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Let fn(è, ù) be a sequence of stochastic processes which converge weakly to a limit process f0(è, ù).

We show under some assumptions the weak inclusion of the solution sets èn(ù) � fè : fn(è, ù) � 0g
in the limiting solution set è0(ù) � fè : f0(è, ù) � 0g. If the limiting solutions are almost surely

singletons, then weak convergence holds. Results of this type are called Z-theorems (zero-theorems).

Moreover, we give various more speci®c convergence results, which have applications for stochastic

equations, statistical estimation and stochastic optimization.

Keywords: asymptotic distribution; consistency; stochastic equations; stochastic inclusion

1. Introduction

Statistical estimators are often de®ned as minima of stochastic processes or roots of

stochastic equations. The ®rst group are called M-estimators and include the maximum-

likelihood estimate, some classes of robust estimates and the solutions of general stochastic

programs (see Shapiro 1993; P¯ug 1995). The proof of asymptotic properties of such

estimates requires conditions under which the convergence in distribution of some stochastic

process fn(:) to a limiting process f0(:) entails that

arg minu fn(u) approaches arg minu f 0(u): (1:1)

Conditions for (1.1) to hold have been given by Ibragimov and Has'minskii (1981), Salinetti

and Wets (1986), Anisimov and Seilhamer (1994) and many others. These theorems are

known under the name of M-theorems (minima-theorems).

Less attention has been paid to the asymptotic behaviour of solutions of stochastic

equations and the related class of Z-theorems (zero-theorems). These are theorems which

assert that under some conditions the weak convergence of some stochastic process fn(:) to

a limiting process f0(:) entails that

the solution set of fn(u) � 0 approaches weakly the solution set of f 0(u) � 0: (1:2)

A general Z-theorem for Banach space-valued processes has been given by Van der Vaart

(1995). He considers the `regular' case, i.e. the case where the limiting process is of the form

ç0(u) � Au� Z0, where A is an invertible linear operator and Z0 is a Banach-valued random

variable. Evidently, the solution of the limiting equation is ÿAÿ1 Z0.

In this paper, we suggest a new approach which allows us to study more general models and

more general limiting processes, but stick to the ®nite-dimensional case. In particular, we do
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not require the limiting process to be additively decomposable in a deterministic term, which

depends on u, and a stochastic term, which does not. Examples of such undecomposable

situations occur in non-regular statistical estimation models (where the condition of local

asymptotic normality fails) as well as in non-smooth stochastic optimization.

The following set-up will be used in this paper. Let fn(è, ù), n . 0, be a sequence of

continuous (in è) random functions de®ned on È 3 Ùn with values in Rm, where È is some

open region in Rd and (Ùn, An, Pn) are probability spaces. We consider the stochastic equation

fn(è, ù) � 0 (1:3)

and denote the set of possible solutions by èn(ù) � fè : fn(è, ù) � 0g. Since fn is continuous

in è, (èn) is a sequence of random closed sets. We suppose further that the random functions

fn converge in distribution to a limit function f 0 de®ned on (Ù0, A0, P0) and study the

corresponding behaviour of the random closed sets (èn). Since we allow the processes to be

de®ned on different probability spaces, all results will be in the weak (distributional) sense.

Conceptually, we rely on the notion of weak convergence of random closed sets. The reader

is referred to Appendix 1 for a short review of this concept.

The paper is organized as follows. In Section 2 we study the notion of uniform

convergence in distribution. Section 3 introduces the more general notion of band-

convergence. Global convergence results are presented in Section 4. Applications to speci®c

cases of limits of stochastic equations and to statistical estimates are contained in Sections

5 and 6. In Appendix A we have gathered together some facts about setwise convergence.

Appendix B contains a new result on asymptotic inclusion of random sets.

2. Uniform convergence

We begin with a rather simple lemma for deterministic functions.

Lemma 2.1.

(i) If a sequence of deterministic functions g n(è) converges uniformly on each compact

set K to a limit function g n(è), then we have for the solution sets

lim sup
n

fè : gn(è) � 0g � fè : g0(è) � 0g:

Here lim sup denotes the topological upper limit as de®ned in Appendix A. Notice

that the solution sets may be empty.

(ii) Suppose that g ful®ls the following condition of separateness: there exists a ä. 0

such that for any y 2 Rm, jyj, ä, the equation

g0(u) � y (2:1)

has a proper unique solution. Then, for large n, fè : gn(è) � 0g 6� Æ and

lim sup
n

fè : gn(è) � 0g � è0,

where è0 is the unique solution of g0(è) � 0.
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Proof. Let gn(èn) � 0. If è is a cluster point of èn, then, by uniformity,

gn(èn)! g0(è),

which implies that è is a root of g0. The second statement is nearly obvious. h

A generalization of this result for random functions will be proved in this section. We

begin with some de®nitions.

For any function g(è) and any compact set K � È, denote by

ÄU (c, g(:), K) � supfjg(q1)ÿ g(q2)j : jq1 ÿ q2j < c, q1, q2 2 Kg
the modulus of continuity in uniform metric on the set K.

De®nition 2.1. The sequence of random functions fn(è) converges weakly uniformly (U-

converges) to the function f 0(è) on the set K if, for any k . 0 and for any è1 2 K, . . .
èk 2 K, the multidimensional distribution of ( fn(è1), . . . , fn(èk)) converges weakly to the

distribution of ( f 0(è1), . . . , f0(èk)) and, for any å. 0,

lim
c#0

lim sup
n!1

PnfÄU (c, fn(:), K) . åg � 0:

In other words, the sequence of measures generated by the sequence of functions fn(:) in

Skorokhod space DK weakly converges to the measure generated by f0(:).

Condition A. We say that the random process f (u, ù) ful®ls a condition of separateness if

there exists a ä. 0 such that, for any y 2 Rm, jyj, ä, the equation

f (u, ù) � y (2:2)

has for almost all ù a proper unique solution.

