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Preface

Interest in human settlement systems and policies has been
a critical part of urban-related work at IIASA since its incep-
tion. Recently this interest has given rise to a concentrated
research effort focusing on migration dynamics and settlement

patterns. Four sub-tasks form the core of this research effort:

I. the study of spatial population dynamics;
II. the definition and elaboration of a new research

area called demometrics and its application to

migration analysis and spatial population
forecasting;
III. the analysis and design of migration and settle-

ment Eolicy;

IV. a comparative study of national migration and

settlement patterns and policies.

This paper, the third in the policy analysis series,
develops a paradigm for a formal theory of normative demography,
drawing on related work in economics and in optimal control
theory. It adds a goals-means dimension to our current efforts
in demographic and demometric modelling and shows how a number
of apparently diverse aspects of population distribution policy
may be considered within a single overall analytical framework.

Willekens' study was conducted here at IIASA this past year
and forms part of a doctoral dissertation submitted to Northwestern
University. - This work was financially supported by the Institute
by means of a research fellowship.

Related papers in the policy analysis series and other
publications of the migration and settlement study are listed on
the back page of this report.

A. Rogers
June 1976
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Abstract

This paper explores the analytical features
of a population distribution or human settlement
policy. It examines linear static and dynamic
policy models in the Tinbergen formulation and in
the state-space format and shows how they may be
derived from demographic and demometric models by
adding a new dimension: the goals-means relation-
ship of population distribution policy. Although
our general treatment encompasses most policy
models, attention is focused on models for which
solutions may be expressed analytically, such as
the initial period control problem and the linear-
guadratic control problem.
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Foreword

In recent years there has been an increasing interest
in the dynamics of spatial demographic growth. Models for
multiregional population growth have been developed to
describe the growth process and to analyze its impact on
future population characteristics (Rogers, 1975). The
various economic, social, climatological and cultural forces
influencing spatial population growth have been brought
together in explanatory demometric models (Greenwood, 1975a).
The mathematical demographic models and the demometric
models have a common feature. They are designed to describe
and to explain the dynamics of the spatial population growth.

Once the dynamics of a phenomena are understood, human
nature comes up with the ultimate guestion: can we control
it and how? The models associated with this third concern
are population policy models. The subject of migration
policy models has been treated by Rogers (1966; 1968,
Chapter 6; 1971, pp. 98-108), and more recently, MacKinnon
(1975a, 1975b) devotes considerable attention to the design
of optimal-seeking migration policy models.

This paper is devoted to a methodological analysis
of migration policy models. We assume that a demometric
or a demographic model, consisting of a system of linear
simultaneous equations, has been successfully specified and
estimated. Therefore, we do not devote any attention, for
example, to identification and estimation procedures. The

main thread of the analysis is provided by the Tinbergen

paradigm, to which we will refer frequently. Chapter 1

is a conceptual survey of various possible policy models.




Each model is related back to the original Tinbergen
framework. The matrix of impact multipliers, well known

in economic analysis, is seen to be of crucial importance

to the classification scheme. After the introductory
chapter has set the scene, we devote our attention to the
two central issues in the theory of policy: the concepts

of existence and of design. The existence problem deals
with the question whether the system is controllable, i.e.,
whether a set of arbitrary targets can be achieved at all,
given the internal dynamics of the system and given the

set of available instruments. The answer to the control-
lability problem provides input information for the design
problem. For the design of an optimal policy, the policy
maker may apply a wide range of mathematical programming
techniques, assuming that he has a clear idea of his prefer-
ences. To facilitate the discussion of the controllability
of dynamic systems in Chapter 2 and of the design of optimal
policies in Chapter 3, we introduce in Chapter 2 the state-

space representation of demometric models.



CHAPTER 1

OPTIMAL MIGRATION POLICIES:
A CONCEPTUAL FRAMEWORK

There are several analytical differences between a policy
model and a conventional demographic or demometric model.
The most basic classification of variables in any model

consists of two categories: endogenous variables, which

are determined within the model, and exogenous variables,

which are predetermined. Suppose the population system is

linear and may be modeled as

Afy} = E{z} (1.1)

where {y} is a M x 1 vector of endogenous variables,
{z} is a L x 1 vector of exogenous variables,
A 1is a M x M matrix of coefficients,

E is a M x L matrix of coefficients.

Equation (1.1) is the reduced form of a population model.
The endogenous and the exogenous variables are separated.

Assuming that A is nonsingular, we obtain

{y} = A 'E{z} = c{z} (1.2)

where C is the matrix of multipliers, i.e. the reduced form
matrix. The elements of C represent the impact on {X} of a
unit change in {z}.

The policy models treated here, will be discussed with
reference to (1.2). Tinbergen (1963) proposed a classi-

fication of the variables of (1.2) better suited for the




policy problem. His ideas are general enough to encompass
the whole range of policy models. Starting from the Tinbergen
paradigm, we try to present a unified treatment of various

classes of models, which are relevant for population policy.

