undirected version of that graph, that is, two structures are connected

by an edge if they are comparable. Obviously, two structures are comparable,

if they arise from one another by either removing or adding base pairs (subject

to the no-pseudoknot condition). Conversely, two structures are incomparable, if

their interconversion involves both removing and adding base pairs. In the latter

case it is useful to distinguish whether the interconversion is a generalized shift.

We define a change of base pairing to be a generalized shift, if for each base pair

changed at least one base remains paired. This includes the standard shift, where

paired strands slide past each other, typically by a few positions (figure 6). A

generalized shift, however, also covers transformations such as the “roll-over”, the

“flip”, and the “double flip” sketched in figure 6.

Structures that differ by generalized shifts are called shift-incomparable.

For example, κ ≡ “(((.....)))..((((...))))” and

λ ≡ “((((...))))..(((.....)))” are incomparable but not shift-incomparable,

while κ and µ ≡ “(((......))).((((...))))” are shift-incomparable, as are κ

and ν ≡ “.(((.....))).((((...))))”.

Our previous observations indicate that if a structure α is near a structure β,

then α and β are comparable. The converse is not quite true, however. Consider,

for example, the pair α = tRNA8 and β = tRNA. Rather, if two structures are

comparable and their symmetric difference ∆(α, β) = (Pα − Pβ) ∪ (Pβ − Pα) is

small, such as one or two base pairs, then both α and β are near one another.

Notice that, by definition, if β is near α, we can pass from α to β directly, that

is, in one step, without leaving the characteristic set of α. For the sake of simplic-

ity, let us refer to the characteristic set of α as “the” neighborhood of α. If β is not

near α, the one-step transition from α to β requires leaving the neighborhood of α

(figure 7A). A transition from α to β need not be in one step, but may occur in sev-

eral stages. If this prevents neighborhood boundaries from being crossed, we call

the transition continuous (figure 7B). An example is given by the previously men-
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Figure 6: Generalized shifts. The figure shows the shift types bundled under the

term generalized shift. In a standard shift (upper left) one strand of a stacked region

slides past the other. (Light lines indicate the new pairing pattern.) The result is

the growth of a loop. In a “roll-over” (upper right) both strands of a stack shift by

the same amount; as a result the loop maintains its size and, in the example, “rolls”

towards the 5′ end. A “flip” denotes a big slide where the new position of the shifted

strand does not overlap with the old position (lower left), while a “double flip” refers

to the analogous situation in which both strands flip. In all cases, for each base pair

involved, at least one position remains paired before and after the change.

tioned structures κ and λ. They are incomparable, and a direct transition from,

say, κ to λ leaves the neighborhood of κ. However, the transition is reducible, since

there is an intermediate structure κ′ = “((((...))))..((((...))))” which is

comparable with κ and ∆(κ, κ′) is small. From the numerical neighborhood profile

of κ we can infer that the transition from κ to κ′ does not leave the neighborhood

22



α

β

characteristic set of β

characteristic set of α

β

characteristic set (cs) of α

αα1
α2

α3

α4

cs of α1

cs of α2

cs of α3

cs of α4

cs of β

(a)

(b)

Figure 7: Continuity of transitions. The upper drawing shows a situation in which

β is in the characteristic set of α, but not vice versa. By definition this simply means

that accessing β from α is easy on average, while accessing α from β is not. The

former transition is termed continuous, the latter discontinuous (dotted arrow). The

lower drawing illustrates how a discontinuous one-step transition from α to β becomes

continuous by means of a suitable series of intermediates accessible through continuous

one-step transitions.
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Table 1: Substructure relations and the nature of one-step transitions. Transi-

tions from α to β are classified by “yes” and “no” depending on whether

or not they remain in the neighborhood of α. Asterisks mark irreducibly

discontinuous transitions (see text).

Substructure relation α, β Transition
Case Class ∆ continuous

1 comparable small (1bp) yes
2 comparable stack length, β < α yes
3 comparable large, α < β no ∗

4 shift-incomparable — no ∗

5 incomparable — no

of κ. Moreover, since κ′ is similarly related to λ, the transition from κ′ to λ doesn’t

leave the neighborhood of κ′ either. Hence, there is a continuous multi-step tran-

sition from κ to λ. In contrast, there is no continuous transition from tRNA8 to

the tRNA. The table 1 summarizes the observed regularities.

