
International Institute for Applied Systems Analysis
Schlossplatz 1 • A-2361 Laxenburg • Austria

Telephone: (+43 2236) 807 342 • Fax: (+43 2236) 71313
E-mail: publications@iiasa.ac.at • Internet: www.iiasa.ac.at

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work.

Interim Report IR-99-063

Variances of Population Projections:
Comparison of Two Approaches
Dietmar Bauer (Dietmar.Bauer@tuwien.ac.at)  
Gustav Feichtinger (or@e119ws1.tuwien.ac.at)  
Wolfgang Lutz (lutz@iiasa.ac.at)  
Warren Sanderson (wsanderson@datalab2.sbs.sunysb.edu)  

Approved by

Gordon J. MacDonald (macdon@iiasa.ac.at)
Director

November 8, 1999

mailto:Dietmar.Bauer@tuwien.ac.at
mailto:or@e119ws1.tuwien.ac.at
mailto:lutz@iiasa.ac.at
mailto:wsanderson@datalab2.sbs.sunysb.edu


ii

Contents

1. The Univariate Case ......................................................................................................2

1.1. The Random Lines Approach.................................................................................3

1.2. The AR(1) Approach..............................................................................................4

1.3. Theorem 1...............................................................................................................6

1.4. Theorem 2...............................................................................................................8

2. The Multivariate Case ...................................................................................................8

2.1. The Random Lines Approach.................................................................................9

2.2. The AR(1) Approach............................................................................................10

2.3. Theorem 3.............................................................................................................10

3. A Simulation Study .....................................................................................................11

4. Concluding Remarks ...................................................................................................12

References .......................................................................................................................13



iii

Abstract

There has been a recent upsurge of interest in probabilistic population projections. Two
methods have been suggested in the literature for forecasting the inputs into those
projections: (1) a random lines (RL) approach, and (2) a simple autoregressive approach
(AR(1)). The purpose of this paper is to study analytically the differences produced by
the two methods. We do this in the context of a model of variability in population
growth rates. Two cases are considered: One where there is no population age structure
and one where there is one. In both, we find that the variance using the AR(1) approach
is initially smaller than that of the RL approach, but that over time the variance using
the RL approach grows more rapidly leading to an instant of time when the variances
are equal.
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Variances of Population Projections:
Comparison of Two Approaches
Dietmar Bauer, Gustav Feichtinger, Wolfgang Lutz, Warren Sanderson

Probabilistic population projections have recently been receiving more attention. The
reason for this seems to lie in a dissatisfaction with the conventional approach of
producing high and low variants in addition to a medium variant. There seem to be three
main points of criticism of this approach as, e.g., represented by the UN population
projections published every two years.

One often criticized aspect lies in the fact that the variants only modify fertility
assumptions and do not take account of the uncertainty in future mortality and migration
trends. Especially with respect to future life expectancy there seems to be a greater
sense of uncertainty today than some years ago in both high and low mortality
countries. The HIV/AIDS pandemic and the return of some infectious diseases, together
with environmental changes that may impact health and basic subsistence in certain
parts of the world, have made declining life expectancy a sad reality in some countries
and a real possibility for the future in a larger number of countries. On the other hand, a
strong scientific dispute about the upper limit of the human life span makes it an open
question, whether in some countries, by the middle of the next century, life expectancy
can reach 95 years or will stop around 85 years. Hence there is a sense that these great
uncertainties should also be reflected in the population projections.

Another problem has to do with the regional aggregation of high and low variants.
As defined by the UN, “low and high fertility variants are usually thought to bracket the
probable range of future population change for each country.” Whatever is meant by a
“probable range,” it is going to be a very different kind of range. If the strong additional
assumption of perfect correlation among countries is made, e.g., in the case of the global
high variant, all countries in the world will simultaneously experience the upper end of
the range. By orders of magnitude, this should be less likely than for a given country to
experience the upper variant.

