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A meta-heuristics for escaping from local optima to solve constraint satisfaction problems is proposed, 
which enables self-adaptive dynamic control ofthe temperature to adjust the locaIity of stochastic search. 
In our method, several groups with different temperatures are prepared. To each group the same number of 
candidate solutions are initiaUy allotted. Then, the main process is repeated until the procedure comes to 
a certain convergence. The main process is composed oftwo phases: stochastic searching and population 
tuning. As for the latter phase, after evaluating the adaptation value of every group, migration of some 
number of candidate solutions in groups with lower values to groups with higher values are induced. 
Population migration is a kind ofparallel version of simulated annealing, where several temperatures are 
spatially distributed. Some experiments are performed to verify the efficiency of the method applied to 
constraint satisfaction problems. Itis aiso demonstrated that population migration is exceptionally effective 
in the critical region where phase transitions occur 

1 Introduction 
A constraint satisfaction problem (CSP) involves finding 
values for problem variables which are subject to con-
straints specifying the acceptable combinations of values. 
Such combinatorial search problems are ubiquitous in arti-
ficial intelligence and pattern analysis, including schedul-
ing and planning problems. Most of the previous work 
on CSP algorithms has adopted a systematic backtracking-
based approach in which a partial assignment to the vari
ables is incrementally extended. However, this approach 
often needs too much time to find a solution on large-
scale problems due to their exponential complexity. In con-
trast, a repair-based stochastic approach, which starts with 
a complete but inconsistent assignment and then repeats re-
pairs of constraint violations until a consistent assignment 
is achieved[l], has recently made remarkable progress be-
cause this approach may sometimes solve large-scale prob
lems in a practical time. However, this approach has a 
drawback of getting caught in locally optimal states that are 
not acceptable as solutions. Therefore, many techniques to 
escape from local optima have recently been proposed for 
stochastic approaches[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. 
We call such techniques meta-heuristics. 

Simulated annealing (SA) has been studied as a kind 
of meta-heuristics which is widely applicable to stochastic 
approaches[2, 11, 12, 14]. SA involves a unique operation, 
after which it was named, that gradually reduces the value 
of a parameter, or a temperature, for determining a state 
transition probability. Accordingly, as the search proceeds, 

its focal area varies from global to local. The main draw-
back to SA, however, is its difficulty in deciding in advance 
the schedule of temperature reduction because this depends 
on each problem. 

In this paper, we propose a new meta-heuristics with a 
self-adjustment mechanism which automatically, but im-
plicitly, Controls its temperature schedule for a given prob
lem during the search. First, several groups preassigned 
with different temperatures are created, in each of which 
an equal number of candidate solutions are stored. Then, 
the main process is repeated until the system comes to a 
certain convergence. The main process is composed of two 
phases: searching and population tuning. As for the latter 
phase, after evaluating ali the adaptation values of groups, 
migration operations are executed, in which a proper num
ber of candidate solutions in groups with low adaptation 
values are moved into groups with high adaptation values 
taking account of how far those values differ from the av-
erage. 

CSP is well-known as an NP-complete problem, but ac-
tual problem instances with such computational complex-
ity are found onIy in a locally limited region ofthe problem 
space. Recent studies have revealed that really hard prob
lems tend to happen in situations very similar to physical 
phase transitions. Hence it is important for the studies of 
meta-heuristics to plače their interests on how well they 
čope with phase transitions. We show that our method is 
efficient especially for hard problems found in the region 
of phase transitions. 

In section 2, after reviewing stochastic approaches to 
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CSPs and meta-heuristics for them, we explain the phase 
transition of graph-colouring problem, vvhich has become 
one of the standard benchmark problems for testing CSP 
algorithms. In section 3, we give the basic idea of popu-
lation migration and propose a concrete algorithm. In sec
tion 4, we show experimental results for our method from 
two vievvpoints: its efficiency compared with other meta-
heuristics and its effect on phase transitions. 