In general, if β is not near α and there exists a series of structures

α ≡ α0 α1 · · · αi−1 αi · · · αn ≡ β such that αi is near αi−1, the overall

(multistep) transition from α to β is continuous. A transition is irreducibly

discontinuous, if no such series exists. The irreducibly discontinuous transitions

are realized by two scenarios: (1) α and β are comparable, but in passing from

α to β a long stacking region, such as a multiloop closing stem, must be created

from scratch (the symmetric difference is large and α < β), or (2) α and β are

shift-incomparable. Both cases have one feature in common: the transition cannot

be done incrementally on thermodynamic grounds. Case (1) reflects the fact that

a minimum stack size is needed to compensate for the destabilizing free energy

contribution resulting from the loop created by the new stack. This nucleation

size depends on the nature of the stacking pairs, the terminal mismatches, and

the nature and the size of the loop. Case (2) reflects the fact that shifting a

stretch of contiguous base pairs requires their synchronous displacement. The

pairs cannot shift in random sequential order without violating obvious steric
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constraints (and, formally, the no-pseudoknot constraint). Moreover, if a shift

were to happen in stages, unpaired bubbles arise which need stabilization by a

minimum stack size on either side. Shifts of long stretches are indeed likely to

happen in stages, but typically not shifts involving stacks of size 4. The irreducibly

discontinuous transitions are, hence, determined by the thermodynamics of folding.

These observations are the key to understanding the evolutionary dynamics of

simulated RNA populations to which we turn next.

12. Boundary conditions

The influence of the genotype-to-phenotype map on evolutionary dynamics is po-

tentially blurred by the composition with a phenotype-to-fitness function. The

latter introduces a further type of neutrality resulting from different shapes hav-

ing the same fitness. As a consequence, phenotypically distinct neutral networks

in genotype space are merged into one larger fitness-neutral network. While the

phenotype-to-fitness map can be largely arbitrary and directly influenced in lab-

oratory evolution experiments, we believe that the two cases studied here delimit

a wide class of meaningful functions. We have in mind a fairly generic situation

in which RNA sequences evolve towards a shape capable of binding to some cho-

sen molecule, as is indeed the case in SELEX-type experiments producing small

RNA binders called “aptamers” [3]. Since we are interested in evolutionary tra-

jectories rather than searching for a shape with some predefined property, we

specify in advance what the final shape ought to look like. Our mapping from

shapes to replication rate constants (fitness), then, becomes a simple function of

the syntactic distance of a given shape to a prespecified target shape (see below).

Given a distance measure d, a shape replicates faster, the more it resembles the

target. In all simulations reported here, the replication rate ri of a sequence i

of length l with shape α at distance d(α, τ ) from a target shape τ is given by

ri = (0.01 + d(α, τ )/l)−1. Using an exponential or a linear function did not make

any difference with regard to the issues we are interested in. We used a rate of 8
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errors per 1000 nucleotides copied (For a tRNA length of l = 76 this corresponds

to a per nucleotide error rate of p = 0.001). At this rate, the difference between

parent and a modified offspring sequence is mostly one point mutation. These

conditions are thus appropriate for a statistical topology based on 1-accessibility.

Two quite distinct distance measures on shapes were considered. One is given

by the Hamming distance between two shapes in their parenthesized representa-

tion, and the other is given by the “base pair distance”. Both treat corresponding

sequence positions which differ in their pairing state as errors contributing to dis-

tance (unpaired versus paired and upstream-paired versus downstream-paired).

The difference, however, derives from base pair distance treating a base pair as a

unit, while Hamming distance treats a paired position as the unit. As a conse-

quence, base pair distance will count as errors situations which do not contribute

towards Hamming distance. For example, consider two shift-incomparable shapes,

“((((....))))” and “.((((...))))”. Their Hamming distance is 2 (only posi-

tions 1 and 5 differ), while their base pair distance is 9 (all of the paired positions

differ).