This problem leads to the final and most general point: there are essentially two
alternative ways to deal with the issue of possible deviations from the medium or main
variant, which is also considered to be the best guess: One is to go for scenarios which
demonstrate the effect of a specific consistent set of assumptions without attempting to
make any statement about the probability of the specific combinations. Such not-
impossible scenarios can have important educational functions but are not really a good
planning tool because they do not tell the user whether the case described is of such
probability that it should be taken seriously, or whether it can be disregarded as a very
low probability event, such as a major meteorite hitting the earth soon. The alternative is
to go for explicitly probabilistic projections. To the users who are interested in
information beyond a best guess variant, such probabilistic projections can give
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important additional information, especially in cases that involve a cost function. For
instance, in the case of the reform of a pension system, a deviation from the expected
path by 20% may mean the collapse of the system, while a deviation of 5% could still
be absorbed. Clearly, a policy maker will be interested whether a 20% deviation is
something he will have to actually worry about, or whether it is an extremely low
probability event. The traditional high (or low) variant is difficult to interpret. A
consistent probabilistic framework seems to be the only meaningful way to deal with
this issue.

Among a larger number of proposals on how to design probabilistic projections
(Keyfitz 1981; Stoto 1983; Ahlburg and Land 1992; Pflaumer 1992; Lee and
Tuljapurkar 1994; Alho 1990; Lutz et al. 1996, 1997) there seem to be two main
approaches that have been translated into empirical applications for specific countries.
One is based mainly on time series analysis and uses autoregressive time series models
(AR(1)). The other is closely related to the traditional expert-based variants approach
which typically assumes linear trends between the starting value and the value assumed
in the target year. If the values in the target year are assumed to have a certain
distribution, this technique may be labelled a probabilistic random lines approach (RL).
An example of the first approach is the work by Lee and Tuljapurkar (1994), which
focuses on the US. The latter approach has been undertaken by Lutz et al. (1997) for all
world regions, and recently Lutz and Scherbov (1997) for Austria.

Because of the different kinds of data required and the different ways of deriving
and using expert judgment, the two approaches cannot be directly compared. Since for
many countries in the world no reliable demographic time series data exist and the
application of any time series model requires a certain number of expert choices, there
never can be a fully “objective” way to obtain the future variance of the process.
Empirical sensitivity analyses of some of the assumptions involved in the different
models have been given elsewhere (Lutz and Scherbov 1997).

An unresolved analytical question is whether the random lines approach
systematically underestimates the variance of demographic variables of interest as
compared to the AR(1) approach. Lee (1999, p. 172) conjectures with respect to this
approach that it “could not exactly generate the probability distribution for the age
structure (dependency ratios, for example) or for any other measure that depends on the
shapes of vital rate trajectories.” This is a crucial question to be resolved before
generally recommending this approach to statistical agencies. This specific question is
the focus of this paper.

The paper is organized as follows. In Section 1, the univariate case of an aggregated
population is considered. Section 2 deals with the case of an age-structured population
with only one fertile age group. In Section 3 we then compare the analytical results to
the findings from simulations. Section 4 concludes the paper.

1. The Univariate Case
In this section, we will consider the following problem: Let the population size at time t
be denoted with Pt. The population size at time 0, P0 , is measured and thus given as a
deterministic variable. We will assume, that population growth can be described by a
model of the following form:

P e Pt
r

t
t

+ =1
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Here rt denotes the growth rate, which is assumed to be a random variable. Again the
growth rate at time 0, r0, is assumed to be given and deterministic. The population
projection is now performed using the following general scheme:

1.  Experts are asked for their guesses of three values of rT, for some projection horizon
T: The estimated mean plus two values specifying the uncertainty of the guess, e.g.,
the 5% and the 95% quantiles.

2.  The stochastic process (rt), 1 ≤ t ≤ T  is modeled by one of the two approaches
described in 1.1 and 1.2 below.

3.  A number of realizations corresponding to the stochastic process derived in step 2 are
generated.

4.  The population size is calculated for each of the realizations of step 3.

5.  The distribution of the population projection is evaluated and its quantiles are
plotted.

The two approaches, which are compared in this paper can be described as follows.