2 Stochastic Approaches and Phase 
Transition 

2.1 Stochastic Approaches 

Many methods to solve CSPs have been proposed. Two ap
proaches can be distinguished: systematic and stochastic. 
The former is the constructive approach to a solution based 
on tree search with backtracking. Many heuristics like for-
ward checking, partial and full-looking ahead, back mark-
ing, are and path-consistency have been developed. How-
ever, it is stili difficult to solve really hard CSPs completely 
within tractable time. In contrast, the stochastic approach 
based on the repair-oriented search starting from an initial 
candidate solution (i.e., an inconsistent complete assign-
ment of values to aH variables) often gives a final or semi-
optimal solution in a practical time. Hill-climbing is one 
of the standard search algorithms that navigates the search 
space while attempting to minimize the total constraint vi-
olations included in the present candidate solution. It is 
efficient when the landscape of search space is simple, i.e. 
single peaked or so, but, at times, hill-climbing tends to 
get caught in local optima that are not acceptable as So
lutions. Stochastic hill-climbing, abbreviated SHC[2], is 
a revocable hill-climbing that permits random shifts to di-
rections with no improvement in some non-zero probabil-
ity depending on a given temperature, which may help the 
search escape from local optima. 

Up to now, many meta-heuristics exist that give ways 
to avoid local optima, like restarting with another candi
date solution generated randomly[3, 6, 9], adjusting the 
evaluation function by increasing the weight of unsatisfied 
constraints[4, 5, 8, 13], introducing a state transition prob-
ability to determine the next state[2,10], and simulated an-
nealing(SA)[2, 11, 14]. 

SA, modeled after the annealing process of statistical 
mechanics, is a general-purpose stochastic technique that 
is effective in approximating global optima for many NP-
hard combinatorial problems[2, 12]. Figure 1 shows the 
SA algorithm to which SHC is incorporated as the basic 
local search method. SA works on SHC as meta-heuristics 
by generating monotonically decreasing temperature val
ues, T, vvhich are iteratively used to control the transition 
probability in the SHC procedure. A temperature decrease 
corresponds to a narrowing of the search area of SHC from 
global to local. 

As a fundamental result, it is known that SA certainly 

procedure simulated annealing()( 
generale a candidate solution, s ; 
for ( r = T_mux ; Ta T_mm ; T:= 7 x f) ( 

S H C ( 7 ) ; 
); 

procedure SHC(7) { 
for {hc=\\ hcslu:-max; lw:=h<:+ 1){ 

calculate the constraint satisfaction ratio ; 
randomly select a variable v wilh constraint violations; 
randomly select a value c for v ; 
assigncto v vvilh probabilily p = 1 / (1 +e\p(A/T); 

I 

Figure 1: The S A algorithm, in which A indicates how the 
number of constraint violations changes by replacing the 
value of w in s by c. 

guides to a global optimum when the temperature is set 
initially to a large enough value and then reduced logarith-
mically. Hovvever, since logarithmic reduction is too slow 
for practical use, the decay rate 7(0 < 7 < 1) is gener-
ally used instead to control the temperature from T_max 
to Tjmin, as shown in Figure 1. Determining the best de-
cay rate 7 in advance is difficult because it depends on each 
problem instance. Further, there is always the risk that SA 
may freeze before it finds a global optimum when the start
ing State is not chosen appropriately. 

2.2 Phase Transition of Graph-Colouring 
Problems 

As a well studied NP-complete problem, the graph-
colouring problem has often been used to evaluate com
binatorial algorithms empirically. We also employ the 3-
colouring problem, GCP for short, to test the efficiency 
of the method that we propose in Section 3. An in
stance of GCP is defined as a triple {V, C, E), where V — 
{vi ,•• • , D„} is a set of variables, C = {red, blue, green} 
is a set of values (different colours) which should be as-
signed to each variable, and £ = {ei, • • • ,6^} Q VxV \s 
a set of binary constraints. Notice that (V, E) corresponds 
to an undirected graph, where V is the set of nodes, and E 
is the set of edges. An edge e = (vp, Vg) in E stands for 
the constraint claiming variables Vp and Vg should not have 
the same value. 