1.1. THE TINBERGEN PARADIGM

Tinbergen (1963) distinguished two categories of vari-
ables in both the endogenous and the exogenous variables.

The endogenous variables consist of target variables, which

are of direct interest for policy purposes, and other vari-
ables which are not. The latter are labeled by Tinbergen

as irrelevant variables. However, they may be of indirect

interest for policy planning, since their values may in turn
influence various target variables. The exogenous variables
are divided according to their controllability. Instrument
variables are subject to direct control byv the policy

authorities. Data variables are beyond their control. The

latter include exogenously predetermined and uncontrollable
variables, as well as lagged endogenous variables. They
define the environment in which the levels of instrument
variables have to be set. Applying this approach, ecuation

(1.2) may be partitioned to give

tyd =R s tzy}
tyad] =2 2] |{z,}

where {¥1} is the N x 1 vector of target variables,

{22} is the (M - N) x 1 vector of other endogenous

variables,
{21} is the K x 1 vector of instrument variables,

{52} is the (L - K) x 1 vector of uncontrollable



exogenous variables and lagged endogenous
variables,
R, S, P, Q are conformable partitions of the model's

~

reduced form matrix.

The value of the target vector is

{y,} = R{z,} + s{z,} . (1.3)
The policy problem, as formulated by Tinbergen, is to
choose an appropriate value of the instrument vector {51}
so as to render the value of the target vector {y,} equal to
some previously established desired value {§1}. The choice
of the level of the instrument variables depends on the
levels of the uncontrollable variables, represented by
{gz}, and on how much they affect the targets.

It is important to keep in mind that the policy model
(1.3) is derived from the explanatory model (1.2) by adding
a new dimension to (1.2). This new dimension is the goals-
means relationship of population policy. The explanatory
model may be a pure demographic model, relating population
growth and distribution to demographic factors such as fertil-
ity, mortality and migration. It may also be a demometric
model, which statistically relates spatial population growth

to socio-economic variables. Any model may be converted into

a policy model if and only if all the target variables of the

policy model are part of the set of endogenous variables of

the explanatory model and if at least one of the exogenous

variables is controllable. Most migration models found in

the literature are single-egquation models with gross or net




migration as the dependent variable. They serve only a
restricted category of policy models, namely those with
targets that consist of migration levels and instruments
which are socio-economic in nature. Various regional
economic models include migration as an exogenous variable.
Therefore, they are not suited to become migration policy
models if population distribution is the goal. Simultaneous
equation models, such as the ones developed by Greenwood
(1973, 1975b) and Olvey (1972), are relevant to model popu-
lation policy problems of all types, because they include
demographic and socio-economic variables in both the set
of endogenous and the set of exogenous variables. Thus they may
be applied in situations where the éoals—means relationship
consists of demographic, as well as of socio-economic measures.
Finaliy, the multiregional population growth models of Rogers
(1975) may be converted to policy models to study purely
demographic policy problems, i.e., both targets and instruments
are demographic in nature.

Before going into greater detail in our exposition,
we would like to stress that the analytical solution of
Tinbergen's formulation of the policy problem is restricted
to linear policy models. If the model is nonlinear, one can
only solve it numerically. The latter approach is denoted
by Naylor (1970; p. 263) as the simulation approach, and has
been applied extensively by Fromm and Taubman (1968). 1In
this part, we only deal with linear models and do not discuss

the simulation approach.



1.2. SURVEY OF POLICY MODELS

Conceptually, any policy model may be related to
(1.3). For convenience, we drop the subscript of the

target vector.

{X} = B{g } o+ s{z }o. (1.3)

Throughout our discussion of policy models, it will be
assumed that both the targets and the instruments are
linearly independent. The matrix R then plays a crucial
role in policy analysis. The existence of an optimal policy,
i.e., a solution to (1.3), depends on the rank of R. The
design of an optimal policy, i.e., the assignment of values
to the instrument variables, depends on the structure of R,
and on the values of its entries. The matrix R is known in

the economic literature as the matrix of impact multipliers.

The name refers to the fact that an element rij

change in the value of the target variable i when the instru-

gives the

ment variable j is varied by one unit. The ratio —rij/rik
is the amount by which the j-th instrument may be cut down
without changing the level of the i-th target, if the value
of the k-th instrument is increased with one unit. It is,
therefore, the marginal rate of substitution between the
two instruments (Fromm and Taubman, 1968; p. 109).

It is the purpose of this section to classify relevant
policy models without going into technical detail. Detailed
treatment will be given later. The survey revolves around

the matrix multiplier R and its characteristics. A first



classification scheme is based on the rank of R, or alter-
natively on the relation between the number of targets and
the number of instruments. A second classification scheme
relates to the structure of R. The structure of R also

provides us with a link between the reduced form models and

the models of optimal control.