1.1. The Random Lines Approach

In the random lines approach, rt is assumed to be a random variable, which can be
decomposed into two components: rt = rt

d + rt

s. Here rt

d denotes the deterministic part of
the random variable, which can be calculated from the mean rT

d, given by the experts,
and the initial growth rate r0 as follows:

r =  
t
T

r  +
T - t

Tt
d

T
d r0

The stochastic part rt

s is derived from the experts’ guess in the following way: the
two quantities provided by the experts, corresponding to the uncertainty of the guess of
the mean, can be used to specify a distribution (e.g., a normal distribution), which
represents this uncertainty. Denote this random variable with rT

s. Then rt

s is assumed to
be t/T rT

s. This corresponds to Figure 1.

Note that for the main result, we do not impose the assumption that the distribution
of rT

s is normal. Also note that the deterministic part rT

d can show any behavior provided
the values at time 0 and at time T coincide with the corresponding values r0

d and rT

d.
Both assumptions, that the normal distribution is used and that the deterministic part of
the growth rate is linear, are made only for the sake of notational simplicity. They are
not crucial for the analysis, as will be clear from the discussion.
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Figure 1.  Scheme for the random lines approach. r0 is measured, rme is the mean given
by the experts. rlo and rup are the upper and the lower points given by the experts. These
two points are used to construct the distribution of the growth rate at time T.

The variance of rT

s is given by the experts as indicated above and will be denoted
with VT

2. Note that due to the assumed model of the population size, the following
equation holds true:

log( ) log( ) log( )P P r r Pt t t j
j

t

+
=

= + = +∑1 0
1

Thus the logarithm of Pt+1 can be written as the sum of two terms: log(P0) and the
sum of rj. Since P0 is assumed to be deterministic, the variance contribution of this term
is equal to zero. Thus we have to investigate the variance of the first term. Recall, that rj

was decomposed into a deterministic and a stochastic part. The variance is due to the
stochastic part only and can be written as:
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T
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Note that for t=T this variance is quadratic in T.

1.2. The AR(1) Approach

This approach uses a different model for the stochastic part of the process (rt). Again the
growth rate is decomposed into a deterministic part and a stochastic part: rt = rt

d + rt

s.
But now the stochastic part is modeled as an AR(1) process, i.e., the following equation
holds true:

r r et
s

t
s

t= +−α 1

Here (et) denotes a white noise process, i.e., et is a sequence of independently
identical distributed random variables with mean zero and variance Ve

2. Thus E(et es

T) =
0 for s ≠ t and E(et

2) = Ve

2 where E denotes the expectation. |α| < 1 is a real number, the
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autoregression coefficient. A typical realization of an AR(1) process with
autoregression coefficient α = 0.85 can be seen in Figure 2.

Figure 2.  One example of a trajectory of an AR(1) process, T=50, α =0.85.

Note that the choice of α introduces another parameter, which has to be somehow
specified. Two possibilities are to estimate it from past observations, or to use another
expert’s guess. However, as will be clear from the results below, the choice of α does
not influence the results obtained in this paper (qualitatively). We will thus assume that
α has already been specified. Using the recursion defining the autoregression, we
obtain: r et

s j
t jj

t
= −=

−∑ α
0

1 . The variance of the white noise process is derived from the

variance of rT

s. The restriction, that rT

s has variance VT

2 leads to an equation defining the
variance of the noise et. Let the variance of the noise be denoted with Ve

2. Then the
autoregressive model for rt

s implies:
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The second equality sign holds due to the white noise property. This equation
defines for fixed α the variance Ve

2. Note that for T large, the variance of et will be close
to (1-α2)VT

2 and thus will not tend to zero, as is the case for the random lines approach.
Analogously to the random lines approach, the variance of the logarithm of the
population size can be calculated. Again, the variance is totally due to the sum of the
stochastic parts of rt. Thus the variance can be written as:
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Inserting the formula obtained for the noise variance Ve

2 into this expression gives:
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Note that this expression for t=T and large T is close to T VT

2/(1-α2T) and thus grows
only linearly in the projection horizon.