De®nition 2.2. A sequence (èn) of random closed sets is called stochastically included in è0

in the limit if, for every collection of compact sets K1, . . . , Kl and arbitrary l ,

lim sup
n

Pnfèn \ K1 6� Æ, . . . , èn \ Kl 6� Æg < P0fè0 \ K1 6� Æ, . . . , è0 \ Kl 6� Æg:

If the limiting random set è0 is almost surely (a.s.) a singleton fè0g and all measurable

selections ~èn 2 èn converge in distribution to è0, we write

è0 � w-limnèn: (2:3)

Theorem 2.1.

(i) Suppose that the sequence of random functions fn(è) U-converges on any compact

set K � È to the random function f 0(è). Then èn is stochastically included in

è0 � fè : f 0(è) � 0g in the limit.

(ii) In addition, let Condition A be ful®lled. If È is bounded and è0 is a.s. a singleton

fè0g, then limn Pnfèn 6� Æg � 1 and
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è0 � w-limnèn: (2:4)

Proof. The proof uses Skorokhod's (1956) method of representation on a common

probability space. According to this method we can construct a new sequence of random

functions f 9n(è, ù) and f 90(è, ù) on a common probability space Ù9 such that f 9n(è) and

fn(è) have the same ®nite-dimensional distributions and for almost all ù 2 Ù the sequence

f 9n(è, ù) uniformly converges to f 90(è, ù) on every compact set K � È.

By Lemma 2.1 all cluster points of è9n � fè : f 9n(è, ù) � 0g are contained in è90 �
fè : f 90(è, ù) � 0g, i.e. lim supn è9n � è0. By Lemma B.1 in Appendix B, this proves part

(i).

Further, if Condition A is satis®ed, then a solution of equation (1.3) exists for large n

with probability close to one because of the continuity of the function fn(è, ù). If ~èn(ù) is

a measurable selection of è9n which does not tend to è0, then there exists a subsequence nk

such that ~èn k
(ù)! ~è 6� è0. Using the uniform convergence of fn(è, ù) we obtain that

fn(èn k
(ù), ù)! f 0(~è) � 0:

But è0 is the unique root of f0, due to Condition A, and this contradiction proves part (ii) of

the theorem. h

Theorem 2.1 applies typically to consistency proofs of estimates. In this class of

applications, è0 is a constant. However, Z-theorems may also be used for deriving the

asymptotic distribution of estimates. Here is a typical result of this kind:

Theorem 2.2. Let the assumptions of Theorem 2.1(ii) be ful®lled, and suppose that è0 is

deterministic. Further, let there exist a â. 0 and a non-random sequence vn !1 such that,

for any L . 0, the sequence of functions

çn(u) :� vâ
n fn(è0 � vÿ1

n u)

U-converges in the region fjuj < Lg to the continuous random function ç0(u) satisfying

Condition A. Then there exists a measurable selection è̂n from è such that the sequence of

random variables vn(è̂n ÿ è0) weakly converges to the proper random variable ã0 which is

the unique solution of the equation

ç0(u) � 0: (2:5)

Remark 2.1. In regular cases the random function ç0(u) has the form î0 � G0u, where î0

and G0 are vector- and matrix-valued (possibly dependent) random variables. In this case, if

the matrix G0 is not degenerated,

ã0 � ÿGÿ1
0 î0:

Proof. As before, we can assume without loss of generality that the sequence of functions

fn(è0 � vÿ1
n u, ù) and ç0(u, ù) are de®ned on the same probability space Ù such that
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vâ
n fn(è0 � vÿ1

n u, ù) � ç0(u, ù)� ân(u, ù),

where, for each L . 0,

sup
juj,L

jân(u, ù)j ! 0 (2:6)

for almost all ù 2 Ù.

Let us consider the equation

ç0(u, ù) � ÿân(u, ù): (2:7)

Due to Condition A and the continuity of the left- and right-hand sides in (2.7), as

sup
juj,L

jân(u, ù)j < ä,

then at least one solution of (2.7) exists. Denote a measurable selection by ûn(ù). Again by

Condition A, ç0(u, ù) has an inverse çÿ1
0 (u, ù) in the neighbourhood of the point ã0(ù), and

we can write the de®ning equation for ûn(ù) in the form

ûn(ù) � çÿ1
0 (ân(u, ù), ù): (2:8)

According to (2.6), the right-hand side of (2.8) tends to çÿ1
0 (0, ù) � ã0(ù), which is the

unique solution of the equation ç0(u, ù) � 0. This proves Theorem 2.2 because each solution

ûn of (2.7) is connected to the corresponding solution è̂n of (1.3) by the relation

è̂n � è0 � vÿ1
n ûn, i.e. ûn � vn(è̂n ÿ è0). h

3. Weakening the assumptions

Uniform convergence is a rather strong property. In connection with M-theorems uniform

convergence may be replaced by epi-convergence, which is the convergence of the epigraphs.

Recall that the epigraph of a function z(è) is

epi z � f(á, è) : á > z(è)g:
For the purpose of Z-theorems, we introduce here the notion of the q-band of a function,

which is some nonlinear band around the graph of this function.

De®nition 3.1. Let 0 < q , 1. The q-band of a function f (è) is

Ã( f (:), q) � clf(á, è) : jáÿ f (è)j < qj f (è)j, è 2 Èg,
where clfBg denotes the closure of the set B.

Lemma 3.1. Let g n(è), g0(è) be continuous functions and èn � fè : g n(è) � 0g, è0 �
fè : g0(è) � 0g. If lim supn Ã(g n(:), 0) � Ã(g(:), q) for some 0 , q , 1, then

lim supn èn � è0.
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Proof. Let un 2 èn and u be a cluster point of (un). We have to show that u 2 è0. Since

(0, un) 2 Ã(gn, 0) and (0, u) is a cluster point of (0, un), it follows that (0, u) 2 Ã(g(:), q),

i.e. jg(u)j < qjg(u)j, whence g(u) � 0 and therefore u 2 è0. h

De®nition 3.2. Let fn(è) and f0(è) be stochastic processes on Rd . We say that the sequence

fn(:) band-converges to the process f 0(:) if, for some 0 , q , 1, Ã( fn(:), 0) is stochastically

included in Ã( f0(:), q) in the limit.