Our simulation of an RNA population subject to selection in a constrained

flow reactor according to stochastic chemical kinetics is a continuous time model

of Spiegelman’s classic serial transfer experiments [19]. It’s implementation is

described elsewhere [4, 10].

13. Evolution in phenotype space: the relay series

In order to study the influence of the statistical topology on evolutionary dynamics,

we focus on the temporal succession of shapes rather than individual sequences.

Stated in terms of sequences this means that we focus on the succession of equiv-

alence classes of sequences represented by a neutral network corresponding to a

shape. If we were to track over time which shape gives rise to which shape, we

would end up with a vast and highly interconnected network of phylogenies (Cir-

cular paths at the level of individual sequences are a common result of mutational
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backflow in the population and this backflow must be substantially larger, if we

consider entire equivalence classes of sequences with respect to shapes). Besides

the computational complexities associated with handling hundreds of megabytes

of history data pouring from a simulation of this kind, we would still need to know

which pathways are the relevant ones.

Our solution to this involves two steps. First, we consider the phylogenetic

network of only those shapes that literally made history: we only record informa-

tion about events which generate a “relative innovation”, that is, a shape which is

new in the population at the time t of its appearance. This does not neccesarily

imply that the shape hasn’t been in the population in the past; it could have gone

extinct some time and it might be “rediscovered” at time t. This provision re-

moves the large backflow among extant shapes within a population, which doesn’t

proceed into new phenotypic territory. For each relative innovation α we record

entry times, lαi , and exit times hαi .

In a second step, after the evolutionary process has found the target or has

been stopped, we trace back through the history data in the following way. Con-

sider the set of “live intervals” Lα = {[lαi , hαi ], lαi < hαi < lαi+1}, marking the

presence of shape α in the flow reactor during the simulation. Each live interval

[lαi , h
α
i ] of α has a unique ancestor with shape β which spawned that interval at

time lαi , meaning that a sequence folding into β produced at time lαi a mutant

which folded into α, and α was not in the population at that time. Let ω be the

target shape, and [lωi , h
ω
i ] one of its live intervals whose ancestor is ω−1. Among

the Lω−1 there is a unique live interval [l
ω−1

j , h
ω−1

j ] containing the time instant lωi ,

and we proceed searching for the unique ancestor of [l
ω−1

j , h
ω−1

j ]. Upon repeating

this procedure we eventually end up at one of the initial shapes. At this point we

have reconstructed a chain of shapes α ≡ ω−n ω−n+1 · · · ω−i · · · ω−1 ω0 ≡ β con-

necting an initially present shape α with the target (or final) shape β. This chain

is uninterrupted in time, in the sense that for every n ≥ i ≥ 1, ω−i is ancestor of

ω−i+1 and there exists a pair [l
ω−i
r , h

ω−i
r ] [l

ω−i+1
s , h

ω−i+1
s ] with l

ω−i
r < l

ω−i+1
s < h

ω−i
r .

The chain depends on the live interval of the final shape β from where the trace
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starts, but it is unique for that interval. On rare occasions there may be more

than one such interval for the target shape, since stochastic fluctuations may wipe

out the target which must be generated again to get established in the population.

By default we consider the last live interval of the target shape at the time the

simulation has been stopped.

Because of the chain’s connectedness in time and its uniqueness relative to a

live interval of the final shape, we think of it as the causal chain of phenotypic

innovations leading from α to β. We term it the relay series, in analogy to a

relay-race in which a team races to goal in stages, each runner covering a segment

of the trail and handing over the baton to the successor. Of course, our relay series

can only be known in retrospect.

In computer experiments it is easy to record a unique identifier for every

mutation event. When reconstructing the relay series, we obtain the identifier of

each event that caused the passage from one relay shape to the next. Equipped

with this hindsight, we rerun the same history (by using the same random seeds),

but this time selectively recording the actual succession of sequences underlying

the relay series (Recording such information a priori would flood most computer

systems, because we have no foresight into the sequence of stochastic events and

thus the relay series is accessible only by backtracking of trajectories).

Notice that the relay series is not defined by appealing to concentration or

fitness and, hence, the relay shapes need neither coincide with the succession of

dominant nor fittest shapes in the population. Moreover, the definition does not

prevent the relay series from containing cycles. Finally, the uniqueness of the

relay series (per target live interval) refers only to a given computer experiment.