Using this framework, we are able to state the following theorem, which compares
the two variances for the logarithms of the population size obtained above.

1.3. Theorem 1

For the logarithm of the population size the following statements are true:
•  For t=1 the variance using the AR(1) approach is not smaller than the variance

corresponding to the random lines approach, irrespective of the value of |α|<1. If
T>1, strict inequality holds.

•  For t=T, there exists a T0, such that the variance corresponding to the random lines
approach is greater than the variance corresponding to the AR(1) approach for T>T0.

•  For 0<α<1 there exists at most one value t, where the variances of both approaches
are equal.

Proof: At t=1, the variance of the logarithm of the population size corresponding to
the random lines approach is easily seen to be equal to VT

2/T2. For the AR(1) approach,
the variance of the logarithm is equal to Ve

2=VT

2 (1-α2)/(1-α2T), the variance of the white
noise sequence. For T=1 we have equality, and also for α = 0. The variance from the
AR(1) approach is strictly greater for T>1. Next note, that 1-α2T = (1+α2+4+...+2(T-1) )(1-
α2) and thus the variance of the AR(1) approach is monotonically decreasing with
increasing |α|. For |α| → 1 the variance tends to 1/T, as can be seen by de l’Hopitals
rule. Since for T>1, 1/T > 1/T2 holds, the first part of the theorem is proven.

To show the second part, note that for T tending to infinity, the variance of the
logarithm of the population size at t=T corresponding to the random lines approach
increases quadratically in T, whereas the variance corresponding to the AR(1) approach
only increases linearly. Thus from a certain T0 onwards, the variance corresponding to
the random lines approach will be greater.

In order to show the last point, we first assume without restriction of generality that
VT

2 =1. Thus the variance corresponding to the random lines approach will be equal to
t2(t+1)2/4T2, which clearly is convex in t. For the AR(1) approach the numerator of the
expression for the variance is equal to ( 2 2 21 2 1 2 2 2α α α α α α+ + +− + − + − −t t t t t( ) ),
which will be shown to be non-negative and convex in t. First we will prove the
convexity. The derivative of this expression with respect to t is equal to 1-α2 + 2α1+t log
α-2α2(t+1) log α+2α2+t log α. This is easily seen to be positive for t=0. Its derivative with
respect to t is equal to 2 (log α)2 (α1+t + α2+t - 2α2(t+1)), which is positive due to |α|<1. This
shows convexity. Non-negativity for general t follows from non-negativity for t=1 and
positivity of the derivative with respect to t.

Thus we have proven that both variances are convex functions, where at t=1 the
variance corresponding to the AR(1) approach is bigger, whereas for T large enough,
the variance corresponding to the random lines approach is bigger. Straightforward but
cumbersome evaluations show that for any intersection point the first derivative of t2

(t+1)2/(4T2) is greater than the maximal derivative corresponding to the AR(1) approach
for any 0<α <1. This completes the proof.
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Note that the theorem uses only second order properties and is not confined to any
assumption on the distribution of rT

s, except for the existence of second order moments.
Also it is robust with respect to α, i.e., it holds for any value of α. However, the point
where the two variances intersect depends on the actual value of the autoregressive
parameter. In Figure 3, the difference of the variance obtained from the random lines
approach minus the variance obtained by the AR(1) approach for VT

2 =1 is plotted for
various values of T. Figure 4 plots the difference of both variances for T=60 and typical
values of α. It can be seen, that with increasing α the intersection point also increases.

Figure 3.  Difference of the variance of random lines approach and AR(1) approach.
α=0.85,0≤t≤T≤60.

Figure 4.  The variance of the random lines approach - variance of the AR(1) approach.
T=60,0≤t≤60,0.5≤α≤1.