Theorem 3.1. Let the sequence fn(:) band-converge to the process f 0(:) and let èn be the set

of zeros of fn(è) and è0 be the set of zeros of f0(è). Then èn is stochastically included in è0

in the limit.

Proof. Suppose that the theorem is false. Then there are compact sets K1, . . . , Kl such that

lim sup
n

Pnfèn \ K1 6� Æ, . . . , èn \ Kl 6� Æg. P0fè \ K1 6� Æ, . . . , è \ Kl 6� Æg:

In particular, there is a subsequence (ni) such that

lim
ni

Pni
fèni
\ K1 6� Æ, . . . , èni

\ Kl 6� Æg. P0fè \ K1 6� Æ, . . . , è \ Kl 6� Æg: (3:1)

Ã( fni
, 0) is a sequence of random closed sets which contains a weakly convergent

subsequence Ã( f n9i , 0). By Skohorod's theorem, we may construct versions on a common

probability space which converge pointwise, i.e. Ã9( f n9i , 0)! Ã0 a.s. Furthermore, since by

assumption Ã0 is stochastically smaller than Ã( f 0, q), we may by Theorem B.1 (Appendix B)

assume that there is a version such that Ã90 � Ã9( f0, q) a.s. Thus limn9i Ã9( f n9i , 0) � Ã9( f 0, q).

Therefore, for this version, by Lemma 3.1, lim sup èn9i � è, which contradicts (3.1). h

Remark 3.1. The assumptions of Theorem 3.1 are ful®lled if the sequence fn(t) converges

uniformly to f 0. By Skorokhod embedding, we may without loss of generality assume that

supuj fn(u)ÿ f 0(u)j ! 0 a.s. If (án, un) are such that ján ÿ fn(un)j < qj fn(u)j, then every cluster

point (á, u) of this sequence satis®es jáÿ f 0(u)j < qj f0(u)j, which completes the argument.

Example 3.1. Theorem 3.1 is not included in Theorem 2.1. Here is an example. Let

fn(è, ù) � �fn(è)(1� în(ù)), where the deterministic functions �fn uniformly converge to a

continuous limit function �f . Let 0 , q , 1. If

Pnfjînj, qg ! 1

as n!1, the assumptions of Theorem 3.1 are ful®lled, but not necessarily those of

Theorem 2.1.

4. Global convergence

The result of Theorem 2.2 is valid only for some solution (not any) which belongs to a close

neighbourhood of the order O(vÿ1
n ) of the point è0. It is possible to show that there are
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examples where the conditions of Theorem 2.2 are ful®lled and there exist solutions è9n such

that è9n are of order ån, where ån converges arbitrarily slow to zero. That is why it is

important to ®nd additional conditions that guarantee the convergence for the sequence

vn(è̂n ÿ è0) for all solutions è̂n. The following theorem gives such conditions:

Theorem 4.1. Suppose that the conditions of Theorem 2.2 hold and there exists c0 . 0 such

that, for any sequence än . 0 with the properties än ! 0, vnän !1,

lim
L!1

lim inf
n!1 Pn inf vâ

n

���� fn è0 � u

vn

� ����� : L < juj < vnän

( )
. c0

( )
� 1: (4:1)

Then, for any solution è̂n of (1.3), the sequence vn(è̂n ÿ è0) weakly converges to the unique

solution ã0 of (2.5).

Proof. According to Theorem 2.1(ii), with probability close to one, the set of possible

solutions of (1.3) belongs to some än-neighbourhood of the point è0, where än ! 0. Then

under condition (4.1), with probability close to one, the set of possible solutions of (1.3)

belongs to the region fjèÿ è0j, L=vng for L large.

Let us now consider in a new scale of variables the sequence of functions çn(u) �
vâ

n fn(è0 � vÿ1
n u). This sequence U-converges in the region fjuj < Lg to the function ç0(u).

Now we can construct sequences ç9n(u, ù) and ç90(u, ù) on the same probability space

Ù9, having the same distributions as çn(u) and ç0(u) and such that ç9n(u, ù) converges

uniformly to ç90(u, ù) for all ù 2 Ù0, where P(Ù0) � 1. Introduce

G(L) � fù : inffjçn(u)j : L < juj < vnäng. c0=2 for sufficiently large ng
and

D(L) � fù : jã0(ù)j, Lg,
where ã0(ù) is a solution of the equation

ç0(u, ù) � 0: (4:2)

For any ù 2 G(L) and large n, the set of possible solutions of fn(è) � 0 belongs to the region

fjèÿ è0j, L=vng. Then according to Theorem 2.1, for any ù 2 D(L) \ G(L) \Ù0,

limnun(ù) � ã0(ù), where un(ù) is the set of possible solutions of the equation

çn(u, ù) � 0: (4:3)

We note that the corresponding solutions of (1.3) and (4.3) are connected by the relation

~un � vn(~èn ÿ è0). As, according to Theorem 2.2, ã0 is a proper unique solution of (4.2), this

implies that P(D(L))! 1 as L!1, and correspondingly, according to (4.1), P(G(L))! 1.

This proves the statement of Theorem 4.1. h

Condition (4.1) is of rather general character and we now consider a typical situation for

which this condition is true. Suppose without loss of generality that we have a

representation
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fn(è) � ~fn(è)� çn(è),

where ~fn(è) is some deterministic function.

Theorem 4.2. Let Theorem 2.1(ii) and the following conditions hold:

(i) There exists â. 0 and a non-random sequence vn !1 such that, for any L . 0,

the sequence of deterministic functions vâ
n

~fn(è0 � vÿ1
n u) U-converges in the region

fjuj < Lg to the continuous function j0(u).

(ii) The sequence vâ
n çn(è0) weakly converges to a proper random variable ç0.