Different simulations may proceed through different phenotypic paths leading from

α to β. In the next section we study the relationship between the relay series and

the shape space topology.
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14. Patterns of history

We monitor a macroscopic and a microscopic aspect of the evolutionary process.

The macroscopic one is given by the time evolution of the average distance (av-

erage fitness) of the population to the target shape. The microscopic one is a

description of the temporal succession of phenotypes, as given by the relay series.

We discuss evolution towards a tRNA shape as an exemplar representing a variety

of simulations carried out with different target shapes.

14.1. Hamming distance

In the following simulations the shape distance function is Hamming distance.

Figure 8 juxtaposes the micro and macro aspects mentioned. The relay series

shown in figure 9 consists of 42 shapes, indexed from 41 (start shape) through 0

(target shape). Figure 8 also shows the live intervals of all relay shapes separated

vertically by index. The step trace indicates the time segment of the relay history

occupied by each relay shape. The left boundary of each segment coincides (by

definition) with the beginning of a live interval generated by the previous relay

shape. The right boundary marks the time instant at which the corresponding

relay shape has generated its successor in the relay series.

The shape space topology induced by the folding map has little influence on

the early phases of evolution. This results from the fact that whatever change a

random shape undergoes, it is likely to narrow the gap to most targets. Moreover,

major changes are likely to occur when shapes contain long unpaired random

regions. Chains with long unpaired stretches, or even the open chain, are not

frequent structures for the lengths considered here, and our topology fails. Once

the opportunities deriving from this initial “latent” structural variability have been

exploited for a quick gain in fitness, the stage is set for the shape space topology

to shape the long course of the remaining history.

In order to show that the shape space neighborhoods underlie the relay series,

we consider the sets of live intervals of two consecutive relay shapes, ω−i and
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Figure 8: Major transitions towards a tRNA shape. The figure shows how much

optimization has progressed at the macro level by plotting the average Hamming

distance to the target structure. The fitness curve is superimposed by the relay trace

showing the flow of causality from start shape to target (see text for definitions).

The major transitions are marked by vertical lines. The corresponding generalized

shifts are named, and the shapes before and after the transition are shown (Except

for the first standard shift to avoid congestion of the figure). The flow reactor was

stochastically constrained to maintain an average of 1,000 sequences and the error

rate was 0.001 per nucleotide.

ω−i+1, during a period in which the fitness average of the population remains

constant. In such a period relay transitions occur typically among fitness neutral

shapes, and most relay shapes are significantly populated during some of their

live intervals. If ω−i+1 is near ω−i, we should observe a series of live intervals
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Figure 9: Relay series. The full series of relay shapes for the simulation in figure 8

is shown. See text for details.
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belonging to ω−i+1, indicating its intermittent presence starting with the arrival

of ω−i. This signals the fact that ω−i+1 is repeatedly generated from ω−i, and,

thus, “unavoidable”. Conversely, if ω−i is near ω−i+1, we should observe a similar

pattern of live intervals for ω−i, once ω−i+1 has become the relay shape. Consider,

for example, the patterns around the relay transitions marked A in figure 8. The

relay segment of the incoming shape ω−i (the ancestor) is followed by a series

of (non-relay) live intervals, and the relay segment of the outgoing shape ω−i+1

(the offspring) is preceded by a series of (non-relay) live intervals. This pattern

indicates that ω−i and ω−i+1 are both near each other. A pattern in which either

one of the series of non-relay live intervals is absent, indicates that the shape

associated with that series is near the one lacking it, but not vice versa. Thus, the

patterns at the instants marked B in figure 8 signal that the transition from ω−i

to ω−i+1 leaves the characteristic set of ω−i. Yet in all but the last cases ω−i is

near ω−i+1, since the presence of ω−i+1 entails the presence of ω−i.

During the extended periods of constant average fitness most relay shape

passages are continuous, in the sense of proceeding within neighborhoods. On

rare occasions a discontinuous relay transition – an escape from a neighborhood

– occurs without having an impact on fitness (such as instant B on the plateau

around time 450 in figure 8). The main observation, however, runs in the opposite

direction: each change in fitness (vertical dotted lines in figure 8) is associated

with the escape from a shape space neighborhood. Either the fitness change is

caused directly by the escape, or it is shortly preceded by it. This observation

holds for all target choices we made. In fact, that choice can only affect which

neighborhood escapes have an impact on fitness.

