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Abstract 

In this paper, simplified ozone models for potential use in integrated assessment are developed from the EMEP 
ozone model. which is a single-layer Lagrangian trajectory model. The simplification method uses fuzzy rule generation 
methodology to represent numerous results of the EMEP model as a response surface describing the source-receptor 
relationships between ozone precursor emissions and daily tropospheric ozone concentrations. © 2000 Elsevier Science 
B.V. All rights reserved. 
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1. Introduction 

Major concerns about the environmental im­
pacts of air pollution exist in many parts of the 
world. In some cases, such concerns have led to the 
introduction of measures to reduce the emissions 
of air pollutants in order to limit their negative 
effects. 

Corresponding author. Tel : +43-2236-8070, fax: +43-2236-
7 1-313. 

E-mail addresses: ryoke@jaist.ac.jp (M. Ryoke), nak­
amori@jaist.ac.jp (Y. Nakamori), heyes@iiasa.ac.at (C. Heyes), 
rnarek@:iiasa.ac.at (M. Makowski), schoepp@iiasa.ac.at (W. 
Schopp) . 

Within Europe interest in ground-level ozone 
has intensified in recent years, with increasing ex­
perimental evidence that ozone can have adverse 
effects on crops, trees, materials and human health. 
Studies of the impacts of ozone have resulted in 
the establishment of critical levels for ozone in 
order to protect agricultural crops and forests, 
using a long-term exposure measure, the 'accu­
mulated excess ozone' concept described by 
Fuhrer and Achermann (1994) . A threshold con­
centration of 40 ppb has been set for both crops 
and trees. This exposure index is referred to as 
AOT40, the accumulated exposure over a thresh­
old of 40 ppb. In many parts of Europe the critical 
levels are exceeded and measures to reduce ozone 
concentrations in these areas will be needed to 
protect the relevant ecosystems. 
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In line with the revised World Health Orga­
nisation (WHO) Air Quality Guidelines for 
Europe (see WHO, 1997), a maximum 8-hour 
average concentration of 60 ppb has been pro­
posed as the environmental objective relevant to 
the protection of human health. Because of cur­
rent difficulties with the modeling of European 
abatement strategies for individual days over a 
multi-month period, which such an indicator im­
plies, a surrogate AOT indicator (AOT60), anal­
ogous to AOT40 for vegetation, has been 
introduced . An AOT60 - i.e., the cumulative ex­
cess exposure above 60 ppb, for practical reasons 
over a six-month period - of zero is considered to 
be equivalent to the full achievement of the WHO 
criterion. Although the AOT60 has proved useful 
as a practical, surrogate indicator for risk to 
human health, an alternative method designed to 
handle shorter term, e.g., daily, ozone concen­
trations above 60 ppb remains a desirable 
objective. 

The timescale of ozone production is such that 
ozone concentrations build up in polluted air over 
several days under suitable weather conditions, 
and this pollutant and its precursors can be 
transported over considerable distances and 
across national boundaries. Consequently, mea­
sures to control ozone require international 
cooperation if they are to be successful and cost­
effective. During the last decade several interna­
tional agreements have been reached in Europe to 
reduce emissions - of sulphur dioxide (SO~). ni­
trogen oxides (NO,) and volatile organic com­
pounds (VOC) - in a harmonized way. The 
negotiations leading to the more recent agree­
ments have benefited greatly from the assistance 
given by integrated assessment models, which 
bring together in a consistent framework infor­
mation on emission generation, emission control 
technologies and abatement costs, the long-range 
transport of pollutants and the environmental 
sensitivities of different areas of Europe. In ad­
dition to assessing the environmental impacts of 
alternative strategies for emission reductions, in­
tegrated assessment models can also be used in an 
'optimization' mode to identify those strategies 
that minimize the costs required to achieve a 
given set of environmental targets. Such models 

have now been developed further to take ground­
level ozone into account. 