1.2.1. Classification of Policy Models According to the

Rank of the Matrix Multiplier

We may distinguish between three categories of policy
models: R is nonsingular and of rank N; R is singular and of
rank K; R is singular and of rank N. The parameters N and K
are, respectively, the number of instruments and the number
of targets. An illustration is given by a typical policy
model, namely the Theil (1964) model.

a. The matrix multiplier is nonsingular and of rank N.

If R is nonsingular, i.e., there are as many instruments
as there are targets, then there exists a uniocue combination
of instruments leading to the set of desired targets. Once
the targets are specified, the unigue ihstrument vector is

given by

{z,} = 13'1[{31} - s{z,} . (1.4)
The solution to (1.3) is unique, and there is no need for
the policy maker to provide any other information than the

set of target values.



b. The matrix multiplier is singular and of
rank X < N,

If the number of instruments is less than the number
of targets, however, the system (1.3) is inconsistent and
there is no way that all the target values can be reached.
This poses an additional decision problem for the policy
maker. Dées he give up some targets in order to reach
others, or does he want to achieve all the targets as closely
as possible with the limited resources? 1In the latter case,
the policy maker may also wish to weight the targets differently.
If the first alternative is chosen, some targets are deleted,
and the instrument vector is given by (1.4). The second alter-
native often leads to the formulation of a guadratic program-
ming model. If {Q} is the vector of desired target values,
and {Q} is the vector of realized values, then the problem
is to minimize the squared deviation between {g} and {g}
subject to (1.3), which describes the behavior of the popu-

lation system. That is,

min [{7} - {331 Al{y} - {y}h (1.5)
subject to
{y}.= Riz } + s{z,} . (1.6)

The weight matrix A represents the policy maker's differential
preferences towards the targets. The target variables with
the highest weights will be forced very close to their

desired values. Those with the lowest weights will not.
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c. The matrix multiplier is singular and of
rank N.

If the number of instrument variabhles exceeds the number
of targets, then there is an infinite number of solutions to
(1.3) and, therefore, an infinite number of instrument vectors.
To get a unigue solution, the policy maker may force the
number of. instruments to be equal to the number of targets,
by deleting some instruments. On the other hand, he may put
some constraints on the instruments. There is a wide variety
of possible constraints, but we consider only two categories.

c.1. Some Instruments are Linearly Dependent.

By making some instruments linearly dependent, the
freedom of policy action is reduced in a way such that only
one strategy is available to achieve the targets. An illus-
tration of this constraint is the intervention model of
Rogers (1971; pp. 99-101). Targets are specified only for
the planning horizon, but instruments are available in each
time period. 1In order to get a uniaue policy, the constraint
is introduced that the values of the instruments in all the
time periods are linearly related to each other.

c.2. Introduction of Acceptable Values of the

Instruments.

In most cases, the policy maker has a good idea of what
levels of the instrument variables are acceptable politically.
Minimizing the socuared deviations between the realized and

the most acceptable values assures a unique instrument vector.



d. TIllustration: the Theil guadratic programming
model.

We have described how policy models are related to the
rank of the matrix of impact multipliers or, equivalently,
to the number of targets and instruments. Only some alter-
native policy models have been indicated. A wider variety
is possible. For example, the targets and the instruments
may be constrained at the same time, and these constraints
need not to be linear. The objective function (1.5) may
not be quadratic, and (1.6) can be supplemented with both
equality and inequality constraints. The reader is referred
to the mathematical programming literature for such illustra-
tions. The guadratic objective function with linear constraints,
however, is common in economic policy analysis. It is
based on two assumptions. The first is that the policy
maker's preferences are quadratic in targets and controls.
The second assumption is that each of the targets depends
linearly on all the instruments, the coefficients of these
linear relations being fixed and known. The basic structure
of this linear quadratic model is due to Theil (1964;

pp. 34-35), and may be expressed as
min W = {al' (z,) + (0}' {§) + 3[tz;)" atzy)
(1.7)
PP Q) + (23 oty + (3} C'izy)]

subject to

{9} = Rlz,} + siz,) (1.3)
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where {Q} is the vector of realized values of the target
variables,

{z } is the vector of instrument variables,

{z,} is the vector of exogenous variables,

é, 9, g are weight matrices,

R, S are matrices of multipliers.

Applications of the Theil model in economic policy
literature may be found in Fox, Sengupta and Thorbecke (1972;
p. 215), and in Friedman (1975; pp. 158-160). To simplify
matters we may suppose that {a} = {b} = {9} and C = 0. The

problem then reduces to
min 3193 0(§) + {z,)" alzy)] (1.8)

subject to

~

{y} = 8{51} + S{z,} , where (1.3)

Q and A are weights attached to the taréet vector and to
the instrument vector respectively.