Then, the basic pattern of a phenotypic path is the following. In the early

phase of the process some random restructuring may take place, and the overlap

between stacks present and the target is maximized by growing or shrinking stacks

one or two base pairs at a time. According to the shape space topology outlined

before these latter adjustments are continuous. This phase of the process neces-

sarily stops when no continuous improvements are possible. At this point some
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stacks are positioned more or less correctly, while others consist of one strand over-

lapping with its target analogue, yet pairing to an entirely misplaced region. The

fine tuning of stack positions without loss of fitness must proceed through shifts

(for example, the first transition indicated in figure 8). Similarly, if one strand of a

stack is correct, but pairs wrongly, a generalized shift of the “flip”-type (figure 6)

must occur (second transition indicated in figure 8). The latter case is put to an

extreme when the position and the pairing orientation (upstream or downstream)

of both strands of a stack agree with the target, but the strands do not pair with

each other in the target. To correct such a situation under strong selection, a

double flip (figure 6) must occur (see figure 8 and 9). By means of flips and double

flips the correct overall architecture of the shape is eventually achieved, which is

then fine tuned by further standard shifts. At high replication accuracy, the vast

majority of generalized shifts is triggered by a single point mutation.

Recall that the statistical topology structures the set of shapes only in the

high accessibility regime up to the threshold value δ suggested by the neighbor-

hood frequency distribution. Yet, the set of all boundary shapes Σα extends far

beyond it. The escape from the neighborhood system of α, that is, from its char-

acteristic set, is possible, because other shapes (presumably all frequent coarse

grained shapes) are accessible from α with low probability. This includes shapes

β which differ by a generalized shift from α. When selection confines a population

to a dominant master shape α, escaping α’s neighborhood can only occur through

random drift on the neutral network of α. This random drift enables a specific

sequence context to be set without loss of viability, such that a single point muta-

tion can trigger the structural rearrangement to β. This causes long waiting times

on average. A statistics of such waiting times and a study of how they depend (if

at all) on the proximity to the target, remains to be done.

Notice that standard shift differences to the target are also a major cause of

neutrality in this context. Consider, for example, a target structure (or substruc-

ture) β ≡ “(((....))).” and a shift-incomparable shape α ≡ “.(((...))).”

at Hamming distance 2. Elongating α’s stack by a base pair, “((((...))))”,
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constitutes a transition to a shape near α and leaves the Hamming distance to

β unchanged. This is precisely what happens during neutral drift periods. It is

easily seen that a situation with multiple stacks can lead to cycles in the relay

series. There are two instances of this sort in figure 9: relay shapes #12 and #7

are identical, as well as shapes #5 and #3.

A few details at the sequence level are worth mentioning. The mutation which

caused the double flip from relay shape #18 to relay shape #17 (figure 9) occurred

at a site remote from the sites involved in the flipping. It extended the hairpin

stack near the 3’ end by one base pair, which provided sufficient stabilization for

the double flip to occur. The necessary sequence context for this event arose during

the preceding long phase of random drift on the fitness-neutral network of shapes

#26 through #18.

Furthermore, shape #1 in figure 9 seems a strange intermediate in the shift

event leading from shape #2 to the target (#0). The shift actually happened in

two stages (first #2 to #1, then #1 to target). If the two mutation events had

occurred in the reverse order, a different intermediate shape would have made the

shift process more obvious. With the specific sequences involved, the actual order

of events forced a more dramatic constriction of the multiloop. A computer exper-

iment whose initial population consisted of the population at time 1000 in figure 8,

confirmed that shape #1 is not a necessary relay shape for the corresponding shift.