In the last step, we will use these results to obtain results for the distribution of the
population size rather than its logarithm. In order to make the analysis easy, it will be
assumed that the distribution of rT

s is normal, which then implies that the distribution of
the logarithms of the population size will be normal. However, it is obvious how to
generalize these results to other classes of distributions. In this case, the smaller
variances translate to smaller symmetric simulated confidence regions for (Pt). Here
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with simulated confidence regions, we denote the interval which is obtained from the
simulated distributions of the population sizes at different times t by the interval [ta,t1-a],
where tx denotes the simulated x-quantile. Since the logarithm is a monotonic function,
the results of Theorem 1 also hold for the population sizes.

1.4. Theorem 2

The simulated confidence regions for the population size for the AR(1) approach for
t=1 are larger than the simulated confidence regions for the random lines approach.
There exists a T0, such that for T > T0, the simulated confidence regions are larger for the
random lines approach. There exists at most one intersection point where the simulated
confidence regions have the same length.

Thus we have found that for the first couple of decades the AR(1) approach leads to
a higher variability in the projections, whereas in the long run the converse is true.
Higher variability has to be understood in the sense that the confidence regions obtained
from the simulations using one approach include the corresponding intervals obtained
from the other approach. Therefore in every statement like “the population size will be
between plo and phi in the year T with at least 95% confidence” drawn from the random
lines approach would also be supported from a corresponding AR(1) approach (where
the probability would be estimated to be larger), whereas this is not true for the first
periods.

2. The Multivariate Case
In this section, we will try to generalize the findings of the last section to a more general
model including age structure. Denote the age structure of the population at time t with
Pt,i, where t refers to the considered period and the index i indicates the different classes.
These quantities are the components of the vector of the age structure. We will assume
that the age structure evolves correspondingly to the following model.

P

f t

m t

m t

m t
Pt

f

t+ =





























1

1

2

0

0

0

( )

( )

( )
.

( )

.

.

Here mi(t) denotes the mortality rate and f(t) denotes the fertility rate. The most
restricting feature of this model lies in the fact that we assume only one fertile age
group. Denoting the big matrix with L(t), it is easy to see that the elements Pt,i are just
products of the mortality and fertility rates times the initial condition. These products
can be transformed into sums in analogy to the univariate model by taking logarithms.

We will investigate two different situations: a) the distributions of the various rates
are assumed to be uncorrelated; and b) the rates are assumed to be perfectly correlated
with not necessarily equal variances. Note that by doing so, we restrict the experts’
guess. In principle, the experts could be free to choose the complete distribution of the
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final rates by, e.g., specifying the logarithms of the rates to be normally distributed with
arbitrary variance-covariance matrix, which would require (number of classes)2 guesses
for the variance. We reduced this degree of freedom in two ways: The assumption of
independent models for the rates is equivalent to the covariance matrix being diagonal,
whereas the other assumption is equivalent to the idea that there is just one variable that
drives the shifts in the rates. It is straightforward to generalize the analysis to the case
where there are several groups of rates where the different groups are described by
uncorrelated processes, where each group is driven by just one random variable.

Let F(t) denote the vector (m1(t),m2(t),...,mj-1(t),f(t)) and let lF(t) = log(F(t)) denote
the vector of logarithms of the various rates. The population projection is now
performed using the same general scheme as in the univariate case.

1. Experts are asked for their guesses of three values for every component of F(t) for
some projection horizon T: the estimated mean plus two values specifying the
uncertainty of the guess, e.g., the 5% and the 95% quantiles.

2. The stochastic process (lF(t)), 1 ≤ t ≤ T is modeled by one of the following two
approaches.

3. A number of realizations corresponding to the stochastic process derived in step 2
are generated.

4. The population size is calculated for each of the realizations of step 3.

5. The distribution of the population projection is evaluated and quantiles can be
plotted.

The following analysis will describe the properties in the multivariate setting of the
two approaches used in the univariate case in more detail.

