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Preface

Interest in human settlement systems and policies has been
a critical part of urban-related work at IIASA since its incep-
tion. Recently this interest has given rise to a concentrated
research effort focusing on migration dynamics and settlement
patterns. Four sub-tasks form the core of this research effort:

I. the study of spatial population dynamics;

ITI. the definition and elaboration of a new research
area called demometrics and its application to
migration analysis and spatial population fore-
casting;

III. the analysis and design of migration and settle-

ment policy;

IV. a comparative study of national migration and
settlement patterns and policies.

This paper, the ninth in the dynamics series, explores some
of the redistributional consequences of zero growth. It develops
the concept of the spatial reproductive value and demonstrates
how this measure can be used to assess the quantitative impacts
of fertility reduction.

Related papers in the dynamics series, and other publica-

tions of the migration and settlement study, are listed on the
back page of this report.

Andrei Rogers
December 1976
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Abstract

This paper develops the concept of spatial reproduc-
tive value and illustrates how such a notion may be used
to trace out quantitatively the geographical impacts of
a sudden reduction in fertility to bare replacement level.
Such a reduction does not immediately produce zero popula-
tion growth in populations that previously experienced
high birth rates. The built-in momentum for continued
growth and its spatial dimension may be assessed with the
aid of spatial reproductive values.
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The Spatial Reproductive Value and the Spatial

Momentum of Zero Population Grcwth

1. Introduction

If age-specific birth and death rates remain fixed, a
population that is undisturbed by migration will ultimately
evolve into a stable population that increases at a fixed annual
rate, r say. If the birth rates are fixed at bare replacement
level, then such a stable population will be a stationary or zero-
growth population with an r of zero. 1In what follows, we
explore some of the spatial consequences of zero growth by
considering how a sudden reduction of fertility to replacement
level might affect the spatial evolution of a multiregional
population whose constituent regional populations experience
the redistributional effects of internal migration.

Mathematical analysis of spatial zero population growth
(SZPG) can be facilitated by adopting a spatial generalization
of the notion of reproductive value first set out by Fisher
(1929, p. 27). Keyfitz (1975) has shown how the quantitétive
impacts of fertility reduction, of sterilization, of mortality,
and of emigration, all assumed to take place at a particular
age x within a single population, can be assessed by means of
reproductive values. Analogous calculations can be carried out
for multiple spatially interacting populations with the aid of
sEatial reproductive values, as we demonstrate for the case of
fertility reduction to replacement level.

Finally, it is well-known that a sudden reduction of
fertility to replacement level does not immediately produce
zero population growth. Children outnumber parents in a popula-
tion that maintains high birth rates. Consequently the number
of potential parents in the next generation will inevitably be
larger than at present, and the current population therefore
has a built-in tendency to continue growing before it ultimately
stabilizes into a zero-growth condition. This built-in momentum

may be assessed with the aid of reproductive values, and the




concluding parts of this paper illustrate how such a momentum

may be accorded a spatial dimension.

2. Spatial Zero Population Growth

Zero population growth for a nation implies a zero growth
average for local areas. This, of course, still allows for the
possibility of nonzero growth in particular localities. Thus
spatial zero growth, like temporal zero growth, may be viewed
either as a condition that ultimately prevails uniformly over
space and time, or one that exists only because of a fortuitous
balancing of regional rates of positive growth, of zero growth,
and of decline. Since no obvious advantages arise from the
latter case, it is quite natural to view the attainment of
temporal zero growth in the long-run in terms of an indefinite
continuation of temporal zero growth in the short-run. We
follow this tradition in this paper and view the attainment of
spatial zero growth in the long-run in terms of temporal zero
growth within each region of a closed multiregional population
system. Consequently, we confine our attention to the evolution
of a particular subset of stationary populations, called spatial

zero growth pooulations, i.e., stable multiregional populations

that have a zero growth rate. Thus we augment the usual twin
assumptions of a fixed mortality schedule and a fixed fertility
schedule, set at replacement level, with the assumption of a
fixed migration schedule. Multiregional populations subjected
to such regional growth regimes ultimately assume a persisting
zero rate of growth in every region and exhibit zero growth both

over time and over space.

2.1 Conditions for Spatial Zero Population Growth

Stable population theory informs us that a stationary, say
female, population arises out of the combination of the follow-
ing conditions [Ryder, 1974]: (i) a fixed survival function
2(a) which specifies the probability that a female survives to

age a; (ii) a fixed maternity function m(a) which defines the



conditional probability that a surviving female gives birth to
a baby girl at age a; (iii) a product-sum of these two functions,

the net reproduction rate

R(0) = J 2(a) m(a) da ,
0

that is equal to unity; and (iv) an absence of migration.
If 2(a) and m(a) are fixed for a long time, and the popula-
tion is closed to migration, the annual number of female births,

B(t), is given by the well-known Lotka equation
B(t) = J B(t - a) 2(a) m(a) da .
0
Substituting Qert for B(t) in the above ecguation gives
Q= Q[ j ™ 2(a) m(a) da] = o¥(r) ,
0

whose solution is that value of r for which ¥(r) = 1, and where
Q denotes the number of stable egquivalent births.
For the special case of r = 0, B(t) = O, and

Q= @[ I 2 (a) fi(a) da] = OR(0) ,
0

where m(a) = ym(a) and y is generally taken to be equal to the
reciprocal of the net reproduction rate, R(0). (The caret will
henceforth be used to distinguish the parameters of a stationary
population.)