An essential requirement of an integrated as­
sessment model for ozone is a simplified but reli­
able description of the ozone formation process in 
order to represent the source-receptor relation­
ships involved. It is possible to envisage several 
ways of condensing the results of more complex 
models of ozone formation to achieve this. One 
approach is to use statistical techniques to sum­
marize the results obtained from a complex 
mathematical model for a large number of emis­
sion reduction scenarios. Two examples of this 
approach based on the EMEP photochemical 
model have been described, one using local re­
gression techniques (Heyes and Schopp, 1995) to 
model daily ozone concentrations, the other in­
volving linear regression models of seasonal mean 
values (Heyes et al., 1996). The optimization 
problem related to the second of these methods is 
outlined by Makowski (2000) and it is this method 
that has been incorporated recently into the 
RAINS integrated assessment model described by 
Schopp et al. (1999). 

The subject of this paper is an alternative 
method of representing the results of the EMEP 
model as a response surface using fuzzy rule gen­
eration methodology (Nakamori and Ryoke, 
1994). The idea is to construct a number of fuzzy 
rules about the source-receptor relationships be­
tween ozone precursor emissions and daily tropo­
spheric ozone concentrations. Actual ozone 
concentrations also depend on many local factors 
such as topographical location, local emissions 
and meteorological conditions. Taking account of 
such factors requires at least a daily model such as 
that provided by this approach. If developed for a 
sufficient number of receptor points, the set of 
fuzzy rules could be used as an alternative sim­
plified ozone model. 

Section 2 of the paper provides an outline of 
the salient features of ozone formation photo­
chemistry, a brief description of the EMEP pho­
tochemical model and an explanation of the 
variables used in building the fuzzy model. As an 
example of the method, a fuzzy model developed 
for a receptor grid located in Austria is presented 
in Section 3. 
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2. Background 

2.1. O=one formation 

The formation of ozone involves chemical re­
actions between NO, (i.e., nitric oxide (NO) and 
nitrogen dioxide (N02) taken together) and VOCs 
driven by solar radiation, and occurs on a regional 
scale in many parts of the world. A complete de­
scription of the processes involved is beyond the 
scope of this paper; the following very brief outline 
serves only to highlight some of the important 
relevant features. 

Ozone production requires the combination of 
atomic and molecular oxygen. In the troposphere, 
photodissociation of N02 is the only significant 
source of oxygen atoms. The ozone produced as a 
result of this photodissociation may then react 
with NO to regenerate N02, leading to the estab­
lishment of a photochemical steady state between 
0 3, NO and N02 in a relatively unpolluted at­
mosphere during hours with sunlight. 

The photochemical steady state will be per­
turbed by any processes, other than reaction with 
0 3 , which convert NO to N02, such processes 
resulting in the net production of ozone. This is 
made possible when voes are also present in the 
atmosphere. The essential first step in a potentially 
complex chain of reactions involving voes is at­
tack by hydroxyl radicals (OH). Subsequent reac­
tions can form peroxy and hydroperoxy radical 
species which are able to oxidize NO to N02, and 
therefore lead to enhanced ozone formation. Thus, 
NO .. and VOC species and the presence of sunlight 
are all necessary prerequisites for the production 
of ozone within the atmospheric boundary layer. 

One of the main processes which removes free 
radicals, and therefore opposes ozone formation, 
is the combination of OH radicals with N02. 

When N02 concentrations are very high, as they 
may be in areas of high NO, emission density, the 
N02 competes with VOCs for reaction with OH, 
and inhibits the production of ozone. Conse­
quently, NO, exerts a nonlinear influence on 
tropospheric ozone formation . This feature of 
ozone photochemistry has important implications 
for emission control strategies designed to reduce 
ozone concentrations. 

While emissions of ozone precursors are 
clearly essential for ozone formation, meteoro­
logical factors also exert a crucial influence. The 
intensity of the incoming solar radiation must be 
high, and temperature is also important in influ­
encing the rates of many of the chemical reactions 
involved. Other conditions favorable to ozone 
formation are low windspeeds and a persistent, 
well-defined atmospheric boundary layer. Other 
important factors in determining ozone concen­
trations at ground level are the rate at which 
ozone is removed by deposition to terrestrial 
surfaces and mixing processes occurring in the 
troposphere. 