(iii) The function j0(u) satis®es Condition A in the following form: for any y 2 Rm the

equation

j0(u) � y (4:4)

has a unique solution.

(iv) There exists c0 . 0 such that, for any sequence än . 0 with the condition that

än ! 0, vnän !1,

lim
L!1

lim inf
n!1 inf

L<juj<vnän

vâ
n

���� ~fn è0 � u

vn

� �
ÿ ~fn(è0)

���� > c0: (4:5)

(v) For any sequence än ! 0 and any å. 0,

lim
n!1 P vâ

n sup
jzj<än

jçn(è0 � z)ÿ çn(è0)j. å
� �

� 0: (4:6)

Then for any solution è̂n of (1.3) the sequence vn(è̂n ÿ è0) weakly converges to the unique

solution ã0 of the equation

j0(u)� ç0 � 0:

Remark 4.1. If, for some a . 0, 0 , å < â and any u 2 Rr,

j ~fn(è0 � u)ÿ ~fn(è0)j > ajujå � án(u), (4:7)

where

sup
juj<än

vâ
n ján(u)j ! 0,

then condition (4.5) is satis®ed.

Proof. It is easy to see that under conditions (i)±(iii) of Theorem 4.2 the conditions of

Theorem 2.2 are satis®ed, but with ç0(u) replaced by j0(u)� ç0. Then conditions (4.5) and

(4.6) imply condition (4.1) of Theorem 4.1 and the statement of Theorem 4.2 follows from

Theorems 2.2 and 4.1. h
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Example 4.1. Let the function f 0(è), è 2 È � Rr, be of the form f 0(è) � AË(è), where

Ë(è) is a diagonal matrix with elements sign èijèijâ, i � 1, . . . , r and èi are the components

of the vector è � (è1, . . . , èr). Suppose, further, that the functions fn(è) are of the form

fn(è) � f 0(è)� 1

nã
æ(è),

where æ(è), è 2 È, is an arbitrary random function that is continuous at the point è � 0 with

probability one and bounded in probability in each compact region and ã. 0. If the matrix A

is invertible, then, for n!1, the relation (2.4) holds with è0 � 0 and also

w-limn!1nã=âèn � k,

where the random vector k � (k1, . . . , kr) is of the form

ki � sign ~æij~æij1=â,

and ~æi, i � 1, . . . , r are components of the vector ~æ � Aÿ1æ(0).

Remark 4.2. If, in particular, â � 1 and the variable æ(0) has a multidimensional Gaussian

distribution with mean a and covariance matrix B2, then the variable k also has

multidimensional Gaussian distribution with mean Aÿ1a and covariance matrix Aÿ1 B2(Aÿ1)T.

Proof. Under our conditions the sequence of functions fn(è) U-converges in each compact

region K � È to the function f0(è). That implies the ®rst part of the statement.

Further, as the function æ(è) is continuous at the point 0, the sequence

supjuj<Ljæ(vÿ1
n u)ÿ æ(0)j U-converges to 0 for any L . 0 and any sequence vn !1, and

it is true that, for any L . 0, the sequence of functions nã fn(nÿã=âu) U-converges in the

region fjuj < Lg to the continuous random function ç0(u) � AË(u)� æ(0). It is obvious

that the equation

AË(u)� æ(0) � 0

has a unique solution k and conditions of Theorem 2.2 are satis®ed. Now to prove a global

convergence it is suf®cient to check condition (4.7) in Remark 4.1.

We can write

jAË(è)j � jèjâjAË(eè)j, (4:8)

where eè � jèjÿ1è is a unit vector. Denote

a � inf
jej�1
jAË(e)j:

As the matrix A is invertible and the function Ë(è) is continuous, we obtain that a . 0. Then

from (4.8) we obtain

jAË(è)j > ajèjâ,

which proves the second part of our statement. h
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5. Solutions of stochastic equations

In this section we consider applications of our results to the study of the behaviour of

approximately calculated solutions of deterministic equations under stochastic noise. Let us

consider the following model. Suppose that we want to ®nd a solution of a deterministic

equation

f (è) � 0, (5:1)

where f (è) is some continuous function, è 2 È, and È is some bounded region in Rr, but

we can only observe the function f (è) with random errors in the form:

rk(è) � f (è)� îk(è), 1 < k < n,

where fîk(è), è 2 Èg, k > 1, are jointly independent families of random functions that are

measurable in è, continuous with probability one and satisfy Eîk(:) � 0. It is natural to

approximate f (è) by

fn(è) � 1

n

Xn

k�1

rk(è) � f (è)� çn(è),

where

çn(è) � 1

n

Xn

k�1

îk(è):

We study the asymptotic behaviour of solutions of the equation

fn(è) � 0: (5:2)

As before, denote by è0 the set of possible solutions to (5.1) and by èn the set of possible

solutions to (5.2).

Theorem 5.1. Let families of random variables fîk(è), è 2 Èg be independent (for different

k) and identically distributed. Suppose also that the following conditions hold:

(i) For any å. 0 and any compact set K � È,

lim
c#0

lim sup
n!1

PnfÄU (c, çn(:), K) . åg � 0: (5:3)

(ii) The function f (è) satis®es the condition that there exists ä. 0 such that the

equation

f (è) � y,

at each jyj, ä0, has at least one solution, and there exists an inner point è0 2 È
such that f (è0) � 0.
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Then, as n!1, Pnfèn 6� Æg ! 1 and èn is stochastically included in è0 in the limit.

Proof. We represent the function fn(è) in the form

fn(è) � f (è)� çn(è):

By the law of large numbers it follows that, at each è 2 È,

P-limn!1çn(è) � 0, (5:4)

where P-lim denotes convergence in probability, and condition (5.3) implies that the sequence

of functions çn(è) U-converges to 0 on each compact set K, and correspondingly that the

sequence fn(:) U-converges to f (:). Then our statement follows directly from Theorem 2.1.

h

Condition (5.3) is rather general and sometimes dif®cult to check. We now give some

more concrete conditions suf®cient for it.