2.1. The Random Lines Approach

The generalization of the random lines approach to the multivariate case is
straightforward. The vector is lF(t)=t/T lF(T) + (T-t)/T lF(0), where lF(0) denotes the
observed value at time t=0 and lF(T)=lF(T)s + lF(T)d. Here lF(T)s denotes the random
variable, specified by the experts, and lF(T)d denotes the mean, which is also given by
the experts. In both cases, the variance of the vector lF(t) can easily be seen to be equal
to t2/T2 VT

2. Here VT

2 denotes the covariance matrix of lF(T)s. The quantity of interest is
the age structure. For notational simplicity we will only give the argument for i=0 and
t=fk for some integer k. In this case, ( )∏ ∏−

= =
−−−−−= 1

0 1,0 )1()1(
k

j

f

i ifk ijftmjftfP .

Thus the logarithm is equal to

lo g lo g ( ) lo g ( ),P f t j f m t j f ifk
j

k

i
j

k

i

f

0
0

1

0

1

1

1 1= − − + − − −
=

−

=

−

=
∑ ∑∑ .

From this equation, we observe, that the essential terms are the same as in the univariate
case, namely sums of components of the random processes. Therefore, we conclude that
the basic structure of the univariate and the multivariate problems are quite the same.



10

2.2. The AR(1) Approach

For the AR(1) approach first note that we have to deal with a more complicated model
structure, since the autoregressive coefficient is no longer a scalar, but a matrix: lF(t) =
AlF(t-1)+ E(t), where E E(t) = 0 and E E(t)E(t)T = Ve

2 is a j times j matrix. From the
white noise properties of E(t), i.e., E E(t)E(s)T = 0, s ≠ t, we obtain the variance VT

2 of
lF(t) as V A V AT

j
e

j

j

T2 2

0

1
=

=

−∑ ( )’. In order to solve this equation with respect to the entries

in Ve

2, we have to impose some constraints on the various matrices. One possible
approach would be to restrict VT

2 and A to be diagonal: This means, that all processes are
scalar AR(1) processes which are uncorrelated. In this case it is straightforward, how to
apply the results of the last section to obtain the relevant variances. Another possibility
is to restrict A to be proportional to the identity matrix, i.e., A= αI and VT

2 to be
arbitrary. In this case, the sum reduces to a scalar sum times Ve

2. In this case we obtain
Ve

2 = VT

2 (1-α2)/(1-α2T).

Using the discussion above, we are able to state the main theorem of this section.

2.3. Theorem 3

Using either the assumption of uncorrelated mortality and fertility rates or the
assumption of perfectly correlated rates, for the logarithm of the vector of the age
structure the following statements are true:
•  For t=1 the variance using the AR(1) approach is not smaller than the variance

corresponding to the random lines approach, irrespective of the value of |α|<1. If
T>1, strict inequality holds.

•  For t=T, there exists a T0, such that the variance corresponding to the random lines
approach is greater than the variance corresponding to the AR(1) approach for T>T0.

•  If the distribution of lF(T) is normal, then the simulated symmetric confidence
regions for the random lines approach will be smaller for t=1 than the simulated
symmetric confidence regions obtained from the AR(1) approach. There exists a T0

such that for T>T0, the simulated symmetric confidence regions for the random lines
approach will be larger.

Proof: The proof of the first point is obvious from the result for the univariate case.
The proof of the second point uses the representation of the logarithm of the age
structure as given by:

log log ( ) log ( ),P f t jf m t jf ifk
j

k

i
j

k

i

f

0
0

1

0

1

1

1 1= − − + − − −
=

−

=

−

=
∑ ∑∑

Each of the sums is similar to the sum used in the univariate case. The time index is
shifted f periods instead of 1 period. However, this leads only to a different
interpretation: For the random lines approach, the only difference lies in the fact, that
the time horizon T has to be adjusted to T/f and in the AR(1) approach the

autoregressive coefficient α is replaced by αf , the variance is equal to V e
j

j

f
2 2

0

1

α
=

−

∑ .