Let us now relax the last of the four conditions that
generate a stationary population, i.e., closure of the popula-

tion to migration. 1Imagine a multiregional population whose




long-run evolution follows the multiregional Lotka equation
(Rogers, 1975, Ch. Uu):

{B(t)} = J m(a) 2(a) {B(t - a)} da , (1)
0 5

where T(a) is a diagonal matrix of annual regional fertili-
ty rates mj(a), f(a) is a matrix of place-of-birth to place-
of-residence survival probabilities iSl.(a), and {g(t)} is a
vector of regional births B. (t).

Substituting {0}e™" for {B(t)} in (1) gives

~

{Q} = [ J e 1 m(a) 2£(a) da]{Q} = ¥(r){qQ} , (2)
. z 2

whose solution is that value of r for which the dominant charac-
teristic root of ¥(r) is unity. For the special case of r = 0,
{B(t)} = {Q}, and

{Q} = [ J m(a) 2(a) da]{é} = R(0O){Q} , (3)
0

~ ~ ~ ~

where carets are once again used to distinguish stationary
population measures. The element in the ith row and the jth
column of ﬁ(O) is the stationary regional net reproduction rate

in region i of women born in region j:

Equation (3) shows that for a spatial zero growth popula-
tion to be maintained, the dominant characteristic root of the
matrix @(0) must be unity. Consequently a reduction of fertility

to replacement level may be interpreted as a reduction of the



elements of T(a) to a level that reduces the dominant charac-
teristic root of a given net reproduction matrix R(0) to unity.
Such an operation transforms m(a) to @(a) and 5(0) to @(O).

The vector {é} in (3) is the characteristic vector asso-
ciated with the unit dominant characteristic root of %(O) and
denotes the total number of births in each region of a spatial
zero growth population. The proportional allocation of total
births that it defines is directly dependent on the transforma-
tion that is applied to change B(O) to %(O). Since in a

spatial zero growth population the regional stationary eguiva-

A

lent population Y, is equal to the cuotient formed by éi and
the birth rate Bi’ we see that the different ways in which
R(0) is transformed into %(O) become, in fact, alternative

~

"spatial paths" to a stationary multiregional population.

2.2 The Redistributional Impacts of Two Alternative Spatial
Patterns of Fertility Reduction

A multiregional population system that is growing at a
positive rate of growth exhibits a net reproduction matrix
R(0) with a dominant characteristic root Aq[R(0)] that is
greater than unity. If the rate of childbearing in each region
of this population system were immediately modified such that

every woman born in that region would now have a net reproduc-

tion rate of unity, then

~ m ~
jR(0) = j£1 iRj(O) =1
or, in matrix form,
R(O) {1} = {1} (1)

where the prime denotes transposition.
Following the normal practice in single-region exercises

of this kind, assume that the fertility of each regional cohort



of women is modified through the multiplication of each
region's age-specific birth rates by a fixed fertility adjust-

ment factor, Y; say. Then

. m R m =) m
iR(O) = z .R.(0) = 21 0[ iQ.(a) ijj(a) da = z Yj iRj(O) =1

and
R(0) = yR(0) (5)

where y is a diagonal matrix of fertility adjustment factors.

~

Substituting (5) into (4) gives
R(0) y{1} = {1}
whence

tyb = R"17" 1y (6)

Setting the fertility of each female cohort in every

region to bare replacement level, the cohort replacement alter-

native, is but one of many possible spatial patterns of fertility
reduction. One could instead, for example, consider a fertility
reduction scheme in which the aggregate system-wide net repro-
duction rate is reduced to unity through the multiplication of
all age-specific birth rates by the same fertility adjustment

factor, y say. That is, let

il

L >

(0) YB(O) , where

(7)
N = .__________1
LT X TR0

This particular spatial pattern of fertility reduction may be

called the proportional reduction alternative, and its redis-

tributional impacts can he quite different.