2.2. The EMEP o=one model 

Within the UNECE European Monitoring and 
Evaluation Programme (EMEP) a Europe-wide 
ozone model has been developed at the Meteoro­
logical Synthesizing Centre-West in Oslo. This 
EMEP ozone model has been designed with the 
purpose of simulating ozone formation over long 
periods of time (one month to one year) and over 
the whole of Europe, so that the likely effects of 
emission control measures on long-term ozone 
concentrations can be estimated. 

The EMEP ozone model (Simpson, 1992, 1993, 
1995) is a single-layer Lagrangian trajectory model 
with a variable depth which extends from the 
ground to the top of the atmospheric boundary 
layer. The model calculates concentrations of 
photochemical oxidants every 6 hours for a set of 
up to 740 arrival points (on a 150 km x 150 km 
grid) covering the whole of Europe. Columns of 
air in the atmospheric boundary layer are followed 
along specified 96-hour trajectories, picking up 
emissions of NO,, VOC, CO and S02 from the 
underlying grid . The height of the air column, the 
mixing height, containing the bulk of the polluted 
air is reset at 12 GMT each day from radio­
sonde data. Along each trajectory the mass 
conservation equations are integrated, taking 
into account emission inputs, photolysis and 
chemical reactions, dry and wet removal, and the 
influence of meteorological parameters. These 
equations are solved numerically, currently using 
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the quasi-steady state approximation method with 
a fixed time step of 15 minutes. 

The six-hourly meteorological data required by 
the EMEP model are taken from the output of the 
Norwegian Numerical Weather Prediction model. 
Wind velocity data permit calculation of 96-hour 
back-trajectories to any point in the EMEP grid. 
The ozone model simulates the exchange of 
boundary layer air with free tropospheric air as a 
result of convective clouds. Photolysis rates are 
adjusted for cloud cover, and temperature data are 
used to calculate appropriate chemical reaction 
rates and in estimating natural voe emissions. 
Other meteorological data are used in estimating 
deposition velocities, which are calculated as a 
function of atmospheric stability, latitude, time of 
year and time of day. 

The anthropogenic emissions of NQ,, voe, 
co and so~ used in the model are based, as far as 
possible, on data supplied officially at a national 
level. For use in the ozone model, the emissions 
data are spatially disaggregated onto a 50 kmx 
50 km grid . Natural emissions of voes are 
represented in the EMEP ozone model by the 
emissions of isoprene from forests and agricultural 
crops (see Simpson, 1995). These are calculated at 
each time step using surface temperature data, 
land-use data for each grid square and published 
emission-temperature relationships. 

Table 1 
Emitter regions in the EMEP model 

Albania 2 Austria 
4 Bulgaria 6 Denmark 
8 France 9 East Germany 

11 Greece 12 Hungary 
14 Ireland 15 Italy 
17 Netherlands 18 Norway 
20 Portugal 21 Rumania 
23 Sweden 24 Switzerland 
27 United Kingdom 29 Other land areas 

The EMEP model uses a chemical mechanism 
in which each important voe class is represented 
by one or two members whose chemical degra­
dation is followed explicitly. The chemical mech­
anism comprises 136 reactions, including 25 
photolysis reactions, and the model calculates 
explicitly the concentrations of 61 chemical 
species. Methane is treated in the model as a 
tropospheric background species. Initial concen­
trations of all species at the start of each 96-hour 
trajectory are taken from previous model calcu­
lations, if available; otherwise a set of assumed 
background tropospheric concentrations, based 
on appropriate measured data or tropospheric 
model calculations, is used. 

2.3. Generation of input data 

Input data for the fuzzy model are generat­
ed from EMEP model calculations carried out 
using 1990 emissions data and meteorological 
data for the period April-September 1990. The 
countries and regions contributing data of an­
nual emissions of NOx and voe are shown in 
Table 1. 