However, this does not change the fact, that for the random lines approach the variance
of the sum tends essentially quadratically to infinity as T goes to infinity, whereas for
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the AR(1) approach the variance essentially only grows linearly. Thus, for each of the
sums in the above equation we have obtained the required result. For the case that the
rates are modeled independently, we have shown the second point. In the case of
correlated rates, note that we assumed that there is only one driving variable. Thus, we
may rewrite the above equation as a constant times a sum of the driving variable. Since
the variance of the driving variable will be larger for the random lines approach for T
tending to infinity due to the result for the univariate case, the second point is also
proven in this case.

Finally, as in the univariate case, it is possible to translate these results to results
concerning the simulated symmetric confidence regions, provided the distribution of
lF(T) is assumed to be normal. This completes the proof.

3. A Simulation Study
In this section the results obtained in Section 1 will be demonstrated using a small
simulation study. The data is taken from Lutz and Scherbov (1997). Recall the model of
Section 2: The total population size (in the present case of Austria) is modeled as

tr
tt ePP 1−= . As a starting point the population size in 1995 was chosen. The expert

choice in our setup is given by the projections of Lutz and Scherbov (1997): The
logarithm of their mean scenario for 2050 was linearily interpolated, which led to a
constant annual growth rate of approximately rd=-4.2325*10-4. This completed the
specification of the deterministic part rt

d. The random part rt

s was generated with either
the random lines approach or an AR(1) model, where the variance VT

2 was selected, so
that (somewhat arbitrarily) the results of the AR(1) approach matched the data at
T=2050. This led to a standard deviation of approx. VT =0.004. Figure 5 visualizes the
resulting distributions of the population size. It can be seen clearly, that the random
lines approach leads to small variability in the first couple of decades, whereas for
T=2050 the random lines approach clearly leads to larger confidence regions.

Figure 5.  These two plots show the simulated 5%, 25%, 50%, 75%, 95% percentiles
respectively. The left plot shows the results for the AR(1) approach using α=0.85. The
right plot shows the results for the random lines approach.
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This can also be seen from Figure 6, which documents the sample mean and
standard deviation of the population sizes obtained from the two approaches. All graphs
are drawn on the basis of 1000 simulated trajectories. Note, that the estimated mean is
not equal for the two approaches, since only the mean of the logarithm is identical. Also
note, that the variance plots show the approx. linear increase of the variance in the
AR(1) approach, whereas the corresponding plot for the random lines approach shows
the higher curvature. Clearly the results given in Theorem 1 can be verified in these
plots. Also note the dependence of the intersection point on the value of α: The higher
the value of α, the earlier the two curves intersect.

Figure 6.  Sample mean and sample standard deviation of the population size. The left
picture shows a comparison of the sample mean of the AR(1) approach for various
values of α and the random lines approach. The right picture shows the comparison
corresponding to the standard deviation.

4. Concluding Remarks
The aim of this study was to compare the variance of the autoregressive approach
(AR(1)) with those of the random lines (RL) method. In Theorem 1 we have shown that
only for small time periods does the variance of the AR(1) approach exceed the variance
corresponding to the RL approach. For sufficiently large time periods, however, the
variance of the RL approach is always greater than the variance of the AR(1) method.

It should be noted that this result proves that the conjecture that the RL approach
leads to a systematic underestimation of the variance of the future population size is not
correct. As is exhibited in Theorem 3, this result remains essentially valid for an age-
structured model with only one fertile age group. While these results can be derived
analytically, we see no possibility to deal with the general case of an age-structured
Leslie model in a similar way. The reason for that is the difficulty to derive an
expression for the variance of the sum of the products resulting from multiplying the
first row of a (general) Leslie matrix with the age-structured stock vector. Further work
would be necessary to derive similar results. Simulations recently carried out by Lutz
and Scherbov (1997), using Austrian data for single year age groups to study the same
research question, give very similar results of higher variances for using the RL
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approach. We, therefore, have good reason to assume that the properties proven here
also hold for the multivariate case with more than one fertile age group.
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