Corollary 5.1. Let

lim
c#0

EÄU (c, î1(:), K) � 0, (5:5)

for any compact set K � È. Then condition (5.3) holds.

Proof. By

ÄU (c, çn(:), K) <
1

n

Xn

k�1

ÄU (c, îk(:), K) (5:6)

and Chebyshev's inequality we obtain that

PfÄU (c, çn(:), K) . åg <
1

å
EÄU (c, î1(:), K):

This relation, together with (5.5), implies condition (5.3) of Theorem 5.1. h

Remark 5.1. Condition (5.5) is satis®ed if there exists a matrix derivative =èî1(è) and, for

any compact set K � È,

sup
è2K

Ej=èî(è)j < CK ,1:

Now let us consider the asymptotic distribution of the solutions.

Theorem 5.2. Suppose that the assumptions of Theorem 5.1 and the following conditions hold:

(i) For some â. 0 uniformly in the unit sphere fe : jej � 1g,
hÿâ( f (è0 � he)ÿ f (è0))! A(e)e (5:7)

as h # 0 (here A(e) is some matrix possibly depending on the vector e).
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(ii) For some ã, 1
2

< ã, 1,

w-limn

1

nã

Xn

k�1

îk(è0) � æ, (5:8)

where æ is a random vector with a stable distribution with parameter 1=ã.

(iii) For each L . 0,

lim
n!1 Pnffsupjqn(u)j : juj < Lnÿ(1ÿã)=âg. åg � 0, (5:9)

where

qn(u) � 1

nã

Xn

k�1

(îk(è0 � u)ÿ îk(è0)):

(iv) For each y 2 Rr, a solution of the equation

A
u

juj
� �

jujâÿ1u � y

exists and is unique.

Then there exists a subsequence of solutions ~èn of (1.3) such that

w-limn n(1ÿã)=â(~èn ÿ è0) � ã0, (5:10)

where ã0 is the unique solution of the equation

A
u

juj
� �

jujâÿ1u� æ � 0:

Proof. We have to study the behaviour of the function vâ
n fn(è0 � vÿ1

n u). Let us choose vn in

the form vn � n(1ÿã)=â. Then

vâ
n fn(è0 � vÿ1

n u) � vâ
n( f (è0 � vÿ1

n u)ÿ f (è0))� qn(vÿ1
n u)� 1

nã

Xn

k�1

îk(è0): (5:11)

From condition (5.7) it follows that the ®rst item on the right in (5.11) converges uniformly

on u in each bounded region fjuj < Lg to the function

A
u

juj
� �

jujâÿ1u,

the second item uniformly converges to 0, and the last one weakly converges to the variable

æ. This means that the right-hand side of (5.11) converges uniformly in u in each bounded

region fjuj < Lg to the function

A
u

juj
� �

jujâÿ1u� æ:

The statement of Theorem 5.2 now follows directly from Theorem 2.2. h

Now let us consider conditions of global convergence.

928 V.V. Anisimov and G.Ch. P¯ug



Theorem 5.3. Suppose that the assumptions of Theorem 5.2 holds, but with condition (iii)

replaced by the following:

(iii)9 For any sequence än . 0, än ! 0,

lim
n!1 P sup

jvj<än

jqn(v)j. å

( )
� 0, (5:12)

and also

a � inf
jej�1
jA(e)j. 0: (5:13)

Then w-limvn(èn ÿ è0) � ã0, where vn � n(1ÿã)=â.

Proof. It easy to see that under our assumptions conditions (i)±(iii) and (v) of Theorem 4.2

hold. Then according to (5.7) and (5.13), at small enough v, we obtain

j f (è0 � v)ÿ f (è0)j � jA(v=jvj)jvjâÿ1v� o(jvjâ)j > ajvjâ ÿ jo(jvjâ)j:
This relation and Remark 4.1 (see (4.7)) imply the theorem. h

We now give, for particular cases, suf®cient conditions for checking condition (iii) of

Theorem 5.2.

Remark 5.2. If, for any L . 0,

lim
n!1 n1ÿãE supfjî1(è0 � nÿ(1ÿã)=âu)ÿ î1(è0)j : juj < Lg � 0, (5:14)

then (5.9) holds. The proof is based on the same arguments as the proof of Theorem 5.1.

Example 5.1. Let the function f (è) be continuously differentiable and let =è f (è) denote its

matrix derivative, i.e.

lim
h!0

hÿ1( f (è� hz)ÿ f (è))! =è f (è)z, (5:15)

for any vector z 2 Rr. Suppose that condition (5.9) holds, that

Eî1(è0)î1(è0)T � B2, (5:16)

and that the matrix G � =è f (è0) is invertible. Then the statement of Theorem 5.2 holds,

where â � 1, ã � 1
2

and vector ã0 has a Gaussian distribution with mean 0 and covariance

matrix GB2GT. It is easy to check that the sequence of functions
���
n
p

fn(è0 � nÿ1=2u)

converges uniformly on u in each bounded region fjuj < Lg to the function Gu� N (0, B2),

where N (0, B2) is a vector that has a Gaussian distribution with mean 0 and covariance

matrix B2. This implies our statement.

Example 5.2. Let us now consider a special case of errors of the form

îk(è) � G(è)îk , k > 1, (5:17)
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where G(è) is some matrix function, and îk, k > 1, is the sequence of independently and

identically distributed random vectors in Rr such that Eîk � 0. Suppose that condition (iii) of

Theorem 5.1 holds and G(è) is some continuous function. Then (2.4) holds. Suppose, further,

that conditions (i) and (iv) of Theorem 5.2 hold and the variables îk satisfy condition (5.8).