A numerical illustration may be instructive at this point.
Assume that the net reproduction behavior of the urban and
rural female populations of a national population are approxi-

mated by the net reproduction matrix N

uRu(O) rRu(O) 3/4 1/2
R(0) = = (8)
4R, (0) (R, (0) 1/4 1
where, for example, rRu(O) = 1/2 denotes the net reproduction
rate in urban areas of rural-born women. In other words, underxr

the observed regime of growth, each woman born in rural areas
will, on the average, replace herself in the succeeding genera-
tion by 1 1/2 daughters, one third of whom will be born in
urban areas. Urban-born women, on the other hand, have a
lower net reproduction rate, i.e., uR(O) = 1 < rR(O), which
when combined with the net reproduction rate of rural-born
women gives the national female population an overall net repro-
duction rate of A1[§(0)] =1 1/4, where X1[g(0)] is the dominant
characteristic root of the net reproduction matrix in (8).

An immediate system-wide fertility decline to replacement
level, such that each urban- or rural-born woman is followed
in the next generation by exactly one daughter, impvlies

Yy = 1 1/5 and Yy = 2/5, whence

9/10 3/5 6
R(0) = and {é} =
1/10 2/5 1

Both groups of women now exhibit unit rates of net reproduction;

the dominant characteristic root of %(0) is unity; and the

characteristic vector associated with the unit dominant charac-

teristic root of %(0) indicates that 6/7 of the total births

in the spatial zero growth population will occur in urban areas.
Consider next the redistvributional implications of a

fertility decline according to the proportional reduction



alternative defined in (7). 1In this instance, y = 4/5, whence
3/5 2/5 1
@(0) = and {é} =
1/5 4/5 1

The fertility of urban-born women now declines to below replace-
ment level (uﬁ(O) = H/S), whereas tQat of rural-born women

continues to exceed sucg a level (rﬁ(O) =1 1/5). The dominant
characteristic root of 5(0) is unity, and urban and rural areas

have an equal number of births.

3. The Spatial Reproductive Value

The concept of reproductive wvalue, as developed by R.A.
Fisher (1929), revolves around the notion of regarding the off-
spring of a child as the repayment of a debt. Specifically, if
the birth of a baby is viewed as a loan of a life and if the
future offspring of this child are viewed as the subsequent
repayment of this loan, suitably discounted at the annual rate
r and compounded momently, then the present value of the repay-

ment may be taken to be
J e " 92 (a) m(a) da
0

Equating the loan with the discounted repayment gives

o0}

1 = J e T 2(a) m(a) da .,
0

which is recognizable as the characteristic equation used to
solve for r, the intrinsic rate of growth. Thus, as Keyfitz
points out:

"the eqguation can now be seen in a new light:
the equating of loan and discounted repayment is



what determines r, r being interpretable either
as the rate of interest of an average loan or as
Lotka's intrinsic rate of natural increase."
(Keyfitz, 1975, p. 588)

In the above cited paper, Reyfitz considers how much of the
debt is outstanding by the time the child has reached age x. He
defines this quantity to be v(x), the reproductive value at

age x, where

vi(x) = [ e T (a7x) %%g% m(a) da (9)
X

and v(0) is scaled to equal unity.

3.1 Definitions and Theory

Keyfitz's arguments have their spatial (multiregional)
counterparts. To develop these it is convenient to re-express

(9) for arbitrary values of v(0), namely:
v(x) = v(0) J e @ X) gy 2x)” " m(a) da = v(0) n(x) .,
X

where

v (0)

v(0) f e '@ g(a) m(a) da = v(0) y(r)
0

and n(x) denotes the total discounted number of baby girls
expected to be born to a woman now at age x. This form of the

equation immediately suggests the multiregional analog

{vix)}'

{v(o)}' J e T (@ X) i) g(a) 2(x) da , (10)
X

{vi}' n(x) , say , (11)
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where

e o}

(
vy} = {v(o)}' J e
~ - 0

& n(a) L (a) da = {Y(O)}' y(r)

(12)
The matrix n(x) represents the expected total number of
female offspring per woman at age x, discounted back to age x.

The element n, (x) gives the discounted nurber of female

children to bejborn in region j to a woman now X years of age
and a resident of region i. The vector {Y(x)} represents the
reproductive values of x-year old women, differentiated by
region of residence. Observe that the elements of {Y(x)} depend
on the scaling given to {y(O)}, the left characteristic vector
associated with the unit dominant characteristic root of the
characteristic matrix g(r).1 Thus in the multiregional model,
the reproductive value of a baby girl depends on where she is
born.

Ecquations (10) through (12) may be given the following
demographic interpretation. 1If lives are loaned to regions
according to the (column) vector {Q} then the amount of "debt"
outstanding x years later is given by the (row) vector {Y(x)}',
the regional expected values of suhsequent offspring discounted
back to age x. The elements of this vector, therefore, may be
viewed as spatial (regional) reproductive values at age Xx.

A slightly modified perspective of the spatial reproductive
value is adopted in this paper. Specifically, we shall distin-
guish between the terms number and value when referring to births
in the various regions of a closed multiregional system. The
two expressions have identical meanings in the single-region
model, but variations in regional fertility and mortality
schedules give them different meanings in any multiregional

model in which internal migration is represented.