Several recent papers have observed phase transitions: 
matter commonly undergoes dramatic changes in its quali-
tative properties when certain parameters pass through par-
ticular values[15, 16, 17, 18, 19]. In GCPs also, the solu
tion cost follows an easy-hard-easy pattern[17] as a func
tion of the constraint density, d, which is the ratio of the 
number of constraints m to the number of variables n. Ac-
tually, when the density d is increased gradually, GCPs 
suddenly become hard to solve in the sense of the com-
putational complexity in the region where d varies from 2 
to 3[15]. These surprising phenomena are understood to 
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group5|: T= 10 group52: 7" =5 group53: T= 2.5 

Figure 2: Population migration dynamically updates the al-
location of candidates among group. 

happen due to the competition betvveen a decreasing num
ber of Solutions and an increasing number ofprunings[16]. 
Mammen and Hogg have found another kind of easy-hard-
easy pattern which is observed even when the number of 
Solutions is held constant; the pattern in these cases ap-
pears to be due to changes in the size of the minimal un-
solvable subproblems rather than the changing number of 
solutions[17]. 

For any systematic or stochastic method getting com-
plete Solutions for. critically constrained problems, which 
are usually found around the transition point, would take 
an exponential order of computation time.- Some known 
stochastic methods boosted by appropriate meta-heuristics 
like SA can often find optimal or semi-optimal solutions in 
an acceptable time. However, most of the meta-heuristics 
have not nečessarily been proposed to čope with phase tran-
sitions. 

3 Population Migration Strategy — 
A Meta-Heuristics 

3.1 Basic Ideas 

Instead of the temporal reduction of temperature in S A, in 
our method we prepare a set of initial temperature values 
and for ali values a normal stochastic search is performed 
independently in parallel. We summarize our method in 
three points as follovvs: 

(i) We determine a set of temperature values that do not 
change throughout the search process. 

(ii) For each temperature, a finite set ofcandidate solu
tions is created initially and processed by some basic 
stochastic search algorithm, SHC in our čase. 

(iii) The size of each set, called a group, of candidate solu
tions is adjusted periodically taking its current adap-
tation value into account. 

Periodical tuning of population distribution introduced 
in (iii) is the key operation and the reason for calling our 
method population migration, abbreviated as PM. Thus our 
method can be regarded as a parallel version of SA where 
the set of available temperatures is fixed in advance. Fig
ure 2 illustrates the mechanism of population tuning. First, 
three groups, Si, S2 and 53, allotted with the same number, 
say 10, of candidate solutions, called candidates shordy, 
are created. To each group a different temperature value 
is assigned: 10, 5 and 2.5, respectively. For each group, 
the stochastic search is performed for a predefined period 
of time, and then a new adaptation value is calculated. In 
our example, let us assume the updated values in the first 
iteration become5(5i) < g{S2) < giSs) and g (S 2) < 5, 
where g{x) is the adaptation value of group x, and "g is 
the mean value of g{Si), g{S2) and giSs). At this point 
PM is started to reorganize the allocation of candidates for 
the next iteration: as can be seen from Figure 2, a proper 
number of candidates are moved randomly from the groups 
with lovver adaptation values to the groups with higher ones 
in proportion to the difference from the mean value 3. As a 
result, PM works as a meta-heuristics that enables implicit 
self-adaptive temperature scheduling or dynamic control of 
search ranges. 

3.2 The Algorithm 
Figure 3 shows an outline of the population migration algo
rithm, where the meta-heuristics PM is integrated with the 
stochastic search algorithm SHC. In the following we give 
supplementary explanations for the numbered statements 
in Figure 3, assuming GCP as the CSP to be solved. 
(1) generate k groups. Si,- • • ,Sk-

As defined in 2.2, let {V, C, E) an instance of GCP with 
n = I l̂  I and m — | .E |. A candidate, s, is a complete 
set of assignments of randomly selected values in C for ali 
variables. This statement generates k groups with different 
temperatures, to each of which the same number of random 
candidates are allotted. 
(2) SHC( Ti): 