Then (5.10) of Theorem 5.2 holds, where ã0 is a unique solution of the equation

A
u

juj
� �

jujâÿ1u� G(è0)æ � 0: (5:18)

It is easy to see that

ÄU (c, çn(:), K) < ÄU (c, G(:), K)
1

n

����Xn

k�1

îk

����:
But G(è) is uniformly continuous on each compact set K, and the variable (1=n)jPn

k�1îk j
converges to 0 in probability according to the law of large numbers. This implies the

statement of the ®rst part. In order to prove the second part, we need to check condition (iii)

of Theorem 5.2. We choose vn in the form vn � n(1ÿã)=â. Then, due to construction (5.17), we

see that

supfjqn(u)j : juj < Lvÿ1
n g < sup

juj<L

����G è0 � u

vn

� �
ÿ G(è0)

nÿã
Xn

k�1

îk

����: (5:19)

Now the variable jnÿãPn
k�1îk j is bounded by probability according to condition (5.8) and,

for any ®xed L . 0 uniformly in the region juj < L,

sup
juj<L

����G è0 � u

vn

� �
ÿ G(è0)

����! 0,

which implies, according to Theorem 5.2, the second part of our statement.

6. Moment estimators

Now let us consider applications of the Z-theorems to problems of statistical parameter

estimation by the method of moments. Let snk , 0 < k < n, be a triangular (random or non-

random) system with values in Rr. Also let fãk(á), á 2 Rrg, k > 0, be parametric families

of random variables with values in Rm, which are jointly independent and independent of

(snk). For simplicity, suppose that the distributions of random variables ãk(á) do not depend

on k. We observe variables snk and ynk � ãk(snk), k < n, where n is the number of

observations. Suppose now that expectations of the variables fãk(á), á 2 Rrg exist and

belong to the parametric family of functions fg(è, á), è 2 È, á 2 Rrg and Eã1(á) �
g(è0, á), where è0 is some inner point in the region È. The moment estimator is the solution

of the equation

nÿ1
Xn

k�1

g(è, snk)ÿ nÿ1
Xn

k�1

ynk � 0: (6:1)
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Denote as before by èn the set of possible solutions of (6.1). Now we study its asymptotic

behaviour as n!1.

Theorem 6.1. Suppose the following conditions hold:

(i) There exists a continuous deterministic function s(t) on the interval [0, 1] such that

the sequence snk satis®es the relation

P-limn!1 max
0<k<n

jsnk ÿ s(k=n)j � 0: (6:2)

(ii) The variables ãk(á) satisfy the following condition: for any L . 0,

lim
N!1

sup
jáj<L

Ejã1(á)j÷fjã1(á)j. Ng � 0: (6:3)

(iii) The function g(è, á) is continuous on both arguments (è, á) and there exists a

ä. 0 such that the equation�1

0

g(è, s(u)) duÿ
�1

0

g(è0, s(u)) du � v

has a unique solution for any jvj, ä.

Then limn Pnfèn 6� Æg � 1 and w-limnèn � è0.

Proof. It can be easily seen that under conditions (6.2) and (6.3), the second term on the left-

hand side of (6.1) converges in probability to
� 1

0
g(è0, s(u)) du. The ®rst term converges for

any L . 0 uniformly in jèj < L to
� 1

0
g(è, s(u)) du. Our statement now follows from Theorem

2.1. h

Let us now consider the asymptotic distribution of the estimates.

Theorem 6.2. Suppose that the assumptions of Theorem 6.1 and the following conditions hold:

(i) There exists a family of continuous (in both arguments) matrices A(e, á) such that,

for some â. 0 and for any L . 0 uniformly in the region f(e, á) : jej � 1, jáj < Lg,
as h#0,

hÿâ(g(è0 � he, á)ÿ g(è0, á))! A(e, á)e: (6:4)

(ii) There exists a continuous function a(ë, á)(a(0, á) � 0) such that for some ã, 1 ,
ã < 2, as h! 0,

E expfihhë, ã1(á)ÿ g(á)ig � 1� hãa(ë, á)� o(hã, á), (6:5)

where, for any L . 0, limh!0supjáj, L hÿão(hã, á)! 0.

(iii) For each y 2 Rr a solution of the equation

~A
u

juj
� �

jujâÿ1u � y

exists and is unique, where ~A(e) � � 1

0
A(e, s(v)) dv.
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Then there exists a solution è̂n of (6.1) such that

w-limn(ãÿ1)=(ãâ)(è̂n ÿ è0) � ã0, (6:6)

where ã0 is the unique solution of the equation

~A
u

juj
� �

jujâÿ1u� æ � 0

and the vector æ has a stable distribution with characteristic function

E expfihë, æig � exp

�1

0

a(ë, s(v)) dv

( )
: (6:7)

Proof. Denote by fn(è) the left-hand side of (6.1). Put vn � n(ãÿ1)=ãâ. Then we can write

vâ
n fn(è0 � vÿ1

n u)

� nÿ1
Xn

k�1

vâ
n(g(è0 � vÿ1

n u, snk)ÿ g(è0, snk))ÿ nÿ1=ã
Xn

k�1

(ãk(snk)ÿ g(è0, snk)): (6:8)

It is not hard to prove, using conditions (6.2) and (6.5) and the continuity of the function

a(ë, á), that the second term on the right-hand side of (6.8) weakly converges to the variable

æ (see (6.7)). The ®rst term can be represented in the form

nÿ1
Xn

k�1

A
u

juj , snk

� �
jujâÿ1u� o(1),

and this term U-converges in the variable u, for any bounded region fjuj < Lg, to the value
~A(u=juj)jujâÿ1u. This implies our statement. h

Corollary 6.1. Suppose that the conditions of Theorem 6.1 hold and there exist a continuous

matrix of partial derivatives R(è, á) � =è g(è, á) and a continuous matrix of second

moments B2(á) � E(ã1(á)ÿ g(á))(ã1(á)ÿ g(á))T. Suppose, further, that the matrix� 1

0
R(è0, s(u)) du is not degenerate and the variables ãk(á) satisfy a Lindeberg condition in

the following form: for any L . 0,

lim
N!1

sup
jáj<L

Ejã1(á)j2÷fjã1(á)j. Ng � 0: (6:9)

Then there exists a solution è̂n of (6.1) such that the sequence
���
n
p

(è̂n ÿ è0) weakly converges

to a Gaussian distribution with mean 0 and covariance matrix ~Rÿ1 ~B2(~Rÿ1)T, where