To illustrate the application of the Theil model in
migration policy analysis, consider the following problem.
The costs of public services are held to be too high
because some regions are over-urbanized and are subject to
diseconomies of scale, while other areas have insufficient people
to reach the threshold needed for an efficient public service
system. The high costs in the public sector can, therefore,

be related to the inefficient population distribution. To

reduce the costs, a migration policy is needed. However,



there is a cost associated with the redistribution of people
over space. Assume that the cost function of public ser-
vices is a quadratic function of the population distribution
{Q}, i.e.

c, = {b}' {y} + {y}' E{3} . (1.9)

Assume also that the cost associated with population distri-
bution is quadratic in the vector of the number of people

relocated by the policy program, {z,}, i.e.

-_— ]
C, = {zq 1" Flzy} . (1.10)
An element Zqy of {§1} is positive if the program attracts
people to region i. It is negative if the program has an
out-migration effect. On comparing the cost functions with

the preference function (1.7), we see that

and

2
1]

N
Les]

Since {51} represents the additional migration, R = I in the
constraint. The vector of uncontrollable variables is the
population distribution in the previous time period, and

S is the multiregional population growth matrix.
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1.2.2. Classification of Policy Models According to the

Structure of the Matrix Multiplier

We now turn to the question of how policy models may
be related to the structure of the matrix R. The structure
determines the nature of the dependence of {51} upon {y}.
Several assumptions may be adopted to simplify the form of
R. They.have been studied by Tinbergen (1963, Chapter 4),
by Fox, Sengupta and Thorbecke (1972; pp. 24-25) and by
Friedman (1975; pp. 149-153) among others. We consider
four different structures of R: diagonal, triangular,
block-diagonal and block-triangular. Our illustration
considers the block-triangular multiperiod policy model.

a. The matrix multiplier is diagonal.

If R is diagonal, then each target variable can be
associated with one and only one instrument variable and
vice versa. Since 5_1 is also diagonal, equation (1.4)

implies a series of expressions

E1i = E;T [§i - Z sikZZk] i = 1,...,N ,
ii k

each of which may be solved independently. The practical

implication of this is that the policy maker can, in such

an instance, pursue each target with a single specific

instrument, and no coordination between the various policies

is required.



b. The matrix multiplier is
Equation (1.3) is recursive.

between the vectors {y} and {%1},

triangular.
The two-way simultaneity

i.e., {§1} affecting

{y} and {y!} affecting {51}, can be reduced to a unilateral
dependence or a unidirectional causality. Suppose R is

lower triangular, then R_1 is also lower triangular, and

the decision making procedure is recursive:

N
Il

1 -
— |y, - ] s4.,2
11 i1 [ 1 & 1k Zk]

- 1 - -
Z o = = |Y, = ) SopZo, — ToqZ
12 7T, |72 £ S2x%2Kk 21 11]
) - i-1
Z,. = —— 9. - Vs..z.. - J r..z,.
117 1., |Yi E ik%2x T L. Tij%13 .
ii | j=1

These expressions may be solved in sequence, and the
model has a simple policy interpretation. If each

equation were assigned to a different policy maker, the
system of equations would specify a hierarchy. 1In order

to make an optimal decision, each policy maker would not

need to look at the instruments selected by those who were
below his position in the hierarchy.

¢. The matrix multiplier is block-diagonal.
In the case of a block-diagonal policy model, the
overall model can be decomposed into several independent
parts. This would occur if a policy can be decentralized
into independent subpolicies, each having a goals-means
relationship unrelated to the goals and the instruments of
the other subpolicies. This would permit efficient decen-

tralized decision making.
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d. The matrix multiplier is block-triangular.

Here, as in the case of a triangular R, the set of
instruments corresponding to any given block can be solved
for without any knowledge of the instruments belonging to
blocks which are lower in the hierarchy. The overall policy
could be decomposed into a hierarchical system of poLicies.

e. Illustration: the multiperiod policy oroblem.

An important application of the block-triangular form
of R is found in dynamic policy analvsis. The models pre-
sented thus far have been static, but they are general
enough to handle dynamic policy problems as well. If the
entries of the target vector and of the instrument vector
belong to different time periods, we clearly have a dynamic
or multiperiod policy model. Suppose, for example, that a
target vector is given for a sequence of time periods from
1 to T, say. Then {X} is itself composed of vectors, one
for each time period. Suppose, moreover, that there exists
an instrument vector for each time period. The reduced form

model (1.3) now may be expressed as

{y} = R{z ) + s{z,} (1.11)
where — —} _ — —
{2(1)} {§1(1{;W {5 (1)}
{¥(2)} {E (2)} {5 (2)}

{y} = : {z,} = . {z_} = .
~ {X(t)} ~1 {§1 (t)} ~2 {E (t)}
X(T)} {E (T)} {E (T)}




— —_
Ri1 Ri2 *°° By
R R .