Ti is the temperature assigned previously to group Si, 
which is used by SHC in determining the sigmoidal prob-
ability function, shown in Figure 1, to enable stochastic 
moves to the next candidates. SHC is performed per can
didate in Si- Notice that the whole procedure of Figure 
3 terminates whenever a final solution is found during the 
search of SHC. 
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(3) calculate the adaptation value g{Si): 
Let s = (ci, • • • ,Cn) with Cj 6 C for 1 < i < n be 

a candidate. For each constraint e = {vp,Vq) in E, let 
conf{e) be equal to O when Cp ^ Cg, indicating that e is 
satisfied, or 1 othervvise. Then the constraint satisfaction 
ratio / of s is given as 

/(«) = 1 -
Efci confjej) 

(3.1) 

Thus, the average ratio / for Si is 

y Q̂ f(s) 
f{Si) = ^'f'y ', for l<i<k. (3.2) 

I '-'i I 
After the execution of SHC, the adaptation value for each 
group Si is calculated as 

procedu rc population-migration() ( 
generale k groups, 5 ; , . . . , Sj.; 
for (7 = I ; jsmca; j:=j+ 1) | 

for ( ; = 1; /• s i ; 1 := i + 1) { 
for (each candidate, s in S j) { 

SHC( Ti); 

calculate the adaptation value s(Sj); 

PM-meta-heuristicsO ; 
) ; 

procedure PM-meta-heuristics()( 
divide the groups into lwo classes, 0;,;^^ and G;„„; 
fo r (each5inG,„„) | 

migrate proper number of candidates; 
1; 

) 

(I) 

(2) 

(3) 

(4) 

(5) 

Figure 3: Population migration algorithm incorporating 
SHC as the basic local search algorithm. 

giSi) = ax f{Si) + h X (/(5^) - h), for 1 < i < fc, 
(3.3) 

where a and b are non-negative constants and fi is the av
erage satisfaction ratio in the previous iteration of the out-
ermost loop in Figure 3. The second term in (3.3) refiects 
how much the average ratio / of the i-th group has been 
improved by SHC in statement (2) in Figure 3. 
(4) divide the groups into two classes, Ghigh and Giow' 

Let g be the mean of aH the adaptation values calculated 
as 

~ ̂  E L I aJSj) (3.4) 

p{S) = 
.9(5) 

M 
(3.9) 

which means that the higher adaptation value a group has, 
the more candidates the group tends to be allotted. 

In the example of Figure 2, Gion, = {5i, 52}, Ghigh = 
{Ss}, 1̂1 = 6,1/2 = 3 and piSs) = LO. As a result, popu
lation migration dynamically tries to keep an optimal allo-
cation of the limited resources (or candidates) by recruiting 
promising groups. 

By using 5, the groups Si, 
classes as follows: 

, Sk are classified into two 4 E x p e r i m e n t S 

Ghigh = {S\g(S)>g}, (3.5) 

Gion, = {S\giS)<g}. (3.6) 

(5) migrate proper number of candidates : 
Let fi be the sum of differences between g and g{S) for 

S G Giow'-

M= E (9-9(3)) E (9(S)-9) 
seG,. S€Gh 

(3.7) 
Population migration is performed from groups in Giow 

to groups in Ghigh- The number of candidates to be re
moved from group S in Giow is determined as 

9-9(3) 
(3.8) 

except that at least one candidate must remain in S. Each 
removed candidate determined by (3.8) goes to one of the 
groups in Ghigh, say 5, with probabi!ity 

We evaluate the effectiveness of the population migra
tion as a meta-heuristic from two major points of view: 
we compare its efficiency with SHC and SA, and we in-
vestigate in detail its behavior around the critical region 
where phase transitions may occur. Throughout the ex-
periments, we use solvable GCPs (i.e., graphs colourable 
with 3 coiours) which are generated randomly by using the 
procedure given in [1]. As to the calculation of the adap
tation values of groups defined in equation(3.3), the ratio 
of coefficient b and o is set to 5 to boost rapid movement 
of population to the promising groups. Ali algorithms are 
implemented in the language C on an IBM Aptiva B75. 