Two main scenarios are calculated: first is the 
1990 'base' case with unabated emissions, second a 
scenario involving uniform emission reductions 

Belgium 
7 Finland 

10 Germany 
13 Iceland 
16 Luxembourg 
19 Poland 
22 Spain 
25 Turkey 
30 Baltic Sea 

31 North Sea 32 Remaining NE Atlantic 33 Mediterranean 
35 Nat ocean emissions 36 Kola/Karelia 37 St. Peter/Novgo Pskov 
38 Kaliningrad 39 Belarus 40 Ukraine 
41 Moldova 42 Rest of the Russian fed. 43 Estonia 
44 Latvia 45 Lithuania 46 Czech Republic 
47 Slovakia 48 Slovenia 49 Croatia 
50 Bosnia Herzegovina 51 Serbia, Montenegro 52 Macedonia 
53 Kazakhstan 54 Georgia 
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across all European countries. In this second sce­
nario, emissions of NO,, VOC and CO are re­
duced, from all man-made emission sources, by 
70%. In addition to these two main scenarios, 
numerous 'individual country' scenarios, in which 
emissions of a single pollutant from a single 
emitter country are reduced, are also investigated. 
The results from these model runs provide infor­
mation on the influence of precursor emissions 
from individual countries on the results at a given 
receptor grid. Although there are many possible 
combinations for reducing precursor emissions, we 
have limited our study to the scenarios summa­
rized in Table 2. 

For this exercise, results from the EMEP 
model are obtained for three receptor grids, one 
in NW England, one in SW Germany and one 
covering the Upper Austria region of Austria. 
Results from this third grid, which includes the 
industrial towns of Linz and Weis as well as some 
remote areas such as the Salzkammergut, are 
presented by Ryoke (1996). In each of these three 
regions some nonlinear behavior with NO,, emis­
sions is to be expected. The EMEP results pro­
vided data on ozone concentrations, photolysis 
rates of N02 and a dilution-weighted or 'effective' 
integrated emissions parameter which allows for 
losses of emitted species along an air mass 
trajectory. 

In the EMEP ozone model, the emissions and 
meteorological input data are revised at 2-hour 
intervals, so that there are 49 time steps during 

Table 2 
Outline of scenario emission factors 

Individual All (other) 
countries countries 

NO, voe NO., voe 
Base Scenario I 1.0 1.0 
Base Scenario2 0.3 0.3 

Scenario! 1.0 0.6 1.0 1.0 
Scenario2 0.8 1.0 1.0 1.0 
Scenario3 0.6 1.0 1.0 1.0 
Scenario4 0.3 0.7 0.3 0.3 
Scenarios 0.5 0.3 0.3 0.3 
Scenario6 0.7 0.3 0.3 0.3 

the four-day trajectory. Two processes are in­
cluded in the model which lead to mixing of the 
boundary layer air parcels with free tropospheric 
air: the venting effect of cumulus clouds and day­
to-day increases in mixing height. These exchange 
mechanisms operate at 2-hour intervals. If the 
emissions of an ozone precursor during time step 
i are denoted by E;, and the exchange processes 
result in a dilution of the boundary layer air by a 
dilution factor d; (0 < d; ::;:; 1 ), the contribution 
from time step i to the trajectory-integrated value 
of the precursor emissions, £ , at time step (i + I) 
is given simply by 

E; x d;+ i · (1) 

The integrated contribution from all 49 time steps, 
denoted by (£), is given by 

(2) 

Such quantities are calculated for both NO, and 
voe emissions along each trajectory and investi­
gated as predictor variables in regression models 
of the fuzzy model. 

The following variables are considered in the 
fuzzy modeling approach: 
• O;one concentration (ppb): The dependent vari­

able is taken as the daily 0 3concentration calcu­
lated for the 12 GMT trajectory arrival. This 
value is assumed to represent the early after­
noon concentration when 0 3 is expected to be 
at or near its daily maximum value. 