1Recall that in (2) the corresponding right characteristic
vector of ¥ (r) was {Q}.
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Recall the definition of the multiregional characteristic
matrix ¥(r) in Equation (2). An element i‘Pj(r) denotes the
discounted total number of daughters born in region j to a
mother born in region i. The discounted number of female births

per woman in a particular region, ;¥ (r) = Y

]
than unity. Although this suggests that she does not repay the

i‘}’j(r), may be less

full amount of her "debt" to society, we shall show that this
may be true only of number but not of value.

Consider society as an investor in a multiregional (spatial)
portfolio of lives, each element of the portfolio being a region.
The society distributes its investment in lives among its regions
according to the vector {Q}. The total discounted number of

offspring attributable to the Qi i-born individuals 1is

out of which total in Q; will be born in region j. The total
societal investment in region i, however, is Q. births, which
by virtue of Equation (2) may be expressed as

Qi = %: qul(r) Q] .

Hence for each region, during stable growth, the present dis-
counted number of future births in that region must be equal
to the current number of births.
The distribution of total societal births among regions
is one of two related aspects of the reproductive value problem.

Associated with this primal aspect of allocation is a dual

aspect of valu_g_t—:ion.2

2This primal-dual relationship resembles the one found in
mathematical programming theory and suggests the conjecture
that (i) the primal optimization problem is one of selecting
an allocation of births to maximize growth, within the con-
straints of a given regime of fertility, mortality, and migra-
tion; and (ii) the dual optimization problem is one of valuing
births in each region so as to minimize the total regionally-
weighted societal reproductive value.
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The value of a birth reflects the capacity to produce new
life. If a O-year old in region i is worth vi(O), then, by
Equation (11), the reproductive value of the discounted number

of offspring must also be vi(O), that is,
v, (0) = § v (0) ¥, ()

Thus, if the investment in one life in a region is viewed as a
debt of an individual to society, then in a stable equilibrium
each individual must repay that debt to society at an annual
interest rate r. The repayment does not have to take place
in the region of birth, however. Part of it can occur in other
regions, where births may be worth more (or less) than in the
region of birth. Thus we may conclude that individuals pay
back their debt to society in values v(0), whereas regions pay
back their debt in numbers Q. The former distribution is
defined by (12); the latter derives from (2).

Spatial reproductive values at age x, vi(x), may be appro-
priately consolidated to yield total spatial reproductive

values, Vi by means of the relationship

{v}' J {vix)}' k(x) ax
0

{y(O)}'[ J n(x) k(x) dx] (13)
of B2

{vio)}' n (14)

where k(x) is a diagonal matrix with kii(x) representing the
numpber of women at age x in region i, and n is a matrix of
total discounted number of female offspring associated with
that population. The total reproductive value of the
multiregional population then is

{1 . (15)
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3.2 Numerical Evaluation

The definition of {v(x)} in (10) refers to exact age x.
A suitable numerical approximation, analogous to the one usually
made in the single-region model, is
B_

5
v} = (v} § [e7T@2:57%) yia) La)] 2
a=x

Txy

(16)

where B is the last age of childbearing, @(a) and %(a) are,
respectively, matrices of fertility rates and life table popu-
lations of women aged a to a + 4, and £(x) is the life-table
survival matrix to exact age x (see Rogers, 1975).

The average spatial reproductive value for the age interval
x to x + 4 at last birthday is denoted by {Y(x)}' and may be
approximated by

| v 5 PTS _p(a-
W = v 2 ) e Ma) L(a)
a=Xx
+ e 7@ yays) La+s)] LT (x)
= {viO)} NE) (17)

where @(x) is the average value of Q(x) for the age interval
X to x + 4 at last birthday.3

Table 1 presents the values of §(x) for x = 0,5,...,50
using the 1961 population data on Yugoslavian females that is
published in Rogers (1975). For example, the discounted
(r = 0.006099) number of daughters expected to be born to a
woman now living in Slovenia and 15 to 19 years old is 1.0078.
Of this total 0.9417 will be born in Slovenia and 0.06€1 will

be born in the rest of Yugoslavia. A woman in the same age

3Equation (17) may be shown to be consistent with a some-
what different formulation set out as Ecuation (4.37) on p. 105
of Rogers, 1975.
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group in the rest of Yugoslavia has an expected discounted
number of daughters of 1.1943, of which only 0.0068 will be
born in Slovenia. This is mainly a reflection of the low level
of migration from the rest of Yugoslavia to Slovenia and the

low fertility in Slovenia.