4.1 Comparison with SHC and SA 

4.1.1 Comparison with SHC 

SHC, a naive stochastic search method without heuristics, 
is adopted to evaluate the efficiency of PM. Fixing the num
ber of nodes n and the number of edges m to 150 and 375 
respectively, we generated 100 solvable GCPs. Thus the 
constraint density d{= m/n) is equal to 2.5, around which 
it is known that GCPs tend to become hard to solve. 
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Table 1: Experimental results for SHC, parallel SHC, and the proposed method. 

method 

%-solved 

tirne 

a 

0.313 

12 

2.89 

1.38 

SHC vvith T = 

0.625 1.25 2.5 

77 

2.77 

1.10 

99 

2.08 

0.78 

16 

3.67 

1.23 

5 

0 

-

-

10 

0 

-

-

parallel 
SHC 

80 

2.78 

1.24 

PM 

93 

2.77 

1.13 

%-solved : percentage of success(%) 
tirne : mean solution time(mm) 
a : standard deviation 

In our implementation of the PM procedure of Figure 3 
we prepared5 groups vvith temperatures 10,5,2.5,1.25 and 
0.625 respectively and we allotted 20 random candidates 
are allotted to each group. The PM procedure is performed 
once per GCP. The maximum number of iterations of the 
outer loop, max in Figure 3, is set to 100. SHC (statement 
(2) in Figure 3) performs 100 hill-climbing operations (re-
ferred to as hc-steps hereafter) for each candidate as far as 
a final solution is not attained. 

Simple SHC is performed for six different temperatures 
T: from 10 to 0.313 by halving the value. For each GCP, 
simple SHC is repeated 100 times vvith different starting 
candidates, vvhere the upper limit of total hc-steps is fixed 
to 0.1 X 10^ in each repetition, to make the amountof com-
putation equal to that of PM. 

We also tested a mixture of simple SHCs, called parallel 
SHC, in vvhich 5 simple SHCs vvith different temperatures 
are performed in parallel practically under the same con-
ditions as described above except that each simple SHC is 
repeated only 20 times at most. 

Table 1 summarizes the experimental results, vvhere %-
solved gives the percentage of solved GCPs, and tirne and 
a shovvs the epu time averaged over solved cases and its 
standard deviation. 

In comparison vvith SHCs, PM is a robust method. In 
fact, simple SHCs do not complete successfully in most 
cases of temperature except a narrovv range near T = 1.25, 
indicating that some mechanism (heuristic) of temperature 
control is necessary for SHC. Parallel SHC seems to give 
results comparable to PM from a computational time point 
of vievv. Hovvever, PM solves much more GCPs vvithin the 
time limit. Thus, vvhen compared to parallel SHC, PM 
solves difficult problems vvithout increasing epu time by 
help of the population migration. 

4.1.2 Comparison with SA 

In order to compare PM vvith SA, vve ran experimental sim-
ulations from tvvo different vievvpoints: the constraint den-
sity d and the number of variables n. 

Let us clarify the PM and the SA used to solve GCPs. 
The PM is the same as the one used in 4.1.1 except that the 

(a) The percentage of .success for PM 

(b) Tile percentage of success for S A 

Figure 4: Experimental results on the constraint densities 
d. 

number max of iterations of the outer loop ranges from 20 
to 100 at intervals of 20. Thus the available total computa
tional cost ranges from 2x10^ to 10x10^ hc-steps since the 
hill-climbing effort in every iteration amounts to 0.1 x 10^ 
hc-steps. The SA used in the experiments is based on the 
SA procedure in Figure 1, vvhere vve set T_max = 10.0, 
T_min = 0.625, 7 = 0.5 and hc-max in SHC equal 
to 1,000, in order to make the S A comparable to the PM 
above. As long as a final solution is not found the SA pro
cedure is repeatedly restarted vvith a nevv initial candidate. 
In fact, vve tested five different upper limits on the number 
of repetitions: 40 to 200 at intervals of 40, vvhich corre-
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(a) Tlie percentage of success for PM 

o < ^ 
(b) Tlie percentage of success for S A 

Figure 5: Experimental results on the size of the search 
space. 

spond to the 2 x 10^ to 10 x 10^ hc-steps of total compu
tational costs described above. 