• Contributions to effective NO, (10 10 molecules 
cm- 2

): From the results of the individual coun­
try scenarios it is possible to calculate the contri­
butions from individual emitter countries to 
effective emissions at a particular receptor grid. 
These data constitute weighted meteorological 
information. The individual country contribu­
tions to effective NO, from the six most influen­
tial (usually neighboring) countries for the 
selected grid are used in the fuzzy modeling ex­
ercise. These combine information about the 
path taken by the air mass together with its at­
mospheric stability. 
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• Contributions to effective VOC (10 10 molecules 
cm- 2): These data are the voe analogue of 
the effective NO, contributions above; they are 
not used as the information they provide is sim­
ilar to that from the effective NO, contributions. 

• Effecti"ce NO, (1010 molecules cm-2): The daily 
12 GMT effective NO, values at the selected 
grid, which include the contributions from all 
European countries and non-controllable sourc­
es, are used. This variable represents the total 
NO, potentially available for reaction during 
the course of the four-day trajectory. At the ar­
rival point some of this NO, will have been Jost 
through chemical reaction but is 'remembered' 
in the form of ozone or other species produced. 

• Effective VOC (1010 molecules cm-2) : These data 
are again the VOC analogue of the effective NO, 
values and include both man-made emissions 
from all the countries and natural voe emis­
sions. 

• N02 photolysis rate (10-3 s- 1): The value used is 
the mean photolysis rate over the final 30 hours 
of the trajectory. This is used to represent solar 
radiation, which affects ozone formation, and is 
dependent on the cloud cover. 

• Mixing factor (0 <mixing factor :::; !): The 
mixing factor describes the extent of mixing be­
tween the boundary layer and the troposphere. 
A value of 0 would indicate complete mixing, 
I no mixing. 
The combination of individual country con­

tributions to effective NOx and the photolysis rate 
of N02 provides information about the meteo­
rological conditions experienced by an air mass 
during the course of its travel to the selected re­
ceptor grid. It may be helpful, in some circum­
stances, to aggregate the contributions made by 
some countries when their patterns of influence 
are similar. 

2.4. Implementation 

We have developed a fuzzy modeling technique 
and corresponding modeling software with a 
highly interactive graphical user interface using the 
e-!anguage and the Tclffk toolkit. The objective 
function consists of two parts related to the re-

gression errors and the data distances, respectively. 
Two dynamically changing parameters are intro­
duced to make a balance of the above-mentioned 
two objectives. The software supports examination 
of the clustering results (for any two selected 
clustering variables), of the regression results with 
statistics for judging goodness of linear models, 
and simulation results by the developed fuzzy 
model. 

3. Fuzzy model at a grid in Upper Austria 

A previous pilot study presented by Ryoke 
(1996) showed that the fuzzy model provides a 
useful way to summarize results of the EMEP 
ozone model. It was found that the concept of 
effective precursor emissions is sufficient to model 
adequately the daily variation of ozone. How­
ever, the previous study was based on uniform 
emission control across Europe. The present 
study extends the work to include emission re­
duction scenarios for individual European 
countries. 

3.1. Data and scenarios screening 

The time period covers six months: April­
September 1990. Daily values are provided, refer­
ring to 12 GMT air mass trajectory arrivals. 

For each grid there are data for two 'base' cases 
involving the full set of countries considered. In 
such a scenario all countries make the same frac­
tional changes to both their NO, and voe emis­
sions. For these 'base' cases ozone concentration 
data are provided for all those days on which the 
following two conditions hold: 
I. the solar radiation is considered high enough 

for reasonable ozone production to occur, 
2. there is not so much mixing with the free tro­

posphere that man-made emissions can have 
only very little influence on ozone concentra­
tions. 
In addition to the two base cases, there are six 

further country-specific scenarios for each of the 
six influential emitter countries, making a total of 
38 (= 2 + 6 x 6) scenarios for each receptor grid. 
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The combinations of emission reductions em­
ployed for these country-specific scenarios are 
outlined in Table 2. 

Data for these additional 36 scenarios are 
provided for days: 
1. which meet the criteria given above for the 

'base' cases (enough solar radiation and not 
too much mixing) and 

2. for which the 'scenario' ozone concentration 
does actually differ from the appropriate 'base 
case' value. 

