
International Institute for Applied Systems Analysis
Schlossplatz 1 • A-2361 Laxenburg • Austria

Telephone: (+43 2236) 807 342 • Fax: (+43 2236) 71313
E-mail: publications@iiasa.ac.at • Internet: www.iiasa.ac.at

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work.

Interim Report IR-99-014

Evolutionary branching and
coexistence of germination strategies

Andrea Mathias (mati@ludens.elte.hu)
Éva Kisdi (kisdi@ludens.elte.hu)

Approved by

Ulf Dieckmann (dieckman@iiasa.ac.at)
Project Coordinator, Adaptive Dynamics Network

June 1999



IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 34
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The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Evolutionary branching and
coexistence of germination strategies
Andrea Mathias
Éva Kisdi

1. Introduction
Mixed strategies are often the best devices for adaptation to unpredictable, fluctuating
environments (Levins 1962, 1968; Cohen 1966; Cooper and Kaplan 1982; Bull 1987;
Philippi and Seger 1989; León 1993; Haccou and Iwasa 1995; Sasaki and Ellner 1995).
Since population growth is a multiplicative process, the long-term fitness of a strategy
in an (ergodic) stochastic environment is given by the geometric mean of its annual
growth rates (Cohen 1966; Bulmer 1985; Metz et al. 1992). As the geometric mean is
considerably decreased by occasional low values of the annual growth rate, avoiding
years of poor recruitment is advantageous even at the cost of suboptimal performance in
good years. Mixed strategies represent a genuine way to achieve this. Some individuals
develop 'safe' phenotypes, which guarantee some recruitment even in very bad years,
while other individuals produce ‘risky’ phenotypes ensuring high recruitment but only
in good years. Although the mixture of 'safe' and 'risky' phenotypes has suboptimal
recruitment in good years, it is buffered from extremely poor performance in bad years.

Germination behaviour of seeds of annual plants is a long-studied example of such
mixed strategies (Cohen 1966; Bulmer 1984; Ellner 1985a,b, 1987; León 1985; Brown
and Venable 1986; Klinkhamer et al. 1987; Venable and Brown 1988; Rees 1994).
Annual plants take a high risk at germination in fluctuating environments, because they
can loose their single reproductive opportunity if the environment turns out to be
unsuitable for seedling establishment or reproduction. These plants can best insure
themselves by keeping each year some seeds from germination, i.e., by developing a
soil seed bank. Germination thus represents the 'risky' strategy, while dormant seeds are
'safe'. Indeed, delayed germination is common in annual plants living in risky
environments like in deserts, during early successional phases and among weeds
(Roberts and Feast 1973; Harper 1977; Ellner and Shmida 1981; Fenner 1985).

In his pioneering work, Cohen (1966) demonstrated the adaptive value of delayed
germination in fluctuating environments and determined the optimal germination
fraction assuming spatially homogeneous environment and density-independent
(exponential) population growth. In density-dependent populations Ellner (1985a)
showed that there is a unique global ESS for germination fraction (see also Bulmer
1984; Ellner 1985b). Ellner (1985a) also argued that in spatially homogeneous
environments different germination strategies cannot coexist in an evolutionarily stable
coalition, i.e., eventually the population will be monomorphic containing a single ESS
germination fraction.
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The evolution of germination fraction in spatially heterogeneous environments,
however, is poorly understood. The few models addressing this problem assume that the
environmental patches are stochastically equivalent, i.e., they represent merely different
realizations of the same stochastic environmental process (Bulmer 1984; Klinkhamer et
al. 1987; Venable and Brown 1988). Environmental heterogeneity affecting life history
parameters (such as seed survival, yield, etc.), though ecologically plausible, has not
been studied.

In this paper we set up a model which incorporates spatial heterogeneity of the latter
type in addition to temporal fluctuations of the environment and density dependence.
Since spatial heterogeneity and within-patch density dependence may promote
coexistence of several strategies (cf. ’soft selection’ models, Christiansen 1975; Strobeck
1979), we cannot rely merely on a traditional ESS-analysis of germination strategies.