The characteristic matrix for this two-region system is

0.813587 0.009081
¥(0.006099) = 7

0.103594 0.994840

0.917181 1.003921

its dominant characteristic root is unity; and the associated

left and right characteristic vectors are, respectively:

{vin)}' = [1 1.798369]  {Q} =

~

20.515385

Note that the discounted number of female offspring
of a baby girl born in Slovenia is less than unity. Neverthe-
less she still repays her debt of a life to society, because
the 0.10% daughters born to her in the rest of Yugoslavia have
a higher value than an egqguivalent number born in Slovenia.

The weighted discounted repayment is a single life:
1 = 1(0.813587) + 1.798369(0.103594) .

Combining the numerical approximation of N(x) with that
of {v(0)}', as set out in (17), gives the set of values for
{V(x;}' in Table 2. These indicate that the spatial
r;productive values of Slovenian girls are, at most ages,
roughly half of the corresponding values for girls living

in the rest of Yugoslavia.
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Finally, weighting the age-specific values of N(x) in
Table 1 by the respective observed populations and adding
gives the total discounted number of female offspring N.

Table 3 shows that under the 1961 regime of fertility, mortal-
ity, and migration, the total discounted number of daughters

to be born to Yugoslavia's 1961 female population is 5,528,742.4
Of these, 383,133 or 6.93 percent will be born in Slovenia,

and 379,208 or 6.86 percent will be children of the observed
1961 female residents of Slovenia. Of the ultimate discounted
383,133 female births in Slovenia, 30,404 can be attributed

to women now residing in the rest of Yugoslavia and 352,729

to potential mothers now living in Slovenia.

To derive the total reproductive value of the observed
female population one must weight the discounted number of
offspring according to region of birth. If we assign a value of
unity to a birth in Slovenia then 1.798369 is the corresponding
value of a birth in the rest of Yugoslavia. The total repro-

ductive value of Slovenian women is (Table 3)
352,729(1) + 26,479(1.798369) = 400,347

and the corresponding value for women residing in the rest of

Yugoslavia is
30,404(¢1) + 5,119,130(1.798369) = 9,236,491 .

Adding the two subtotals together gives the aggregate system-

wide total reproductive value

V = 400,347 + 9,236,491 = 9,636,838 ,

for the case where v, (0) is set equal to unity.

uThe slight discrepancy between this total and the one
reported on p. 114 of Rogers (1975) may be attributed to
differences in computer hardware. .
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3.3 Stable Population Analysis

The reproductive value may bhe used to establish the extent
to which an individual of a given age will, on the average,
contribute to the births of future generations. If « is the

mean age of childbearing in a stable population then

...without any change in birth rates the ultimate
population birth trajectory due to P(x) dx persons

at age x to x 4+ dx would be ert P(x) v(ix) dx/x,
and for the whole population distributed as P(x)
B
would be ert J P(x) v(x) dx/x ." (Keyfitz, 1975,
0
p. 606)

The above holds true for a single-region population that
is closed to migration. It can be shown that the corresponding
result for a multiregional population system is (Willekens,
1977):

{Q(t)} = Tt J {Y (x)} {k(x)} dax {0 }///[{v1(0)}' K{Q1}]
0 - N N T
(18)

where we denote the initial population by k(x) instead of P(x),
to maintain consistency with our earlier notation; where the
unit subscripts designate vectors with arbitrary scalings

(we shall adopt a scaling that sums the elements of each vector
to unity); and where k, the matrix of mean ages of childbearing

in the stable population, is defined as
<= RO [P @], (19)

with
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Rewriting (18) as

rt{

{g(t)} = ! vert{Q1} = % e

9,
{v,(0)}'c{Q,}

~

we immediately obtain an expression for stable equivalent
births:

1
{v,(0)}x{Q,}

{Q} = vig} = = 194} (21)

where

K = {Y1(0)}' 5{91} .

Goodman (1969) proves that the impact on the ultimate
stable birth trajectory of a girl at age x is v(x)ert/K.
The above results indicate that the size of this impact depends
on the spatial reproductive value of the girl and, therefore,
on her initial region of residence. The spatial proportional
distribution of these births, however, is independent of the

initial distribution of the population and is therefore not a
function of her initial region of residence.

The ultimate birth trajectory, as given by (18), depends
on the intrinsic annual rate of growth r, the total reproduc-
tive value of the population v and its proportional distribution
among the regions {31(0)}', the matrix of mean ages of child-
bearing in the stable population k, and the proportional distri-
bution of births in the stable population {Qq}. For our earlier
two-region illustration involving Slovenia and the rest of
Yugoslavia, we have the following numerical approximations for
these values:

r = 0.006099 {vy(0)}" = [0.357351  0.642649]
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27.309929 0.016457 0.046u478

0.244865 27.104288 0.953522

Substituting into (21) gives
9,374
192,304
a result that can be verified by calculating the regional

stable equivalent populations {Y}, defined in Rogers (1975),
and then using the relation (Willekens, 1977):

{g} = by}
A o -1
= [ e X m(x) 2(x) dx][ J e ¥ g (x) dx] {v}
L0 ~ ~ 0 ~ ”
- 00 _ _1
= J e ¥ g (x) dx] {v}i . (22)
L0 - -

The reader can verify that the earlier scalings of {v(0)}'
and {Q} found in Section 3.2 give an identical numerical result

for stable equivalent births.