That is, data are excluded for those days on which 
an emission change in one country has no effect on 
ozone concentration at the particular grid in 
question. 

3.2. Fu::y model 

The model at the receptor j consists of cj fuzzy 
rules. Let pvj1 be the effective NOx from all 
countries to the grid calculated by the EMEP 
ozone model with scenarios. If pvj1 is very high, 
the concentrations of radicals which are necessary 
for ozone production will be distorted. Let pvj2 be 
the effective NOx from countries excluding the 
country in which the grid j is located and calcu­
lated with the emissions of scenario 'Base Sce­
nario l' in Table 2. If pvj2 is high, there is a larger 
long-range transport component. Let pvj3 be a 
mixing factor. If pvj3 is low, considerable mixing 
of free tropospheric air into the boundary layer 
takes place. Ozone concentration will very much 
depend on the free tropospheric ozone value. If 
pvp is high the boundary layer production is an 
important component for ozone. Let pvj4 be the 
photolysis rate of N02. When pvj4 is high, we 
have a lot of sunshine and a large ozone pro­
duction capacity. 

Rule Rj is given as follows: 

If (pvj1, pvj2,pvj3 ,pVj4) is Aj (a fuzzy subset) , 

then ozj = kj + 2.:::<n; + LfJ~v;, (3) 
iE lj iElj 

where i EI denotes emitters (countries), j E J the 
receptors (grids), Ij the highly influencing emitters 
to the receptor j, n; the emission of NOx from the 

emitter i, V; the emission of V0Cs from the 
emitter i, and ozj is ozone concentration at the 
receptor j . 

In the consequence part, the relation between 
consequence variables is independent of time t and 
scenarios explicitly. They are already given by the 
EMEP ozone model which considers trajectories 
for 96 hours. Actually, they are related to premise 
variables implicitly. 

Aj is a fuzzy subset in the four-dimensional 
space spanned by pvji,pvj2,pvj3, and pvj4. Let 
Jf(x) be the membership grade in Aj, used to 
calculate the degree of confidence of a rule, which 
is a nonlinear function and 0 ~Jf(x) ~I. The 
degree of confidence of rules ff (x) is defined as 
follows . First of all, the membership function of a 
premise variable xk is defined by using the subset 
Zjk which corresponds to the data set to build 
Rule Rj. 

where the first , second and third quartiles of the 
data subset p are denoted by qf 1, qf2 and qf3 , re­
spectively. The second quartile corresponds to the 
medium of data distribution on the axis. The first 
and third quartiles are defined so that the first one 
is smaller than the third one. If two of them are 
equal, give one of them a small fluctuation to keep 
the restriction that qf 1 < qf2 < qf3• The tuning 
parameters tf 1, tf2 have default 1 and they are op­
timized in the identification of the fuzzy model (see 
Nakamori and Ryoke, 1994). Next, the member­
ship function for Rule Rj is defined by 

4 

Jf(x) = ITJLik(xk; <f:1,<f:2 ,<f:3 ; lf1 , lf2l· (5) 
k=l 

Estimation of ozj is done by the following for­
mula: For a given x = (pvj1 ,pvj2,pvj3 ,pvj4) , 

~ L:i= l Jf (x) · oiJ 
OZj = ._.cj P( ) • 

L..p=l fj X 
(6) 
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Table 3 
A regression model at a receptor located in Upper Austria 

Ozone=41.760 
+1632. x NO., from Austria 
+646.2 x NO., from France 
+537.8 x No, from East Germany 
+119.2 x NO_, from West Germany 
+346.5 x NO, from Italy 
+304.I x NO_, from Czech Rep. 
+910.6 x VOC from Austria 
+621.2 x VOC from France 
+861.0 x VOC from East Germany 
+349.2 x VOC from West Germany 
+548.6 x voe from Italy 
+25.19 x VOC from Czech Rep. 