There is a recently developed framework for modelling adaptive dynamics that
accommodates coexisting strategies and gradual  build-up of stable coalitions of
strategies in initially monomorphic populations via evolutionary branching (Metz et
al.1996; Geritz et al. 1997a,b; Geritz and Kisdi this volume). Using this modelling
framework we show that different germination strategies may indeed coexist when the
environment is spatially heterogeneous. No previous model predicted evolutionarily
stable coexistence of different germination fractions. Moreover, we find evolutionary
branching of germination strategy: An initially monomorphic population may become
dimorphic containing two strategies with gradually more and more different
germination fractions. The predictions of the model are confirmed by numerical
simulations.

The finite-population simulations, however, revealed a specific evolutionary pattern
which could not be predicted by the infinite-population model analysis. Due to
environmental fluctuations, the density of one of the coexisting germination strategies
may accidentally drop so much that the strategy goes extinct in a finite population. In
this way the population falls back to monomorphism and starts to build up the
evolutionarily stable coalition anew. Repeated events of extinction followed by
evolutionary branching result in a cyclic evolutionary tree reminiscent of iterative
evolution (Futuyma, 1998). We discuss how the modelling framework can be extended
to incorporate extinction caused by environmental stochasticity in finite populations.

2. Model Assumptions
Consider an annual monocarp plant population having a seed bank, where a fraction G
of the seeds germinates each year. We assume that the germination ability of seeds is
independent of their age, i.e., the newly produced seeds have the same probability of
germination at the beginning of the next reproductive period as the seeds which have
been dormant (and are still viable) in the seed bank for several years. The environment
in the soil is independent from the above-ground conditions, and can be characterised by
a constant mortality rate, D, such that a fraction (1-D) of the seeds survive until the next
year.

The above-ground environment fluctuates in time. For simplicity we assume that there
are only two types of years (’good’ and ’bad’), and that years are uncorrelated. The
distribution of the environment is thus specified by the probability of good years, p. The
yield, Y, defined as the average number of seeds produced by one germinated seed,
depends on the above-ground environment during the reproductive period and on
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population density. In bad years all seedlings die before reproduction, i.e., Y=0. In good
years the yield is a decreasing function of the number of seedlings according to the
"reciprocal yield law" (Harper 1977),

( )< \ *1
D

*1 N
= =

+� γ
(1)

where N is the number of seeds prior to germination, GN is therefore the number of
competing seedlings, a and k are positive constants, and γ  is the scaling factor of seed
numbers (a higher value of γ  results in proportionally higher seed numbers but does not
change the annual or long-term growth rate). First we assume that γ  is large enough for
the population to be considered effectively infinite.

To model spatial heterogeneity we assume that the environment consists of two patches,
which differ in the soil mortality rate of seeds (D1 and D2, respectively). The patches are
identical otherwise: In particular, they experience good and bad years synchronously
(unlike in the models of Bulmer 1984; Klinkhamer et al. 1987; Venable and Brown
1988). Density dependence operates within each patch independently; that is, the
expected yield of a seedling depends on the number of seedlings in the same patch.
Each year a fixed proportion of newly formed seeds, m, migrates to the other patch.
Figure 1 summarizes the life cycle of the population.

Similar to traditional ESS analysis, we model germination strategies as if they were
haploid, true-breeding genotypes. Mutations of germination fraction are assumed to be
infrequent and to have small phenotypic effect.’

(1- )m G Y

(1- ) (1- )G D
1

(1- ) (1- )G D
2

m G Y

m G Y

(1- )m G Y

PATCH 1 PATCH 2

Figure 1. Life cycle diagram of a population of germination strategy G living in a
spatially heterogeneous environment. Dashed lines: in good years only; solid lines: each
year.

3. Invasibility Analysis
Assume the population is initially monomorphic for the resident strategy G. The number
of seeds in patch 1 just prior to germination in year )1(,1 )1( ++ tNt G , is the sum of

(i) those seeds which were present in year t, did not germinate and survived in the soil,
i.e., ( )( ) )(11 )1(

1 tNDG G−− ;
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(ii) the non-migrant fraction of the yield produced by the seeds germinated in the
previous year, ( ) ( )( ) ( )tGNtGNym GG

)1()1(1− , provided that year t was good; and

(iii) the seeds produced in the previous year in the other patch which migrated here,
( )( ) ( )tGNtGNmy GG

)2()2( , provided again that year t was good (cf. Figure 1). The number
of seeds in the first and in the second patch thus follow the stochastic process

( ) =+1)1( tN G

( ) ( )( ) ( ) ( )( )[ ]
( ) ( )( )