There are alternative histories. That simulation (not shown) produced the target

once after 73 time units. A fluctuation then wiped it from the population, and

the target shape was produced again some 20 time units later, when it finally took

over. Two relay series, differing slightly in their final stages, are associated with

these two live intervals. In the first relay series the target was produced by a shift

directly from what is shape #4 in figure 9. In the second relay series the target

arose via #3 (≡ #5) by a silent roll-over and a standard shift.
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14.2. Base pair distance

The dominance of generalized shifts in structural transitions is linked to the eval-

uation of shapes by means of a Hamming metric which considers each strand of

a stack separately. The Hamming metric implies that selection pressure can hold

in place one strand of a stacking region, while the other is free to shift or to flip.

Indeed, starting from different random initial conditions, the route to the major

structural tRNA feature – the multiloop – always involved a double flip. Gener-

alized shift differences to the target are small in the Hamming metric. Yet, shift

transitions are difficult to achieve, and the evolutionary process guided by Ham-

ming distance “hangs” whenever such a transition is required. Direct formation of

a multiloop closing stem (the other kind of irreducibly discontinuous transition)

can be forced to occur, when starting with a homogeneous population consisting

of the tRNA8 shape. As expected, a long period of drift precedes the closing of

the multiloop (not shown).

It is, thus, instructive to consider the impact of base pair distance on evo-

lutionary trajectories. In terms of base pair distance shifts appear as large dif-

ferences, and selection pressure is exerted on individual base pairs rather than

individual positions, that is, the two strands of a helix cannot evolve indepen-

dently. Figure 10 shows two runs of the optimization process for tRNA, both

starting from identical initial conditions. The macroscopic picture exhibits the

same phenomena as discussed in detail for the Hamming case. The main differ-

ence, however, is at the microlevel. Transitions are now predominantly de novo

constructions of stacking regions rather than shifts. Whether a sequence segment

folds into a stack shifted by one position relative to the target or whether that

segment doesn’t fold at all makes only a slight difference from the point of view

of base pair distance. To effectively shift a stack, the stack is undone and subse-

quently generated from scratch in the shifted position. As indicated in figure 10,

during some neutral drift periods both neutral shape versions, with and without

a wrongly positioned stack, were present in high concentration.
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Figure 10: Evolutionary trajectory under base pair distance. As in figure 8 the

evolutionary approach towards a tRNA target shape is shown in terms of average

structure distance and the relay series. The difference to figure 8 is that the similarity

between structures is measured as a base pair distance. This distance function is

virtually “blind” to shifts. As a result, the de novo creation of a stacking region –

the second type of discontinuous transition in the shape space topology – becomes

prominent. Selected relay shapes documenting the arrival of relevant structure motifs

are shown. Correctly positioned stacks are labelled in the order of their appearance.

Neutrality between coexisting dominant shapes is indicated by double arrows.

The relationship between neighborhood transitions and the relay series is seen

by means of the live interval trace in much the same way as in the Hamming case.

There is one seeming exception in figure 10A at the second transition. That tran-

sition is not about the creation of a new stack, but rather about the shortening

and lengthening by one base pair of the stacks labelled “1” and “2”, respectively.

However, according to the shape space topology described previously, these tran-

sitions are continuous and should not be preceded by a long period of drift. In

fact, consider the live interval trace of the relay shape β succeeding the relay

shape α present during the drift period. The trace shows that β was generated

rapidly and repeatedly after α entered the population – as it should be, since β

is obviously near α. The problem is that the base pair distance to the target is

large at this point in the process, and given our specific fitness function, a distance

improvement of 2 units is too weak to trigger a sharp selective response. Once β

accumulated in the population, and generated its own mutants, it gave immedi-

ately rise to a (near) shape with a lengthened stack labelled “2”. This increased

the fitness gain to 4 units, triggering a fast selection response. Such a spurious

drift period is absent from figure 10B.

The correctly positioned stacks of the relay shapes shown in figure 10 are

numbered in the order of their appearance. The modularity of RNA secondary

structures permits many permutations in the sequence of transition events leading

to a target shape. However, in all runs perfomed, the multiloop closing stem was

the last to form.

Hamming distance caricatures better than base pair distance the in vivo or
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in vitro evaluation of RNA shapes under selection constraints similar to those

considered here. More sophisticated distance criteria, such as tree edit distance

[18], produce a picture which is very similar to the Hamming case.