(t..ratio = +6.44) 
(t..ratio = + 1.41) 
(t..ratio = +1.78) 
(t..ratio = +0.99) 
(t..ratio = +1.70) 
(t..ratio = + 1.27) 
(t..ratio = +3.64) 
(t..ratio = + 1.36) 
(t..ratio = +2.87) 
(t..ratio = + 1.93) 
(t..ratio = +2.71) 
(t..ratio = +0.11) 

(correl. = +0.53) 
(correl. = +0.08) 
(correl. = +0.25) 
(corre/. = +0.24) 
(correl. = +0.32) 
(correl. = +0.20) 
(carrel. = +0.53) 
(correl . = +0.08) 
(carrel. = +0.25) 
(correl. = +0.24) 
(carrel. = +0.32) 
(correl. = +0.20) 

(R2 )" = 0.4590, T(2383,0.05) = 1.961. 

447 

3.3. Model parameters and prediction result 

Before going into fuzzy modeling, a regression 
model is developed by using all data. A regression 
model is determined by the least square method 
and shown in Table 3. 

Here, (R2)' denotes the coefficient of deter­
mination adjusted for the degree of freedom 
and T(2383, 0.05) is the 5 percentile of the 

t-distribution with the degrees of freedom 2383. 
In the equation, the Lratio of the regression 
coefficients and the correlation coefficients of 
explanatory variables with ozone are also 
shown. The correlation coefficient between pre­
dictions by EMEP ozone model and the tradi­
tional regression model is 0.6708. In Fig. 1, the 
prediction result by the linear regression model 
is shown. 
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Fig. I. Prediction result by a regression model. 

Table 4 
Clustering variables 

Response variable 

Premise variables 

Consequence variables 

Ozone concentrations 

pv, 
pv2 
P VJ 

pv4 

NO, from Austria 
NO., from France 
NO, from East Germany 
NO, from West Germany 
NO_, from Italy 
NO_, from Czech Rep. 
VOC from Austria 
VOC from France 
VOC from East Germany 
VOC from West Germany 
voe from Italy 
VOC from Czech Rep. 
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Table 5 
Parameters of premise variables in Rule 1 

Premise variables min. 

pv, 0.001917 
pv1 0.004594 
pvi 0.4008 
pv, 2.178 

Table 6 
Consequence coefficients in Rule 1 

Consequence variables 

NO_, from Austria 
NO_, from France 
NO_, from East Germany 
NO_, from West Germany 
NO_, from Italy 
NO_, from Czech Rep. 
Constant 
VOC from Austria 
VOC from France 
VOC from East Germany 
VOC from West Germany 
VOC from Italy 
VOC from Czech Rep. 

q, 

0.004180 
0.01210 
0.4527 
2.400 

Coefficient 

1512 
-1889 
-111.9 
-287.8 

186.8 
18.55 
38.95 

1534 
993.8 
598.76 
360.1 
706.9 
-73.61 

q, 

0.007426 
0.01623 
0.5102 
2.844 

Now, we briefly summarize fuzzy models de­
veloped for one grid in Europe. First step of 
fuzzy modeling for the selected grid is provided 
by the adaptive fuzzy clustering presented by 
Ryoke et al. ( 1998) in order to obtain the classi­
fication and regressions in each rule. According to 
the above discussion, the clustering variables are 
given as in Table 4. Note, that the consequence 
variables NO, and voe specified in Tables 4, 6, 8 
and JO stand for the corresponding country con­
tributions to effective NO, and to effective voe, 
respectively. 

Table 7 
Parameters of premise variables in Rule 2 

Premise variables min. q, q, 

pv, 0.001844 0.005340 0.007384 
pv1 0.006268 0.01456 0.02013 
pv, 0.4097 0.4613 0.5148 
pv, 3.177 3.7462 4.1964 

q, max. t1 t, 

0.01059 0.02363 3.4 4.1 
0.02287 0.04126 1.0 4.7 
0.5568 0.7498 4.6 3.4 
3.179 3.484 2.0 1.2 

The reason why the adaptive fuzzy clustering 
proposed in Ryoke et al. (1998) is used, is that 
these clustering variables are highly correlated 
with each other. The number of clusters, deter­
mined by a trial and error approach, has been set 
to 3. In the next step, the tuning parameters of the 
premise variables have been optimized. The mod­
eling system (outlined in Section 2.4) has been 
developed so that the modelers can carry out the 
fuzzy modeling interactively. The above clustering 
method and the tuning method for the premise 
parameters are also included in the system with 
graphical user interface. 