( ) ( )( )[ ]









−−

+

+−+−−

bad is year  if 11

good is year  if 

111

1
)1(

)2()2(

)1(
1

)1(

tDGtN

ttGNyGtmN

tGNyGmDGtN

G

GG

GG

(2a)

and

( ) =+1)2( tN G

( ) ( )( ) ( ) ( )( )[ ]
( ) ( )( )

( ) ( )( )[ ]









−−

+

+−+−−

bad is year  if 11

good is year  if 

111

2
)2(

)1()1(

)2(
2

)2(

tDGtN

ttGNyGtmN

tNGyGmDGtN

G

GG

GG

(2b)

Strategy G is viable, i.e., it has a positive stationary distribution of seed numbers, if its
long-term logarithmic growth rate at low population density is positive (Ellner 1985a).
When population density is low, the yield in good years for both patches is
approximately y(0)=a/k. Substitution of y(0) into Eqs. (2) gives a density-independent
stochastic matrix process, the long-term growth rate of which is hard to determine
analytically (Tuljapurkar 1989). However, to obtain a sufficient condition for viability
we can consider a population as if it lived only in the better patch (the one with lower
mortality of seeds), and all migrant seeds were lost. The long-term logarithmic growth
rate at low density of such a population would be p ln[(1-G)(1-D) + (1-m) G a/k] + (1-p)
ln[(1-G)(1-D)], where D=min(D1 ; D2 ) (cf. Cohen 1966). All strategies for which the
above expression is positive are viable in the two-patch model of Eqs. (2) as well. In all
examples presented below, the range of viable strategies is wider than (0.00011,
0.99999), i.e., practically all germination fractions are viable.

Now consider a rare mutant strategy, g, in the established population of strategy G. As
long as the mutant density is negligible compared to the resident, the yield is determined
by the number of seedlings of the resident strategy. The mutant’s seed numbers in the
next year therefore are

( ) =+1)1( tN g

( ) ( )( ) ( ) ( )( )[ ]
( ) ( )( )

( ) ( )( )[ ]











−−

+

+−+−−

bad is year  if 11

good is year  if 

111

1
)1(

)2()2(

)1(
1

)1(

tDgtN

ttGNygtmN

tGNygmDgtN

g

Gg

Gg

(3a)

and
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( ) =+1)2( tN g

( ) ( )( ) ( ) ( )( )[ ]
( ) ( )( )

( ) ( )( )[ ]











−−

+

+−+−−

bad is year  if 11

good is year  if 

111

2
)2(

)1()1(

)2(
2

)2(

tDgtN

ttGNygtmN

tGNygmDgtN

g

Gg

gg

(3b)

The mutant strategy will spread if its long-term logarithmic growth rate is positive.
Unfortunately, the long-term growth rate of the mutant cannot be obtained analytically
since (i) it depends on the unknown distribution of the resident seed numbers, )()1( tN G

and )()2( tN G , and (ii) the calculation of the long-term growth rate in structured
populations is cumbersome even if the resident distribution were known.

In order to get a numerical approximation for the mutant long-term growth rate, we
simulated the resident population dynamics (Eqs. (2)) and sampled the stationary
distribution of the resident seed numbers. Iterating Eqs. (3) we calculated the annual
growth rate of the rare mutant in each year t,

( )
( )

N t

N t
g

g

+ 1
(4)

where )()()( )2()1( tNtNtN ggg +=  is the total number of seeds of the mutant strategy. The

long-term logarithmic growth rate of the mutant strategy g in the resident population G
is

( ) ( )
( )tN

tN

T
Ggr

g

g
Tt

t

1
ln

1
,

1

0

+
= ∑

−=

=

(5)

 (Cohen 1966; Bulmer 1985; Metz et al. 1992). If r (g,G) is positive then the mutant
strategy is able to invade the resident, otherwise the mutant dies out.