The main point of the comparison is to show that even dramatic changes

in the phenotypic evaluation function only affect which of the two discontinuous

transitions dominates, not the fact that they dominate. The high degree to which

the RNA folding map constrains evolutionary trajectories in a recognizable way

seems largely independent of the fitness map imposed on the phenotypes.

The shape space organization appears not nearly as obvious for binary se-

quences. GC-only sequences of a given shape cannot exhibit neutrality within

paired regions. This is enough to make the escape from shape space neighbor-

hoods through neutral drift extremely difficult. While GC-only sequences with

a tRNA shape were easily found by inverse folding, extensive simulations failed

entirely to evolve anything close to a tRNA shape in a GC-only setting. A sim-

ilar situation might hold for AU-only sequences. However, our inability to find

AU-only tRNA shapes by inverse folding suggests that they don’t even exist.

15. Conclusions

In order to understand evolutionary histories, we need to organize the set of possi-

ble phenotypes in a way that reflects their attainability through genotypic changes.

This induces a different organization than one based on moves performed on some

direct representation of the phenotypes. The latter emphasizes a purely syntactic

similarity of phenotypes, while the former connects with the genotypic level in a

fashion mediated by development (here folding).

“Development” and “genetic changes” are treated here in their probably sim-

plest non-trivial realization given by RNA folding and point mutations. Since our

folding algorithm computes the shapes (phenotypes) from sequences (genotypes)

by a mathematical procedure which does not necessarily reflect the actual process
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of folding, we deal with a static (yet statistically accurate) genotype-to-phenotype

map.

The set of RNA minimum free energy secondary structures is organized as

a topological space by means of a frequency weighted relation of accessibility.

One-error mutants of sequences sharing a common minimum free energy structure

preferentially fold into certain shapes. Accessibility, thus, captures nearest neigh-

bor correlations at the level of neutral networks, which are equivalence classes of

sequences with respect to shape.

The numerical analysis of the accessibility relation implied by a widely used

folding algorithm yielded three basic findings. First, for any frequent shape α,

there exists a set of accessible shapes which is characteristic for α from a frequency

point of view. Second, a notion of nearness, based on this characteristic set,

leads to the notion of a “continuous transformation” of structure. Informally,

the transformation of a structure α into β is continuous, if it proceeds through

a sequence of neighboring genotypes such that the structure of each offspring is

near to the structure of its parent. The discontinuous transitions are precisely

those structural changes that cannot be sequentialized in an incremental fashion,

but rather require the synchronized change of several base pairs. Such transitions

involve a generalized shift or the formation of a longer stacking region, such as a

multiloop closing stem. Third, independently of fitness criteria, the RNA shape

space topology strongly influences evolutionary trajectories approaching a target

in all but the very early stages of the process.

Effecting a discontinuous transition in shape space by a small genetic change

(here one point mutation) poses stringent conditions on candidate sequences. Op-

timization generally requires discontinuous transitions in shape space, and this

entails long average waiting times during which selection pressure confines the

population to drift along neutral networks. Transitions coincide with an escape

from a shape space neighborhood made possible by the fact that the boundary

of a neutral network contains beyond its characteristic set a very large number of

very low frequency shapes. Our study suggests that this set of shapes virtually
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includes all frequent coarse grainedstructures. It is, however, precisely the neutral

drift resulting from the hung process which enables the transition to actually oc-

cur. Neutral drift eventually leads to a suitable sequence context which gives rise

to the major structural rearrangement upon a single point mutation.

The temporal sequence of major structural transitions are not made pre-

dictable by the shape space topology considered here. The indeterminacy derives

from the additive modularity of RNA secondary structure. A complex base pairing

pattern, such as the tRNA clover leaf, can be assembled by constructing the com-

ponents (hairpins) in virtually any order. What becomes predictable, however,

is the nature of the major structural transitions, and the fact that they must be

preceded by a period of neutral drift leading to generalized shifts or de novo stack

formation. Once the early phase of evolution has elapsed, a fairly educated guess

about the number of such transitions needed to reach a target is possible.

Point mutations alone are probably impractical in the evolutionary design of

large structures in the laboratory. The use of chain elongations and concatenations

is likely to be more effective. In view of what we have shown here, it will be

important to understand how the shape space topology responds to these changes

in sequence space.
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