4, The Spatial Momentum of Zero Population Growth

Differences between observed population age compositions
and those of stationary populations make immediate zero growth
an unlikely condition for most national populations. A closed
population's birth rate and growth rate depend on its fertility
schedule and its age composition. Consequently whether and how

long a population continues to grow after achieving a net
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reproduction rate of unity depends on that population's age
composition and its degree of divergence from that of a
stationary population. The ratio by which the ultimate
stationary population exceeds a current population is the

momentum of that population.

4.1 The Ultimate Size and Distribution of a Stationary

Spatial Population

If fertility were to drop immediately to replacement level
in a population that is closed to migration, the ultimate
stationary number of births in the resulting zero growth popu-
lation would be (Reyfitz, 1975)

=<

5 = L
Q—u ’ (23)

J k (x) V(x) dx =
0

where y is the mean age of childbearing in the stationary
population, and G(x) is the reproductive value corresponding

to an intrinsic rate of growth r = 0, a condition we can ensure
by reducing fertility to replacement level along the lines
described in Section 2 of this paper. The corresponding
ultimate stationary total population may be found by dividing

0 by the stationary birth rate b or, equivalently, by multiply-
ing it by e(0), the expectation of life at birth

v =2=¢c(0) 0 . (24)

o 0>

Such a calculation gives the same result as a full population
projection carried out with the modified fertility schedule
m(a).

The above results have their spatial (multiregional)
counterparts. To develop these it is convenient first to
recall (18) and to define {g(x)}' to be the vector of spatial
reproductive values corresponding to an intrinsic rate of

growth r = 0. (We have seen earlier that a transition to zero
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growth may be carried out by multiplying the fertility schedule
m(a) by the fertility adjustment matrix y .) Then the ultimate

number of stationary equivalent births must be

@ = [ G001 ey ax @) /[0 %18,1]
. k 0 v < (0

~

=A1'A (,{61}=
{v,(0)} piQ,} ”

=i

{61} , (25)

where {§1(0)}' and {@1} are, respectively, the left and right
characteristic vectors associated with the unit dominant

characteristic root of IR(O), and where
b=k = YR(1) R (0) ¥

is the matrix of mean ages of childbearing in the stationary
population that evolves after the decline of fertility to
replacement level.

The ultimate total stationary population is

{¥} = b7 {0} = e(0) {0} (26)

and g(O) is a matrix of expectations of life at birth disaggre-
gated by regions of birth and residence.

Equation (25) has a simple and intuitively appealing
interpretation. Consistent with (23) it defines the total size
of stationary equivalent births in a multiregional population
to be equal to the quotient of the total reproductive value v
and the weighted index u = {§1(O)}'B{§1} in that population

both evaluated after the decline in fertility to replacement
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level, and distributes that total according to the proportional
allocation determined by the right characteristic vector associa-
ted with the unit dominant characteristic root of the modified
net reproduction rate matrix XB(O)' The interpretation of

equation (26) follows in a straightforward manner.

4.2 The Spatial Momentum of an Initially Stable Population

An abrupt decline in fertility to bare replacement level
in a single-region population that initially is experiencing
stable growth leads to a computationally simpler form for
Equation (23). Keyfitz (1275) shows that in such an instance

the ratio of the ultimate stationary population ¥ to the

stable population of K individuals just prior to the decline

in fertility is

_ b e(0) R(0) - 1

R

where b is the birth rate, r the rate of growth, e(0) the
expectation of life at birth, and R{0) the net reproduction
rate, all measured before the drop in fertility, and p is the

mean age of childbearing afterward. Expressing (27) as
Y = e(0) @ , (28)

gives

0>
|

where vy = 1/R(0) and Q = bK. Note that this formula for total
stationary equivalent births does not require the calculation
of the total reproductive value of the population; but by
virtue of (23) it implies that, in this special situation,

v = (R(O) - 1) O . (30)

R
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Conventional methods of population projection may be used
to obtain the future population that evolves from any partic-
ular observed or hypothetical regime of growth. Therefore
(27) is not needed to obtain a numerical estimate of an
ultimate stationary population. However Keyfitz's simple
momentum formula gives us an understanding of the population
dynamics that are hidden in the arithmetical computations of
a population projection. It identifies in an unambiguous way
the five parameters of a current population that determine the
size of the future population.