~R �
�1

0

R(è0, s(v)) dv, ~B2 �
�1

0

B2(s(v)) dv:

932 V.V. Anisimov and G.Ch. P¯ug



Proof. We put vn �
���
n
p

, â � 1. Then it can be easily seen, using conditions (6.2) and (6.9)

and the continuity of the function B(á), that the second term on the right of (6.8) weakly

converges to the variable
� 1

0
B(s(v)) dw(v), where w(v) is a standard Wiener process in Rr.

The ®rst term can be represented in the form

nÿ1
Xn

k�1

R(è0 � nÿ1=2qnk u, snk) u,

where jqnk j < 1, k > 0, and this term U-converges in u to the value
� 1

0
R(è0, s(v)) dv u in any

bounded region fjuj < Lg. Then, according to Theorem 2.2, there exists a solution è̂n such

that the sequence
���
n
p

(è̂n ÿ è0) weakly converges to the variable�1

0

R(è0, s(t)) dt

" #ÿ1�1

0

B(s(v)) dw(v),

which has a Gaussian distribution with mean 0 and covariance matrix ~Rÿ1 ~B2(~Rÿ1)T. h

Remark 6.1. Condition (6.2) is satis®ed for rather wide classes of stochastic systems that

develop in a recurrent fashion (for instance, Markov systems) and it is oriented on non-

stationary (transient) conditions. An average principle for general stochastic recurrent

sequences is given in Anisimov (1991). Analogous results can be obtained in stationary cases

under the condition that there exists a probability measure ð(A) on the Borel ®eld of Rr such

that, for any bounded measurable function j(á), á 2 Rr,

P-limn!1nÿ1
Xn

k�1

j(snk) �
�

Rr

j(á)ð(dá) (6:10)

(for instance snk can be a Markov ergodic sequence). Using the same technique, we can study

the behaviour of maximum-likelihood and least-squares estimators. We mention that

asymptotic properties of maximum-likelihood estimators constructed by observations on

trajectories of recurrent processes of semi-Markov type, on the base of the same technique

(analysis of maximum-likelihood equations), are studied in Anisimov and Orazklychev

(1993).

Appendix A: Some properties of random closed sets

We review here some basic facts of random set theory; the reader is referred to Salinetti and

Wets (1986) for more details.

Let C be the class of all closed sets in Rd . For closed sets, we introduce the notions of

lim inf and lim sup (in the topological sense):

lim inf
n

Cn � fu : 9 a sequence (un) with un 2 Cn such that un ! ug,
lim sup

n

Cn � fu : 9 a subsequence (uni
) with uni

2 Cni
such that uni

! ug:
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We say that Cn converges in the PainleveÂ ±Kuratowski sense to C, if

lim sup
n

Cn � lim inf
n

Cn � C:

In this case we write limnCn � C.

The topology of set convergence is metrizable, and C endowed with this metric is

compact. A subbasis of this topology is given by the classes fC : C \ K � Æg and

fC : C \ G 6� Æg, where K runs through all compact and G runs through all open sets.

The pertaining Borel ó-algebra in C is called the Effros ó-algebra E C .

A random closed set A(ù) is a random function de®ned on some probability space

(Ù, A, P) with values in C , which is A-E C measurable. The distribution of the random

set A(ù) is the induced probability measure on (C , E C ). Weak convergence of random

closed sets is de®ned as usual for random variables with values in a metric space.

Appendix B: Stochastic inclusion

We recall ®rst the notion of stochastic ordering for real-valued random variables. A random

variable X 1 is called stochastically smaller than X 2 if, for all t,

GX1
(t) :� PfX 1 > tg < PfX2 > tg �: GX2

(t):

If X 1 is stochastically smaller than X2, then we may construct versions X 91, X 92 on some new

common probability space, such that X 9i coincides with Xi in distribution (i � 1, 2) and

X 91 < X 92 a.s. (Simply take (X 91, X 92) � (Fÿ1
X1

(U ), Fÿ1
X2

(U )) for a random variable U

uniformly distributed on [0,1].) Moreover, we may also de®ne the concept of stochastic

ordering in the limit: a sequence of random variables (X n) is called stochastically smaller

than X0 in the limit if for all t

lim sup
n

PnfXn > tg < PfX 0 > tg:

The sequence (X n) is stochastically smaller than X 0 in the limit if and only if all weak cluster

points of (X n) are stochastically smaller than X0.

We will now present a completely analogous set-up for random sets, where the relevant

order structure is set inclusion.

De®nition B.1 (cf. P¯ug 1992, De®nition 1.1). Let A1, A2 be two random closed sets. A1 is

said to be stochastically included in A2 if, for every collection of compact sets K1, . . . , Kl ,

l arbitrary,

PfA1 \ K1 6� Æ, . . . , A1 \ K1 6� Æg < PfA2 \ Kl 6� Æ, . . . , A2 \ Kl 6� Æg:

Remark B.1. Since all ®nite unions of open balls are monotone limits of compact sets, we

may also equivalently de®ne A1 to be stochastically smaller than A2 if, for every collection of

open balls (Bij),
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P A1 \
[

j

B1 j 6� Æ, . . . , A1 \
[

j

Bl j 6� Æ

( )
< P A2 \

[
j

B1 j 6� Æ, . . . , A2 \
[

j

Bl j 6� Æ

( )
:

Remark B.2. Suppose that two random sets A1 and A2 are de®ned on the same probability

space and that A1 � A2 a.s. Then trivially A1 is stochastically included in A2.

There is ± as in the case of stochastic ordering of real variables ± a construction which

shows that the converse is also true:

Theorem B.1. Let A1 and A2 be two random sets such that A1 is stochastically included in

A2. Then there is a probability space (Ù9, A9, P9) and two random sets A91 and A92 such that

Ai coincides in distribution with A9i for i � 1, 2 and A91 � A92 a.s.