4. Adaptive dynamics of germination strategies
Repeating the invasibility analysis for many pairs of (viable) mutant and resident
strategies we determined which mutant strategies can invade given resident populations.
The results are summarized by a so-called pairwise invasibility plot, i.e., a sign plot of
r(g,G) (Van Tienderen and De Jong 1986; Metz et al. 1992; Kisdi and Meszéna 1993,
1995; Geritz et al. 1997a,b). Figures 2a and 3a show pairwise invasibility plots for two
sets of parameter values. Below we summarize the information obtained from the model
analysis; see Metz et al. (1996), Geritz et al.(1997a,b), or Geritz and Kisdi (this volume)
for a detailed account on the applied methods.
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Figure 2. (a) Pairwise invasibility plot with an evolutionarily stable germination strategy
G*=0.57. Model parameters: m=0.2, D1   =0.1, D2    =0.9, p=0.7, a=5⋅103, k=3, γ =100. (b)
Simulated evolutionarily tree.

In the first example (Figure 2a) there is a germination fraction, G*=0.57, which is
evolutionarily stable: No mutant strategy g has a positive long-term growth rate in the
established population of G*. Moreover, G* is a convergence stable strategy. If the
initial germination fraction is smaller than G*, then a mutant with slightly higher
germination fraction can invade and vice versa, therefore the germination fraction
converges towards G* via small mutational steps (Eshel and Motro 1981; Eshel 1983;
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Taylor 1989; Christiansen 1991). The population thus undergoes directional evolution
until the ESS germination fraction is established.

0 Germination strategy G 1

G* G*

1

1 2
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(g
)

1

G*

( a ) ( b )

( c )

Figure 3. (a)  Pairwise invasibility plot with a branching point at G*=0.52. Model
parameters: m=0.01, D1=0.1, D2=0.9, p=0.7, a=5⋅103, k=3, γ=2⋅108 .

(b) Isocline plot. Shaded areas: set of strategy pairs which can coexist in protected
dimorphisms; arrows: directions of evolution in G1   (horizontal) and G2    (vertical). Thick
lines: G1 and G2 isoclines; solid: evolutionarily stable, dashed: evolutionarily unstable.
The symmetry of the plot on its main diagonal is the consequence of the interchangeable
notation of G1 and G2.

(c) Branching of the evolutionary tree and directional evolution towards the
evolutionarily stable dimorphism. Grey and black colored points represent the
strategies, which are more frequent in the first and in the second patch, respectively.

In the second example (Figure 3a), the germination fraction G*=0.52 is convergence
stable but not evolutionarily stable: It represents a unique configuration called
evolutionary branching point. Notice that any mutant strategy sufficiently close to G*,
either larger or smaller, can invade the resident population of G*, but G* as a rare
mutant can also invade any other strategy. In the vicinity of G* therefore the population
will become dimorphic, containing two very similar germination strategies, the original
resident and a slightly different mutant. Once the population has become dimorphic, the
coexisting strategies undergo divergent coevolution resulting in two clearly distinct
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germination fractions. The evolutionary tree of germination strategies thus develops two
branches.

Modelling evolution after evolutionary branching requires determining the set of
strategy pairs, which can form a protected dimorphism (the dimorphic counterpart of the
concept of viable strategies in monomorphic populations, cf. Metz et al. 1996), and
finding the evolutionarily stable dimorphism in this set. Those strategies can coexist in
protected dimorphism, which can invade each other’s population when rare. The set of
possible dimorphisms therefore can be obtained by mirroring the pairwise invasibility
plot along its main diagonal, and comparing the mirror image to the original: The
overlapping parts of the ’invasion’ areas contain the pairs of strategies which are able to
coexist (Figure 3b).

A dimorphic population may be invadable by a third mutant strategy. To see whether a
mutant strategy, g, can invade a dimorphic resident population of G1 and G2, we must
calculate its long-term growth rate, r (g, G1 ,G2,). Analogously to Eqs. (3), the mutant’s
seed numbers in the two patches in the next year are

( ) =+1)1( tN g

( ) ( )( ) ( ) ( ) ( )( )[ ]
( ) ( ) ( )( )

( ) ( )( )[ ]



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





−−

++

++−+−−

bad is year  if                                  11

good is year  if         

111

1
)1(

)2(
2

)2(
1

)2(

)1(
2

)1(
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)1(
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2
 denote the number of seeds of the resident

strategies in the two patches. The population dynamical equations for the two resident
strategies can be obtained from Eqs. (6) by substituting G1 and G2  for g, respectively.
Similarly to the monomorphic case, we simulated the resident dimorphic population and
estimated r (g,G1, G2) numerically (cf. Eqs. (4) and (5)).