In the first experiment, we tested seven different densi-
ties d varying from 2 to 5 at intervals of 0.5. For each den-
sity, we randomly generated 100 GCPs with a fixed number 
of variables, n = 150. Figure 4 gives the results. When the 
total computational cost limit is low, say less than 4 x 10^, 
SA is slighdy superior to PM. But, in the density range 2 
to 3.5, where most GCPs are extraordinarily hard to solve, 
PM apparently gives superior results. In that range, SA 
fails to solve most of the GCPs and its performance is not 
improved even when the computational tirne is increased. 
In contrast, the percentage of success for PM remarkably 
increases as the available total hc-steps is increased. 

In the second experiment we varied the number n of vari
ables fixing the constraint density d to 2.5. We tested five 
cases of n: 120 to 240 at the intervals of 30. For each 
n, we generated 100 random GCPs. Figure 5 shows the 
results. We can clearly see that PM gives higher success 
ratios than SA everywhere except in the restricted čase that 
both the problem size and the available computational cost 
are small. The size of the search space grows exponentialIy 
as n increases. As a result, the probability of success for SA 
declines rapidly and does not seem to improve even when 
the available computational cost is increased. In the čase 
of PM, hovvever, the percentage of success does decline 

g 10.0 

3 

E 
01} 

0.6251 

(a) lype I 

r 
i"' 
0.625 L 

- high-to-low 

hc-steps 

(b) type II 

i" 
0.625t-

/ 

low-to-high 

L-J~l 

lic-steps 

(C) type Ili 

lic-steps 

10.0, y: large(< 

y 
r : small (> 0.0) L 

1.0) 

(d)SA 

hc-steps 

Figure 6: Migration patterns (a), (b) and (c), and SA tem
perature control (d). 

slowly as n increases when the total computational cost is 
chosen to be large proportionally to the problem size. 

To illustrate the wide applicability and reliability of PM 
as a meta-heuristics, we ran a set of supplementary ex-
periments in which neural networks are used as the basic 
stochastic search technique to solve SAT problems. The 
results are shown in the Appendix. 

4.2 Detailed Analysis of Temperature 
Control 

4.2.1 Migration Patterns 

We traced the behavior of ali the candidates during the ex-
ecution of the PM procedure. When the PM operation is 
performed in Figure 3, the population distribution of the 
groups is updated autonomously. Thus, for each candidate 
we get a transition pattern along which the candidate mi-
grated among the five groups. 

Observing these migration patterns, we found that they 
can be classified into three types as shovvn symbolically in 
Figure 6. Type I is the simplest where the candidate re-
mains in its initial group. Type I corresponds to the sim-
ple SHC in which the initial temperature stays unchanged 
during the search. Type II is the pattern containing high-to-
low migrations only: one or more migrations from groups 
vvith higher temperatures to groups with lower tempera-
tures. Type II represents the temperature control similar 
to that of S A, whose typical pattern is given in Figure 6(d). 
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100-

95 

90 

85 

80 —I 1 1— —I 1 1— 

2.2 2.4 2.6 2.S 
Constraint densities d 

Figure 7: Experimental results from d = 2 to d = 3. 

D lype I • type II | type III 

2.2 2.4 2.6 2.8 
constraint densities d 

Figure 8: Distributions of temperature behavior in PM. 

Various patterns with different decreasing speeds, which 
correspond to different values of 7 in SA, are included in 
Type II. Therefore, PM is robust because it implicitly per-
forms SA in various cases of 7 in parallel. Type III is 
the pattern containing at least one low-to-high migration, 
which ensures that population migration enables dynamic 
self-adaptation control of temperature. In SA the tempera
ture is controlled so that it monotonicaIly decreases. There
fore, Type III is an especially interesting pattern specific to 
PM. 

4.2.2 Discussions from the viewpoint of Phase 
Transition 

The three types of migration patterns (Type I, II and III 
introduced in the previous section) are similar to the typical 
cases of temperature control realized by the three major 
search strategies that we are concerned with: simpie SHC, 
SHC with SA, and SHC with PM, respectively. 