R = |2 ~22 :
BT‘] o000 0000 00 B-EJ
511 S12 °°° Sqp
S S .
§T‘| oo e 060 s 0080 §TT

Vector {z } is of order KT, and {52} and {X} are of order NT.
The submatrix Bij is N x K and its elements are dynamic
policy multipliers which express the impact on the target
vector {X(t)} in time period t = i of changes in the instru-
ment vector {51(t)} in time period t = j. R is NT x KT;

S is NT x NT and the submatrices S are of order N x N.

Zij
S shows the dynamic effects of predetermined variables on
the target variables.

Most policy models assume that policy actions do not
influence events which precede them in time and, therefore,
generally ignore expectational effects or advance announce-

ment effects. This assumption of unidirectional causality

yields a block-triangular R matrix:

P’O 0 0 o0 0 0
R4 Ro 0
R =R R}t (1.12)
Rro1 Rpoo R
L ]




where the elements of R, are dynamic policy multipliers.

A triangular R matrix leads to a sequential decision making
procedure analogous to that of the static model. The key
distinction is that here the sequence is across time, rather
than across individual instrument and target variables.

By way of illustration, consider the application of
the Theil model in population policy. Assume that there
is a time sequence of target population distributions, and
a time sequence of vectors of induced migration. Suppose
that no tough policy actions are expected by the potential
migrants, therefore the population distribution at time t
does not depend on the migration policies beyond t. Equation
(1.11) may, therefore, be written with R being lower hlock-
triangular.

We may reduce the form of this policy model even further.
Suppose that the migration policy at time t only affects the
population distribution at t + 1 directly. The impact on the
population distributions at a later time is indirect in the
sense that the population distribution at t + 1 affects the

distribution beyond t + 1. This implieé the recurrence ecauation

fye + D} = Rolz ()} + 8., Ay} . (1.13)

The submatrix St+1 N is the growth matrix of the population
~ ’

between t and t + 1. If we assume the growth matrix to be

time-independent, i.e. G = S

G St41,t for all t, we may write

{y(t + D} = Rylz (£)} + cly(t)} . (1.14)

~
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Therefore, (1.11) may be reduced to a set of recurrence

equations
{2(1)} = 50{5 (0)} + 9{2(0)}
{¥(2)} = 50{51(1)} + 9{2(1)}
= Rylz, (1)} + GRy{z;(0)} + G°{y(0)}
{y(e)} = Ro{z (t - 1)} + Gly(t - 1}
t-1 .
=ctiyomr + 7 e ViR 1z, (1))
DL 4 izo - ~0'2
In matrix form, we have that
- —_ —_ S _—
{~(0)} I {y0)}
{y()} G R, {z, (0)}
y@1 _ |¢®  cr R (z4 (1))
| e TRy ¢TTPRy e By (2T - )
(1.15)
Fauation (1.14) has received much attention in
system theory. It is called the discrete state ecuation

and forms the central component of the discrete version of
the state-space model. Stimulated by recent work in system
theory and optimal control, an increasing number of authors
have adopted the state-space approach to describe dynamic

models in the social sciences1. We have shown how the

1See, for example, Pindyck (1973), Kenkel (1974) and
Chow (1975).



state-space model may be derived conceptually from the
reduced form model. How the transformation is done mathe-
matically will be shown later.

By introducing the assumption of unidirectional causal-
ity of the population system, we may write the Theil model

(1.8), (1.3) as

min 3 = 3§ of§) + (2} alz,)] (1.8)
subject to

fy(t + D} = Rylz, (1)} + Gly©)} . (1.16)

Recall that Q is a NT x NT matrix, where T is the planning
horizon, N is the number of target variables at each
period, and A is a KT x KT matrix, where K is the number

of instrument variables.

1.2.3. From the Tinbergen Model to the Optimal Control

Model

In this chapter, we started out with the Tinbergen
paradigm. The original model, based on this paradigm, was
simple in nature, in the sense that the number of instruments
was equal to the number of targets and that the optimal policy
was the unique solution to a system of linear ecquations. When
the number of instruments and targets differs, the policy maker
is confronted with an additional decision problem. He needs to
specifv his preferences in order to get a uniaue policy which
is optimal.‘ This led us to the Theil model and to the broad

application of mathematical programming. When policy problems



become large, there is a need for simplification. The
simplifying assumptions, discussed up to now, are related
to the structure of the multiplier matrix R. The assumption
of unidirectional causality of the system, represented by
the block-triangularity of R is crucial to the further
development of dynamic policy models. Now we extend the
simplification of the policy models to the objective function.
Assume that the effect of the target and control vector
at time t on the value of the objective function, is inde-
pendent of the target and control vectors at other time
periods. This implies that the matrices Q and A are block-
diagonal. The large multiperiod problem may then be decom-
posed into a sequence of smaller single-period problems.