In order to find the evolutionarily stable dimorphism, consider the following thought
experiment. Assume that one of the resident strategies, say G1, is fixed, while G2 is
allowed to evolve. The mutant long-term growth rate, r (g,G1,G2), thus can be recast as
r1(g,G2 ) with G1  as a parameter, and analysed by a pairwise invasibility plot. The ESSs
or branching points of G2 for different fixed values of G1 constitute the so-called G2 -
isocline (Figure 3b). The G1 -isocline is constructed analogously.

The horizontal (vertical) arrows on Figure 3b show the direction of evolution of G1 (G2)
in the dimorphic population. As the arrows indicate, directional evolution converges to
the intersection of the G1 - and G2 -isoclines (see Matessi and Di Pasquale 1996). The
intersection of the isoclines corresponds to a pair of strategies both of which are
evolutionarily stable given the value of the other: These strategies form the
evolutionarily stable dimorphism. Following evolutionary branching, the population is
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thus expected to evolve to the evolutionarily stable dimorphism where evolution comes
to a halt.

5. Simulation of the evolutionary tree
The predicted course of evolution can be compared to direct simulation. Figures 2b and
3c show the simulated evolutionary trees for the two examples shown above. We start
with an arbitrary monomorphic population (G=0.3) and simulate the sequence of seed
numbers in consecutive years (Eqs. 2). Mutant strategies are periodically generated by
small mutational step (∆G=0.0025) in random directions from the strategy (or
strategies) already present, and introduced into the population at low initial density
( 1)2()1( == gg NN ).We then continue to simulate the joint population dynamics of all

strategies present. If the seed number of a strategy drops below one, then it is
considered extinct and removed from the population. Demographic stochasticity of rare
mutants was not taken into account during the simulations. On the figures, we plot the
strategies present as a function of time.

In the first example (Figure 2b), strategies with higher germination fraction spread in
the population, and lower germination fractions are purged. Germination fraction thus
gradually increases until it arrives at the ESS value G*=0.57, as predicted by the
pairwise invasibility plot (Figure 2a).

In the second example the pairwise invasibility plot (Figure 3a) indicates directional
evolution to G*=0.52 and evolutionary branching in the neighbourhood of G*.
According to the isocline plot (Figure 3b), the two germination strategies coevolve to
the evolutionarily stable dimorphism at G1 = 0.39 and G2  =0.68. Indeed, the simulated
evolutionary tree (Figure 3c) shows that germination fraction first increases towards the
branching point, G*. As the population approaches G*, variation builds up in
germination fraction on both sides of G*, and strategies in the middle go extinct. The
emerging branches evolve apart and converge to the predicted evolutionarily stable
dimorphism. The number of individuals with low germination fraction is higher in the
first patch than in the second: In the first patch seed mortality is low and therefore
dormant seeds are safe. Most individuals of the high germination strategy are in the
second patch, where seed mortality is high.

6. Cycles of evolutionary branching and extinction in finite
populations
So far we have assumed that a strategy is protected from extinction if its long-term
growth rate is positive when rare. The number of seeds, however, fluctuates widely: In
good years the population quickly grows towards a saturation density but in bad years
the number of seeds decreases exponentially. In finite populations these fluctuations can
occasionally lead to very small population numbers and therefore to extinction.

In order to assess which strategies can coexist for a given length of time in a finite
population, we run a series of simulations iterating Eqs. 6 for a number of pairs of
resident strategies. To avoid the intricacies of demographic stochasticity at low
population numbers, we simply considered a strategy extinct if its total seed number
was below 1. From the repeated simulations we estimated the expected time until
extinction of one strategy in the stationary stochastic process of seed numbers of the
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given strategy pair. The results of these simulations for two different population sizes
are shown in Figures 4a and 5a.
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Fig 4. (a) Expected time of coexistence for strategy pairs in the area of protected
dimorphisms. Area marked dark gray: average time until extinction of one strategy of
the dimorphism is higher than 104 years, light grey: average time until extinction is
between 103 and 104, white: average time until extinction is less than 103. X-marks: the
evolutionarily stable dimorphism. Model parameters: m=0.01, D1  =0.1, D2 =0.9, p=0.7,
a=5⋅103, k=3, γ=2⋅104 . Average times were estimated from 50 simulations.