The values of parameters in the developed 
fuzzy model are _shown in Tables 5-10. The 
membership functions of the premise variables are 
illustrated in Figs. 2-5. The vertical axis means 
the grade of the membership function for each 
rule. The prediction result is presented in Fig. 6. 
The correlation coefficient between predictions by 
the obtained fuzzy model and the EMEP ozone 
model is 0.811. 

4. Concluding remarks 

This paper presents fuzzy models expressing 
relationships between precursor emissions of NOx 

q, max. /1 1, 

o.oi 185 0.02463 4.6 3.6 
0.02577 0.03717 4.0 2.3 
0.6063 0.9701 4.8 3.9 
4.4047 4.644 0.7 3.7 
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and voe and ozone concentrations developed for 
a grid located in Upper Austria. A comprehensive 
photochemical model (the EMEP model) and nu­
merous emissions scenarios have been used for the 
development and verification of fuzzy models. It 
has been shown that the fuzzy model provides 
better predictions of ozone concentrations than 
the traditional regression model based on all data 
at each grid. Furthermore, the membership func­
tions obtained appear to be sensible. Based on 
examination of meteorological data, the different 
fuzzy rules do seem to describe different meteoro­
logical conditions rather well. 
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Table 8 
Consequence coefficients in Rule 2 

Consequence variables Coefficient 

NO., from Austria 1696 
NO .. from France 652.2 
NO .• from East Germany 157.8 
NO., from West Germany 311.7 
NO., from Italy 213.4 
NO., from Czech Rep. 342.5 
Constant 45.19 
VOC from Austria 908.4 
VOC from France 269.6 
VOC from East Germany 308.6 
VOC from West Germany 229.7 
VOC from Italy 340.4 
VOC from Czech Rep. 43.40 

The reported results illustrate how one can use 
a detailed model for the development of simple 
fuzzy models. The simple models can then be used 
for an analysis of many scenarios, which is prac­
tically impossible using a detailed (thus computa­
tion demanding) model. If further work is 
successful, then simplified fuzzy models for more 
grids within Europe could be developed and used 
for analysis of various emission reduction policy 
options. It remains to be seen if it will be possible 
to identify a relatively small number of clusters of 
grids and to develop a single model for all grids 
belonging to one cluster. 
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Table 9 
Parameters of premise variables in Rule 3 

Premise variables min. q1 

pr, 0.004659 0.01254 
pv, 0.01283 0.02851 
pr) 0.4207 0.6025 
pr, 2.288 3.635 
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Fig. 5. Membership function of pr,. 

Table IO 
Consequence coefficients in Rule 3 

Consequence variables 

NO, from Austria 
NO, from France 
NO, from East Germany 
NO, from West Germany 
NO, from Italy 
NO, from Czech Rep. 
Constant 
VOC from Austria 
VOC from France 
VOC from East Germany 
VOC from West Germany 
VOC from Italy 
VOC from Czech Rep. 

Coefficient 

1403 
911.1 
598.3 
169.5 
401.1 
226.7 
41.97 

795.3 
1013 
1028 
392.3 
630.2 
253.4 

q, 

0.01972 
0.03576 
0.691 
4.130 

5 

After developing fuzzy models in principal 
grids, interpolation is needed to predict the ozone 
concentrations in other grids in central and west­
ern Europe. One of the methods considered is to 
define a similarity measure between receptors. 

q3 max t1 t, 

0.02415 0.05591 2.0 2.3 
0.04547 0.08769 0.8 1.6 
0.7820 0.9701 2.0 4.2 
4.402 4.644 4.2 2.2 
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Fig. 6. Prediction result by the fuzzy model. 
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