The objective function becomes

T
min 3 ] {gE)}' o(6) {g()} + {z ()} A(t) {z,(t)}
t=0 - - - -
(1.17)
It is assumed that {51(T)} = {0}; therefore, we have

min & {(T)}' Q(T) {y(T)}

[{g(t)}' o(t) {y(t)} + {z (£)}* A(t) {g1(t)}]
(1.18)

The block-diagonal structure of Q and A implies that the

values of the target variables at time t are independent

of their values at previous and at later time periods.

This 1is denoted as the assumption of inter-temporal separa-

bility of the objectives. The combination of (1.18) with

(1.16) is known as the linear-quadratic control problem,

which has received much attention in control theory. This




shows that the multiperiod Theil problem may be reduced to

a linear—quadratic control problem by assuming inter-temporal

separability of the objective and unidirectional causality

of the population system. If these conditions are not met,

one must apply the dynamic generalization of the Theil
model (Theil, 1964, Chapter 4).

In control theory, it is common to denote the
target vector {y(t)} by {§(t)}, and the control vector
{31(t)} by {g(t)}. In most practical applications, it is
also assumed that Q(t) = Q is equal for all time periods
up to T - 1. This assumption is only valid if the preference
system and tastes do not change over time. It also implies
that the contribution of a certain set of target and control
values is independent of when they appear on the time path,
since no discounting measure has been introduced. The
matrix Q(T) is commonly denoted by F. The weight matrices
A(t) associated with the instruments or controls are also
assumed to be time independent, and are denoted by R. The
multiplier matrix R, is denoted by B. To facilitate refer-
ence to the optimal control literature,‘we will adopt this
notation in the remainder of this study. The linear-

quadratic problem, therefore, is reformulated as

min 17 {x(T)}' Fix(T)}
1 (1.19)
T-

+JZ ¥ [{x(t)}' o{x(t)} + {u(t)} R{u(t)}]
t=0 -~ ~r - T

subject to

{x(t + 1)} = cix(t)} + Blu(t)}



To solve (1.19), one can apply the cuadratic program-
ming algorithm to the original Theil problem with the
matrices A, Q, R and S of the appropriate structure. However,
if T and N are of some practical magnitude, the scale of the
problem becomes immense. In recent years, algorithms have
been sought which could solve the general linear-cuadratic
problem and dynamic problems directly. The optimization of
such dynamic systems may be apnroached from three alter-
native perspectives:

i. Variational calculus, dealing with the problem

of finding the function describing the optimal
trajectory of the system. The solution of such

a problem involves the determination of maxima

and minima of functionals (Gelfand and Fomin, 1963).

ii. Dynamic programming, based on Bellman's principle

of optimality (Bellman, 1957).

iii. Optimal control theory, based on the "maximum

principle"” derived by Pontryagin and his asso-
ciates (1962).
A discussion of the three approaches is beyond the scope
of this study. The interested reader is referred to the
literature. A clear exposition of the relationship between
the calculus of functionals and the calculus of functions
is given by Connors and Teichroew (1967). How dynamic
programming and optimal control theory relate to each other,
is discussed by Noton (1972). A fine texthook on applied
optimal control is Bryson and Ho (1969).
Optimal control has the broadest field of application.
Problems which may be solved bv calculus of variations or

by dynamic programming, can also be solved by optimal




control. Therefore, we adopt the optimal control approach
to the optimization of dynamic population systems. This will
enable us in Chapter 3 to derive the optimal solution to

the linear-guadratic control problem.



CHAPTER 2

REPRESENTATION AND EXISTENCE THEOREMS
OF MIGRATION POLICIES

In this chapter we deal with constraints (1.6) and
(1.16); in other words, with the demometric model repre-
sentation of the dynamics of a population system, and with
the policy model describing the goals-means relationship
in migration policy. Nothing will be said about goal-
setting or about the selection of optimal values for the
instrument variables. These will be considered in the
next chapter.

Let us begin with a demometric model in the form of
a system of simultaneous linear equations. It is assumed
that the model has been specified and that the coefficients
have been estimated. The model relates demographic with
socio-economic variables, in a manner such as is found in
Greenwood (1973, 1975b). We assume that the model is
dynamic, i.e., that it contains lagged endogenous and
exogenous variables. It is also assumed that the goals-
means relationship of migration policy is known, i.e., the
target variables and the instrument variables have been
separated from the other endogenous and exogenous variables.

We first transform the reduced form of the model into
the discrete state-space form. A general solution of
the discrete state-space equation is then derived. Next,
we consider the question whether arbitrary specified
levels of target variables can be reached by the existing

set of instruments. The existence theorems which are



derived are related to the rank of the matrix of impact

multipliers.