(b) Simulated evolutionary tree with cyclical extinction and branching. Coevolution
approaches the evolutionarily stable dimorphism; extinction of the larger germination
strategy is followed by repeated branching.
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In a considerable part of the set of protected dimorphisms one strategy can go extinct in
relatively short time compared to the evolutionary time scale, therefore a protected
dimorphism indeed does not guarantee long-term coexistence in finite populations.
Extinction occurs when a sufficient number of bad years come in a series. High
germination fraction strategies are especially doomed to extinction, since their seed
number decreases fast during bad years. Since the critical number of bad years is greater
if the population is large, and a longer series occurs with lower probability, the expected
time until extinction increases with population size, especially strongly when bad years
are rare. Population size is set by the scaling factor γ (Eqs. 1). In biological terms, aγ
corresponds to the saturation amount of crop produced by the whole population in a
good year if the number of competing seedlings is very high, i.e., aγ  is the ’carrying
capacity’ for the standing crop. Figure 4a shows the expected time until extinction in a
large population with aγ =108. Extinction times are considerably shorter in a small
population with aγ =104 (Figure 5a).

If one strategy of a dimorphism goes extinct, the population falls back to
monomorphism. The monomorphic population evolves back to the branching point,
undergoes evolutionary branching and evolves towards the evolutionarily stable
dimorphism until extinction happens again. The evolutionary tree thus shows cycles of
branching and extinction (Figures 4b and 5b). In a large population (Figure 4b),
evolution from the branching point to the evolutionarily stable dimorphism passes
through strategy pairs which can coexist for long time. The population thus approaches
the evolutionarily stable dimorphism and spends considerable time nearby before
extinction of the upper branch. In a small population (Figure 5b), however, the
evolutionarily stable dimorphism cannot persist for a long time. Moreover, the expected
time until extinction is also small for the strategy pairs encountered during coevolution
towards the evolutionarily stable dimorphism. The upper branch of the evolutionary tree
goes extinct much before coevolution would reach the evolutionarily stable
dimorphism. The pattern of the evolutionary tree also depends on the frequency and size
of mutations: More frequent or larger mutations speed up evolution, hence the
probability of extinction before reaching the evolutionarily stable coalition decreases.
Notice that γ was set at a very high value in the example of section 4, therefore
extinction did not occur during the simulation depicted on Figure 3c.
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Figure 5. (a) Expected time of coexistence for strategy pairs in the area of protected
dimorphisms. Area marked black: average time until extinction of one strategy of the
dimorphism is higher than 104 years, grey: average time until extinction is between 103

and 104, white: average time until extinction is less than 103. X-marks: the evolutionarily
stable dimorphism. Model parameters: m=0.01, D1=0.1, D2=0.9, p=0.7, a=5⋅103, k=3,
γ=2. Average times were estimated from 50 simulations.

(b) Simulated evolutionary tree with cyclical extinction and branching. Extinction
happens before coevolution could approach the evolutionarily stable dimorphism.
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7. Discussion
In the present paper we have shown that several strategies with different germination
fractions can coexist, and form an evolutionarily stable coalition. Assuming small
mutations, the evolutionarily stable coalition can be built up in an initially
monomorphic population by evolutionary branching. The monomorphic population first
evolves towards a germination fraction at which the long-term growth rate is actually
minimal (Geritz 1997a; see also Abrams et al. 1993). In the neighbourhood of this so-
called branching point even very similar strategies can coexist, i.e., a dimorphism is
feasible by a small mutational step. Once the population has become dimorphic, the two
strategies gradually evolve away from each other and approach the evolutionarily stable
coalition of two distinct germination strategies. The evolutionarily stable  coalition of
mixed strategies is stable not only against perturbations in population numbers but also
against invasion by any new mutant strategy.

In finite populations, however, a strategy can go extinct due to the fluctuations in
population numbers even if it is viable in an infinite population, i.e., if its long-term
growth rate is positive when rare. After extinction of one strategy of the dimorphic
coalition, the remaining monomorphic population evolves back to the same branching
point where it became dimorphic in the first place. Extinction is thus followed by
evolutionary branching again in repeated cycles.