Proof. Let fBigi2N be the countable collection of all open balls with rational centres and

rational radii in Rd . Notice that, for all closed sets C,

C �
\

C\Bi�Æ
Bc

i ,

where Bc denotes the complement of B. Let xC 2 f0, 1gN be the characteristic vector of C,

i.e.

[xC]i �
1 if C \ Bi 6� Æ,

0 if C \ Bi � Æ:

(
Set xC1

d xC2
if and only if [xC1

]i < [xC2
]i for all i. Obviously C1 � C2 if and only if

xC1
d xC2

.

The random sets A1 and A2 induce probability measures P1 and P2 on the in®nite

hypercube f0, 1gN. We will construct a coupling P9 of P1 and P2 on f0, 1gN 3 f0, 1gN.

Let us ®rst consider the case of the ®nite collection B1, . . . , Bn. Let ì1 and ì2 be the

measures which are induced via the characeristic vectors on the ®nite hypercube f0, 1gn.

Call a subset G of the hypercube monotonic, if x 2 G and x d y implies that y 2 G.

We claim that the assumptions imply that ì1(G) < ì2(G) for all monotonic sets G. Let

x(1), . . . , x(s) be the minimal elements in G. Since G is ®nite, the set of minimal elements

is also ®nite. Then G � [s
i�1fy : x d yg, which corresponds to the set [s

i�1 \ x
(i)

j
�1

Bj. By

Remark B.1, ì1 is smaller than ì2 on exactly this class of sets.

The existence of a coupling can be seen from a graph-theoretic argument. We construct a

special graph with 2� 2n�1 nodes. Imagine two hypercubes f0, 1gn, where node x from the

®rst and node y from the second hypercube are connected by an oriented arc if x d y.

Assign the capacity 1 to these arcs. Finally, add two arti®cial nodes to the graph: a source

which is connected to each node x of the ®rst hypercube with capacity ì1(x), and a sink

which is reachable from each node y of the second hypercube with capacity ì2(y). We

claim that every cut in this graph has capacity at least 1. Suppose that we cut the arcs

which lead from the source to the nodes (x)x2 I of the ®rst hypercube. Then, in order to cut

Z-theorems: limits of stochastic equations 935



the sink from the source, we have to cut at least the arcs leading from the nodes (y) y2G to

the sink, where G � fy : 9z =2 I such that z d yg. (To cut arcs with in®nite capacity does

not work.) The capacity of this cut isX
x2 I

ì1(x)�
X
y2G

ì2(y) � 1ÿ
X
x=2 I

ì1(x)�
X
y2G

ì2(y) > 1ÿ
X
x2G

ì1(x)�
X
y2G

ì2(y) > 1,

since G is a monotone set.

The minimal capacity of a cut is 1. Thus by the max-¯ow-min-cut theorem, there is a

¯ow of size 1 from the source to the sink. Let í(x, y) be such a ¯ow (it need not be

unique). Notice that í(x, y) > 0,
P

yí(x, y) � ì1(x) and
P

xí(x, y) � ì2(y). We may

interpret í as a probability measure. Since a ¯ow is only possible if x d y, we have that

x d y í-a.s.

For a general countable class of balls, we make the above construction for each n, i.e. we

construct a sequence (ín) of coupling measures on pairs of hypercubes f0, 1gn 3 f0, 1gn.

We may select a subsequence (í
n

(1)
i

) such that the induced marginal distributions on the ®rst

coordinates converge, a further subsequence (í
n

(2)
i

) such that the marginal distributions of the

®rst two coordinates converge, and so on. Let P9 � limkín
( k)

k

). P9 is a probability measure

on Ù9 � f0, 1gN 3 f0, 1gN. It is evident that í has marginals P1 and P2 and x d y P9-a.s.

On Ù9 we construct the two new random sets by

A91(x, y) �
\
xi�0

Bc
i , A92(x, y) �

\
yi�0

Bc
i :

We have that A91 � A92 a.s. and that the A9i have the same distributions as Ai, i � 1, 2. h

De®nition B.2 (see De®nition 2.2). A sequence An of random sets is called stochastically

included in A0 in the limit if, for every collection of compact sets K1, . . . , Kl ,

lim sup
n

PfAn \ K1 6� Æ, . . . , An \ Kl 6� Æg < PfA0 \ K1 6� Æ, . . . , A0 \ Kl 6� Æg:

Remark B.3. An equivalent de®nition is as follows: a sequence An of random sets is

stochastically included in A0 in the limit if all cluster points of the sequence (An) are

stochastically included in A0.

Lemma B.1. If An, A0 are de®ned on the same probability space and lim sup An � A0 a.s.,

then An is stochastically included in A0.

Proof. Let K1, . . . , Kl be a collection of compact sets and suppose that

An \ K1 6� Æ, . . . , An \ Kl 6� Æ

for in®nitely many n. Then also, since lim sup An � A0, i.e. since A0 contains all cluster

points of subsequences from An,

A0 \ K1 6� Æ, . . . , A0 \ Kl 6� Æ:
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Thus\
N

[
n<N

fù : An(ù) \ K1 6� Æ, . . . , An(ù) \ Kl 6� Æg �

fù : A0(ù) \ K1 6� Æ, . . . , A0(ù) \ Kl 6� Æg,
which implies that

lim sup Pnfù : An(ù) \ K1 6� Æ, . . . , An(ù) \ Kl 6� Æg
< Pfù : A0(ù) \ K1 6� Æ, . . . , A0(ù) \ Kl 6� Æg: h

Lemma B.2. Suppose that A0 is a.s. a singleton, i.e. A0 � a0, a random variable. If An is

stochastically included in A0 in the limit, then every measurable selection ~an 2 An converges

in distribution to a0.

Proof. It suf®ces to show that, for every measurable selection,

lim sup
n

Pnf~an 2 Kg < Pfa0 2 Kg

for every compact K. This is, however, clear since

lim sup
n

Pnf~an 2 Kg < lim sup
n

PnfAn \ K 6� Æg < Pnfa0 2 Kg: h
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