2.1. STATE-SPACE REPRESENTATION OF DEMOMETRIC MODELS

Stimulated by recent work in opntimal control and system
theory, an increasing number of authors have adopted the
state-space approach to describe dynamic models in the
social sciences. This section descrihes the character-
istics of the state-space model and the procedure for its
solution. Since most demometric models are given in the
reduced form, we also consider its transformation to the

state-space form.

2.1.1. The State-Space Model

The state-space representation of a linear system is
defined by the following set of first order linear differ-

. 2
ence equations :
{x(t + 1)} = G(t) {x(t)} + B(t) {u(t)} (2.1)
{y(e)} = c(t) {x(t)} + E(t) {u(v)} (2.2)
where {§(t)} is an N-dimensional vector-valued function of
time, called the state of the svstem,

{g(t)} is an K-dimensional vector-valued function of

time, called the input or control to the systen,

We shall consider only the discrete state-space model.
The continuous version is a set of differential ecuations.
For details see, for example, Director and Rohrer (1972)
and Wolovich (1974).



{y(t)} is an P-dimensional vector-valued function of
time, called the output of the system,
A(t), B(t), C(t) and E(t) are real-time dependent

matrices of dimension N x N, N x K, P x N and

P x K, respectively.

If g(t), §(t), g(t) and E(t) are constant over time, the
system is time-invariant. In this section, we will only

consider the case where these matrices are constant. Thus,

{g(t + 1)} = Gix(t)} + g{g(t)} (2.3a)

{y(t)} = clx(t)} + Efu(t)} . (2.3b)

The homogenous part of (2.3a):

{x(t + 1} = cix(t)}

gives the growth of the system without intervention. The
matrix G is the growth matrix. The discrete model of
population growth, studied by Rogers (1975; p. 123), is of
this form.

The interpretation of (2.3) as a migration policy model
is straightforward. Suppose {g(t)} is the interregional
and/or age-specific population distribution. The matrix G
is the population growth matrix, and {g(t)} is a vector of
instrument variables, which may range from pure demographic
variables to socio-economic variables. It defines a
policy at time t. The impact of each policy variable on
the population distribution in the next period, is given

by the elements of B. If {u(t)} has no lagged instrument



variables, and if {g(t)} has no impact on {g(t)}, then B is
the matrix of impact multipliers. If the policy is a direct
population influencing policy, then {g(t)} is expressed in
numbers of people, exactly as {§(t)}, and therefore B is
the identity matrix.

In demographic policy problems with socio-economic
goals, the target vector is not expressed in terms of vopu-
lation distribution, but in terms of socio-economic variables.
The matrix C transforms the population distribution {§(t)} into
the vector {¥(t)} of socio-economic target variables, whereas
L gives the direct impact of the policy variables on the
new target variables. In fact, C can be any transformation
matrix. For examvle, suppose {§(t)} is the regional distri-
bution of the population by age. If the policy maker is
interested only in the spatial distribution of the total

population, then C will he a consolidation matrix.

2.1.2. Solution of the State-Space Model

In order to derive the solution to {(2.3a), we write

(2.3a) for various t:

{x()} = 6{x(0)} + B{u(0)}

(x(2)} = 6{x(M} + BluM?} = 6% {x(0)} + GB{u(0)} + Blu(1)}

{§(T)}

Te1 .
eT=11 gru(iyy .
. Biu

6T {x(0)} +

Il o~}

i

Therefore the general solution to (2.3) is



t-1 .
x(t)} = cYx1 + T 6" Blui)}
~ -7 i=0 ~ T
(2.4)
t LN P
{y(t)} = cc{x(0)} + } cG B{u(i)} + Ef{u(t)}
=~ ~ A ~ i:O ~ o~ ~ ~ ~— ~
The solution to the homogenous part of (2.3a) is
‘ ot
{§(t)} =G {5(0)} (2.5)

where Gt = ?(t,O) is known as the discrete state-transition

matrix. The solution in terms of the state-transition
matrix 1is:
t-1

e(t) {x(0)} + J o(t-1-i) Blu(i)} (2.6)
- i=0 ” R

{§(t)}

and

{y(t)} = co(e){x(0)} + C 7 9 (t-1-1) Blu(i)} + E{u(t)}

(2.7) }

where ®(t) = G©

Consider the system where E = 0. Then

t-1 .
fy(t)} = cet{x(0)} + ) CG 11 prugi)) .
N R i=0 ~7 T

Let H(t) = cct 1 B, then

~

t-1
(y(t)} = ce®x(0)} + § m(t - i){u(i)}
j=1
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and, ifj=t—ir

fy(t)} = catix(0)} + E 1(§) {ult - )} . (2.8)

o4 VO s 521 ~ ~
If {5(0)} is the initial population distribution, if {u(t)}
is vector of control or policy actions at time t, and if
{g(t)} describes the population distribution at time t (in
this case, C = I), then H(j) is the matrix of dynamic impact
multipliers. The element hrs(j) represents the change of the
porulation in group or region r at time t due to a unit
change in the s-th instrument at time t - j. H(j) can also
be thought of as the contribution of the policy action at
time (t - j) to the population distribution at time t. Each
matrix H(3J) corresponds to the various submatrices of (2.15),

which are not in the first column.