To clarify how well these three major types affect the 
efficiency of the PM procedure, we ran further experiments. 
We fixed the number n of variables to 150 and varied the 
constraint density from 2 to 3 at small increments of 0.1. 
For each density, we tried to solve 100 soivable GCPs by 
the PM procedure under the same conditions as described 
in 4.1.1, with the maximum computational power hmited 
to 10 X 10^ hc-steps and 100 population migrations. 

Experimental results are summarized in Figure 7 and 

Figure 8. Figure 7 shovvs the percentageof problems soived 
vvithin 10 x 10^ hc-steps. The percentage of success is low 
in the region around d = 2.4, where the phase transitions 
are expected to occur[15]. 

We traced back every candidate that led to a final solu-
tion and classified its migration pattern into the three types 
shown in Figure 6. Figure 8 shovvs the results. We see that 
the curve of Type III is quite similar to that of the success 
percentage in Figure 7. Actually, the percentage of Type III 
becomes the highest at d = 2.4, where hard problems are 
concentrated. Thus, it is expected that the Type III pattern, 
which is specific to the PM meta-heuristics, will be helpful 
to reduce the hardness of GCPs in the critical region. 

5 Conclusions 

We proposed a novel meta-heuristics named population 
migration (PM), which is applicable to stochastic search 
methods for constraint satisfaction problems including 
stochastic hill-climbing and neural netvvorks. 

It may be possible to view PM as a spatially parallel 
version of temperature control of SA in which tempera
ture always decreases monotonically. The proposed meta-
heuristics, however, enables a more sophisticated control 
of temperature since it implicitly conducts dynamic self-
adaptive temperature control. Its effectiveness was veri-
fied by some experiments: (1) comparison betvveen naive 
stochastic hill-climbing (SHC) and SHC assisted by PM, 
(2) comparison beween SA and PM applied to two basic 
methods: SHC and neural networks, (3) detailed investiga-
tion of the dynamic controllability of temperature from the 
viewpoint of computational complexity. 

The last experiment is particularly interesting because 
efficiency of self-adaptive temperature control, which is 
specific to PM, is remarkable in the critical region where 
phase transitions occur. 
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Appendix 

In these supplementary experiments the basic stochastic 
search method to which the meta-heuristics SA and PM are 
applied is based on NN-SAT, the neural network proposed 
in [11] instead of SHC in Section 4. The standard CSP to 
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10000 

In the second experiment, fixing d = 3.5, four values of 
n are tested: from 100 to 250 at intervals of 50. Figure 
10 shows the results. We see the percentage of success 
of SA tends to decline more rapidly than that of PM as 
the problem size increases, which is similar to the result of 
Figure 5. 

Let us notice finally that ali three migration patterns 
shown in Figure 6 are also observed in these supplemen-
tary experiments. 

(a) The percentage of success for PM 

10000 

(b) The percentage of success for SA 

Figure 10: Experimental results on the size of the search 
space. 

be tested is CNF 3-SAT, or 3-SAT shortly, instead of GCP 
in Section 4. 

Let us clarify the parameters of PM and SA. The PM 
procedure is the one of Figure 3 except that instead of 
SHC, NN-SAT vvithout temperature control is used as the 
basic stochastic search method. The number k of groups 
is set to five with temperatures fixed to 0.15, 0.08, 0.04, 
0.02 and 0.01. To each group 8 candidates are alloted. 
The SA procedure we used is the same as NN-SAT[11], 
with the temperature T controlled like T = T_max x 
exp{—j/(restarts x neurons)) from T_max = 0.15 to 
T_min — 0.01. The parameters j , restarts and neurons 
indicate the 7'-th trial of search operation, the number of 
restarts with a new candidates, and the number of neurons, 
respectively. For a SAT problem, n is the number of vari-
ables in the propositional expression and d is the constraint 
density given by the number of disjunctive clauses divided 
by n. In each čase 100 random 3-SAT problems were gen-
erated using the procedure in [20]. 

In the first experiment, fixing the number n of variables 
to 150, we tested nine cases of constraint density d: 2 to 6 
at intervals of 0.5. Figure 9 shows the results. As was seen 
in Figure 4, PM again becomes apparently superior to SA 
as the available computational power increases. 