An analogous simplification of Eguation (25) may be
obtained in the multiregional model. 1If {5(x)} is stable,

then entering

{k(x)} = e °7 2(x) {Q}

~ ~

into (25), and multiplying by e(0) to produce the stationary
equivalent population instead of stationary equivalent births,

gives

(¥} =

[ 0)
=)

[ —
.
<>
=)
-

1A

o

—_—
8
<
—_—
8
()
]
3]
"
=

(a) f%(a) dadx {9}]{52)1}.

~

gl PN

Evaluating the double integral and simplifying, we obtain

{¥} = e(0) uir [{{z (0)}' YIR(0) = ¥(r)] {9}] {0,} (31)
= e(0) 0 {04} (32)
where

0= — [{\}1(0)}' Y [R(0) = ¥(r)] {Q}] . (33)
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As with Equation (29), this formula does not require the calcu-
lation of the total reproductive value of the population, but
it implies that

yIR(0) - ¥(r)] {Q} . (34)

2
Ri=

v = {v1(0)}

Equation (31) is not as practically useful as its single-
region counterpart because it is much more difficult to come
up with accurate guesses or estimates of the values taken on
by the many parameters. Thus a more effective procedure may
be to first estimate the ultimate size of the total stationary
equivalent births 0, by means of (29); then to distribute that
total among the various regions according to the allocation
defined by the characteristic vector associated with the unit
root of IR(O); and, finally, to premultiply the resulting
vector bng(O) to find {g}. We now shall iliustrate such a

procedure with a numerical example using data for India.

4.3 The Urbanization Momentum in India

We have shown that the geographical distribution of a
spatial zero growth population depends very fundamentally on
three matrices: e(0), B(O), and Y. The first describes the
multiregional levels of mortality and migration; the second
sets out the multiregional net reproduction patterns before the
decline in fertility; and the third defines the particular
"spatial path" by which fertility is reduced. The product
IB(O) gives %(0), whose characteristic vector associated with
the unit root and scaled to sum to Q is {@}.

Equation (32) also may be used to illustrate dramatically
that where people choose to live in the future presents issues
and problems that are potentially as serious as those posed by
the number of children they choose to have. Consider, for
example, the projection to zero growth of India's population
that was recently carried out by Norman Ryder on the basis of

the following assumptions:




-20 -

To simplify the task of projecting the popula-
tion of India, we make the following assumptions:
it is a stable population with a growth rate
r = +0.025 and survival functions corresponding
to those labelled "West, level 13" (for which the
female and male expectations of life at birth
are 50 and 47.114, respectively) in the Coale/
Demeny collection; the mean age of (gross) mater-

nity m = 29; the ratio of male to female births
k = 1.05; and the current population size is
600 million. (Ryder, 1974, p. 6)

From these assumptions it follows that the initial number
of female births per annum B(t) = 12.156 million, R(0) = 2.019,
and § = 28.672. Applying (28), Ryder finds a O of 8.558 million
for females and a zero growth total (males plus females) popula-
tion of approximately 851 million. He then shows that if
survival levels in India eventually rise to e(0) = 70 years for
females and e(0) = 66.023 for males, and

if replacement level fertility takes 40 years to

achieve and the mean age of gross reproduction
declines from 29 to 27, the ultimate female birth

cohort size will be...15.029 million. Given that
value, ...the consequent ultimate population size
is 2.094 billion. (Ryder, 1974, p. 7)

Ryder concludes that the thought of a population of 2.1 billion
for India is staggering and goes on to examine in what respects
the components of his projection may be modifiable.

There is no question but that the thought of a 2.1 billion
population for India is staggering. What is even more mind-
boggling, however, is that anywhere from one to two thirds of
this total is likely to eventually be found in that nation's
already teeming and over-congested urban areas (the current
figure is 20 percent). To show this, we need only to introduce
a few additional assumptions and then apply Egquation (32).
Specifically, assume that life expectancy in India today is

57 years in urban areas and 48 years in rural areas, with the
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migration pattern being such that5

ueu(O) e (0) 43 9

4ep () e (0) 12 39

Assume, further, that the spatial pattern of net reproduction

is given by6

Then an immediate decline in fertility to bare replacement

level according to the cohort replacement alternative gives

5According to a recent census publication (Registrar General
of India, 1972), the crude death rates for urban and rural areas
in India in 1970 were 10.2 and 17.3 per thousand, respectively.
These were disaggregated into age-specific death rates using the
age profiles and population data reported in this census publication
and in the U.N. Demographic Yearbook (U.N., 1975). The crude out-
migration rates for urban and rural areas in 1970 were set at 10.0
and 6.8, per thousand, respectively (Bose, 1973). A model migration
age profile (Rogers, 1976) was used to disaggregate these into age-
specific outmigration rates. A two-region life table, calculated
using these age-specific mortality and migration rates, produced the
matrix of regional expectations of life at birth set out above.