Key components of the model

Modelling the evolution of germination fraction naturally presumes that germination
fraction is under genetic control and therefore can be subject to selection. Between-year
innate dormancy (i.e., the inability to germinate even when environmental conditions
are suitable for germination) seems to be to a large extent determined by the mother
plant, for example by an impermeable seed coat or chemical inhibitors (Harper 1977;
Ellner and Shmida 1981; Westoby 1981; Mayer and Poljakoff-Mayber 1982; Ellner
1986). Substantial variation in germination fraction occurs between seeds of different
individuals (El-Kassaby et al. 1992; Giannini and Bellari 1995). Germination fraction
also varies between populations (e.g. Sorensen 1993; Giannini and Bellari 1995),
possibly indicating adaptation to the local environmental conditions. Evolution of
germination has occurred during the process of domestication of many commercial
crops: Although their wild ancestors have dormant seeds, the seeds of the cultivated
forms germinate immediately (Harper 1977). Many plant species, especially weeds,
exhibit somatic polymorphism within a mother plant in requirements for breaking
dormancy (often associated to seed size polymorphism or to the position of the seed on
the plant). By changing the proportions of the different seed morphs, germination
fraction of the seeds can be varied. For example, the disc and ray florets of many
Compositae produce different achenes (one-seeded dry fruits), which highly differ in
germination fraction (Forsyth and Brown 1982). The ratio between the floret types can
be changed by selection (Harper 1977), which consequently changes the overall
germination fraction as well.

In the present model we assumed temporal fluctuations of the environment, spatial
heterogeneity, and density dependence. It is only the combined effect of all these three
mechanisms that leads to evolutionary branching and evolutionarily stable coalitions of
germination fractions. In a spatially homogeneous population with no density
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dependence the annual growth rate of a germination strategy depends only on the actual
state of the fluctuating environment, therefore the long-term growth rate of each
strategy is determined once the distribution of the environment is specified. Finding the
optimal germination fraction then simply amounts to the maximization of the long-term
growth rate (Cohen 1966). This basic result can be generalized to spatially
heterogeneous populations straightforwardly. If the environment consists of a number of
patches, the population is characterized by a vector containing seed numbers in different
patches. The population dynamics can be described by stochastic projection matrices,
the matrix entries being determined by the within-patch dynamical parameters and the
between-patch migration rates. The theory of stochastic projection matrices (reviewed
by Caswell 1989 and Tuljapurkar 1989) shows that there is a well-defined long-term
growth rate attached to each germination strategy, and the strategy having the largest
growth rate eventually outnumbers all others. Although spatial heterogeneity makes the
calculation of the long-term growth rate much harder, it does not affect the conclusion
of a single optimal ger

Including density dependence changes the problem significantly. If the environment
fluctuates, then population density (or any other relevant measure of intraspecific
competition) fluctuates as well. The long-term growth rate of a strategy is determined
by the joined distribution of the environment and density. As the density distribution is
generated by the resident population, the long-term fitness of a mutant depends on the
resident strategy (or strategies). Selection thus becomes frequency dependent (Kisdi and
Meszéna 1993, 1995). Still in the particular case of germination fraction there is always
a single global ESS if the environment is spatially homogeneous (Bulmer 1984; Ellner
1985a). Including spatial heterogeneity makes evolutionary branching and
evolutionarily stable coalitions possible.

In order to get evolutionary branching and evolution of two germination fractions,
migration between the patches must be small: In case of moderate and high migration a
generalist ESS outcompetes all other strategies (cf. Figure 2). Assuming small migration
between the patches, however, does not mean assuming two evolutionarily independent
populations. In absence of one strategy, as after extinction, the other strategy undergoes
fast evolution towards the branching point (cf. Figure 4b).

Small migration is obviously ensured if there is some barrier between the patches such
as physical distance. Migration can also be subject to evolution, and a number of
mechanisms may influence whether higher or lower levels of migration are selected for.
Migration is beneficial when the fluctuating environmental effects are not perfectly
correlated across the patches and thus bad years can be avoided by dispersal (Levin et
al. 1984; Klinkhamer et al. 1987; Venable and Brown 1988; Cohen and Levin 1991) or
if seedlings from nondispersed seeds experience strong competition with their sibs
(Geritz et al. 1984). On the other hand, migration is often costly: For example,
structures need to be developed in order to facilitate dispersal (like nutritious fruits for
endozoochory), dispersal may require small seed size which can be disadvantageous for
seedling survival (Harper 1977), or dispersed seeds may be lost if ending up in
unsuitable habitats. If the costs outweigh the potential benefits, then migration is
expected to decrease during evolution. Once migration is small enough evolutionary
branching to occur, an evolutionarily stable coalition of germination strategies will
evolve, where each strategy is better adapted in one patch and less adapted in the other
patch. This strengthens selection for even smaller migration (Balkau and Feldman
1973), which may eventually lead to parapatric speciation.
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Coexistence and evolutionary branching of mixed strategies