6Crude urban and rural birth rates in India in 1970 were
29.7 and 38.8, per thousand, respectively. These were disaggre-
gated into age-specific rates using the fertility age profile
set out in Ambannavar (1975). The age-specific rates then
were combined with the stationary population of the two-region
life table referred to in footnote 5 to obtain the above matrix
of net reproduction rates.
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an ultimate spatial zero growth population distribution of

(Y} = million.

Under this projection, approximately 43 percent of the national
population will be urban, giving rise to an urbanization
momentum of roughly 1.42 x (.43/.20) = 3.1. A rough estimate
of the corresponding momentum under Ryder's gradual fertility
reduction alternative is 3.49 x (.43/.20) = 7.6.

The redistributional consequences of the proportional

reduction altermnative are quite different, however. In this

case

0.63  0.14 0.28
R(0) = {04} = '
0.29  0.89 0.72

if fertility declines immediately, and the spatial zero growth

population that results is

315
{y} = million.
536

Here only about a third (37 percent) of the zero growth popula-
tion is urban. The rough estimates of the immediate and gradual
fertility reduction momenta now become 2.6 and 6.5, respec-

tively.7

7The two fertility reduction alternatives differ not only
in their redistributional impacts but also with respect to the
urban and rural age compositions that they generate. The pro-
portional reduction alternative produces an urban population
that is over five years older in mean age than the correspond-
ing rural population (38.3 to 33.0 years). The same difference
in the cohort replacement alternative is not as pronounced,
although the urban population is still older than the rural
population in mean age (36.9 to 33.6 years).
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But rural-to-urban migration in India is surely going to
increase in the course of its development and modernization.
For example, urban-rural demographic data for the Soviet Union
give approximately the following regional expectations of life

at birth (Rogers, 1976):
60 41
10 29
and the net reproduction matrix

0.80 0.64

By way of contrast, a very crude approximation of the cor-
responding net reproduction rate matrix for the U.S.A. is
(Rogers and Willekens, 1975):

0.85 0.45

These data suggest that reasonable assumptions for India's
future life expectancy matrix and its reduced net reproduction
rate matrix (after, say a cohort replacement fertility decline)

might be

59 23 3/4 1/3
e(0) = and %(0) =
9 45 1/4 2/3

The dominant characteristic vector {61} associated with

the unit root of ﬁ(O) now 1is
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0.57
{§1} = '
0.43

and this implies the spatial zero growth population distribu-

tion

Under these very gross assumptions, approximately 64 percent

of India's zero growth population would become urban, yielding
an urbanization momentum of 1.42 x (.64/.20) = 4.5 for Ryder's
case of immediate fertility reduction, and a corresponding
momentum of 3.49 x (.64/.20) = 11.2 for the case of gradual
fertility reduction. Figure 1 illustrates the various urban-
ization momenta calculated above for India and shows graphically
the wide range of potential levels of urbanization for that
country. Considering the variety of human settlement problems
that already plague cities such as Calcutta, Bombay, and Delhi,

it is a foreboding view of the future.

5. Conclusion

In this paper we have illustrated that migration and
redistribution may present growth issues and problems that are
potentially as serious as those posed by fertility and natural
increase. This troublesome feature of spatial population
dynamics appears even in zero growth populations, where the
redistributional consequences of an immediate reduction of
fertility levels can be of considerable importance.

With respect to methodological issues, this paper has
demcnstrated that the mathematical apparatus commonly used by
demographers to examine the evolution of national populations

to zero growth may be extended for application in spatial
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population analysis. The principal role in this extension is
played by the characteristic matrix y(r) and its right and left
characteristic vectors, {Q} and {Y(O)}', respectively. The
former defines the regional allocation of stable ecuivalent
births; the latter gives the spatial distribution of regional
reproductive values at birth. This distinction is hidden in
the single-region model, where stable eguivalent births and

the reproductive value at birth are cancelled out in each of

their respective definitional equations to give 1 = Y (r).
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Table 2. Spatial reproductive value of females aged x
to x+4 at last birthday, by region of
residence: Yugoslavia, 1961.

Region of Residence

Age Group Slovenia Rest of Yugoslavia

0- 4 1.024392 1.928907
5- 9 1.059390 2.111699
10-14 1.083626 2.183932
15-19 1.060574 2.142272
20-24 0.846536 1.705649
25-29 0.513342 1.028800
30-34 0.256669 0.524109
35-39 0.099899 0.232731
4o-u44 0.024305 0.078400
45-49 0.003175 0.015738
50-54 0.000730 0.003210
Table 3. Total discounted number of daughters to

Yugoslavia,

observed female population by region of

birth and residence: 1961.

Region of Residence of Mother

Region of Birth

of Daughter Slovenia Rest of Yugoslavia Total
Slovenia 352,729 30,404 383,133
Rest of

Yugoslavia 26,479 5,119,130 5,145,609
Total 379,208 5,149,534 5,528,742
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