Prevalence of a single mixed strategy on the one hand, and coexistence of several pure
strategies on the other hand is often thought as two complementary possibilities for the
outcome of evolution. In linear games coexistence of mixed strategies is neutral as long
as their mixture yields the same evolutionarily stable population strategy (Thomas
1984). In fluctuating environments, however, a monomorphic population of a mixed
strategy markedly differs from a coalition of pure or mixed strategists (cf. Bulmer
1984). From a mathematical point of view this is so because the long-term growth rate
is a nonlinear function of the mutant’s strategy. Intuitively, the reason is the following.
In a population of a single mixed strategy the frequencies of pure strategies are constant
in time, determined by the genotype. When several pure (or mixed) strategists coexist,
however, then the frequencies fluctuate as consecutive years favor different strategies
over the others. Note that in the present model (like in a model of Cohen 1966) the pure
strategies are not even viable: The always germinating strategy (G=1) disappears in the
first bad year when there is no yield at all, while the always dormant strategy (G=0) is
doomed to extinction in the soil. As coalitions of mixed strategies are not equivalent to
each other or to single mixed strategies in fluctuating environments, the evolutionarily
stable coalition is a unique outcome of evolution, which cannot be replaced by any
single mixed strategy.

Evolutionary branching or evolutionarily stable coalitions of pure strategies chosen
from a continuous strategy set have been found in constant environment models which
assume spatial heterogeneity and density dependence operating within the patches (i.e.,
’soft selection’; Brown and Pavlovic 1992; Meszéna et al. 1997; Geritz et al. 1997a;
Geritz and Kisdi this volume; Kisdi and Geritz in prep.) or which assume some other
frequency-dependent selection mechanism (Brown and Vincent 1987, 1992; Metz et al.
1992; Taper and Case 1992; Geritz et al., in prep.). Evolutionarily stable coalitions in
case of mixed strategies, however, have been previously reported only by Ludwig and
Levin (1991). They found that two dispersal types characterized by different ratio of
dispersed:nondispersed seeds form an evolutionarily stable coalition, although one
strategy of this coalition was always the pure all-dispersing type.

Cyclical extinction and evolutionary branching in finite populations

In finite populations, protected polymorphism does not guarantee the persistence of a
coalition in fluctuating environments. The population number of a strategy may
fluctuate widely, and occasionally may reach zero even if the strategy has a positive
long-term growth rate when rare. Demographic stochasticity and Allee-effects will
further increase the probability of extinction of a strategy present in small number.

The set of possible strategy coalitions should thus be redefined such that it reflects
persistence of all constituent strategies with a given probability for a given time. As a
first attempt, we considered the expected time until extinction of a strategy for each
dimorphic population. This measure must be used with caution because the distribution
of extinction times under environmental stochasticity is skewed (cf. Strebel 1985).

In conservation biology, the most often used concept to characterize persistence is the
minimal viable population size (or MVP), i.e., the equilibrium size of the population
required in absence of environmental stochasticity to ensure persistence when
stochasticity is added (e.g. Goodman 1987; Nunney and Campbell 1993). The concept
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of MVP could be generalized such that a strategy coalition is considered persistent if all
its strategies have sufficiently high equilibrium densities without stochasticity.
However, this generalized MVP cannot be defined if environmental stochasticity is not
merely a noise to remove but essential for maintaining the coalition (cf. Chesson 1986).
In the present model, for example, only the highest germination rate would remain in a
constant environment; therefore coalitions cannot be characterized by the equilibrium
densities of their strategies.

When the evolutionarily attractor of the dimorphic population is outside of the set of
persistent dimorphisms, one of the branches of the evolutionary tree goes extinct.
Evolution leading to extinction of one (or several) strategies was also found for example
by Taper and Case (1992), Matsuda and Abrams (1994a,b), Dieckmann et al. (1995),
Law et al. (1997), and Geritz et al.(in prep.). However, in these models the remaining
population never evolved back to the branching point, and therefore no cyclic
evolutionary tree was found.
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