2.1.3. State-Space Representation of the Reduced Form HModel

The reduced form of a demometric model is
aly} = E{z} (2.1)
where {y} is the vector of endogenous variables, and

{z} is the vector of predetermined variables consist-

ing of exogenous and lagged endogenous variables.

The general reduced form is



Aly()} = Ej{y(t = D} + E{y(t = 2)}...+ E {y(t - r)}

+ 90{3 (t)} + 91{§1(t - ...+ d Az, (t - s)}
(2.9)

where (t - 1) indicates a time lag of i periods. 1In order

to put (2.9) into state-space form, we must define new

variables‘and corresponding equations to replace the

reduced form variables that have second order or higher

order lags. The procedure is then one of the replacement

of an r-th order difference eguation by r first-order

difference equations.

First, let

{g(t)} =

{E‘I(t - S)}

L —

and

D =[Dg/Dyqs---sDg]
Equation (2.9) then may be simplified to yield

Aly(t)} = Eq{y(t - 1)} + E{y(t = 2)}...+ E {y(t - 1)}

(2.10)

+ p{g(t)} .
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Following Kenkel (1974; pp. 295-299), we define a set of

new vectors:

{¥1(t)} = {g(t)}

{gz(t)} = {y(t - 1)}

{gr(t)} = {g(t -r + 1)}
{yr(t -1} = {X(t - r)}

Therefore (2.10) becomes

ly;(0)} = §_1§1{¥1(t - N+ 5'1§2{¥2(t - Nl...

which may now be rewritten as a recurrence equation of the

form
{§(t)} = g{§(t - 1N} + §{g(t)} (2.11)
where
{y, ()}
{y,(0)}
{x(t)} = . {fu(t)y} = {z(t)}
{gr(t)}




[ -1 -1, -1 -1
A By A Ly tee A E_4 A EL
E 9 R EEE 9 o
G = : . (2.12)
: 0 :
° T 0
I 1
A_i)j
0
B = .
0
L

Equation (2.11) is the state-space representation. The
submatrices in the first row denote the impact on {y(t)} of
the vectors of lagged endogenous variahles. The submatrix
5—19 denotes the direct effect on {Y(t)} of the exogenous
variables. §—190 is the matrix of impact multipliers. The
matrix §F1Qi gives the direct effect on {y(t)} of the vector
of exogenous variabhles, lagged by i periods. These are not
total delay multipliers, since {z(t - i)} also affects
{y ()} through its impact on {ylt - k), k =1,...,1.

There is another transformation of the reduced form to
the state-space form. This transformation has no direct
motivation for demometric models, but it facilitates the

study of the state-space model. Eguation (2.10) may be

written as
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Ely(t -}l =-E ,{ylt -+ D} - E, oyt - r+ 2)}...

(2.13)

- Eqfy(t - 1)} - aly(t)} + plz(v)}

Suppose E_ is nonsingular, and define the new vectors

{y, (6 - DY = {y)}

{y;(6 - 1} = {ytt - 1)}
{y;(t - D} = {y(t -(i - M)}
{y (e = 1)} = {y(t =(r - 1))}

The extended version of {(2.13) then is
{x(t)} = &{x(t - D} + Blu(t)}

where {§(t)} and {g(t)} are as defined in (2.12),

QY
It

(2.14)

[
t

- E. R “Ey Ey = ErErog
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The matrices G and @ are generalized companion matrices.
In a previous paper, we have already introduced the compan-
ion matrix in the demographic analysis (Willekens, 1976Db,
p. 49). It has been indicated that this matrix can play an
important role in the reconciliation of discrete and contin-
uous models of demographic growth. Here we have shown that
the companion matrix provides the natural link between the
reduced form model and the state-space model. A similar
link may be formulated between the structural form and the
state~-space model. A detailed description of the technique

is given by Pindyck (1973; pp. 89-94).

2.2. EXISTENCE THEOREMS OF MIGRATION POLICIES

It is argued that there are two central issues in the
theory of policy. These are the concepts of existence and
of design. Existence of policy refers to the controllability
of the system or the ability to design any policy at all;
design refers to the techniques for designing optimal policies
once existence is assured. Although both issues have been
recognized for a long time in system theory, policy analysis
in the social sciences, led by the theory of economic
policy, has focused almost entirely on the design problem.

Only Tinbergen (1963) has given considerable attention to




both issues. His policy model is formulated in the reduced
form. An alternative representation is the state-swvace
format.

This section is divided into two marts. The first
deals with the existence of optimal policies in the Tinbergen
framework. The other derives existence theorems for the
state-space model. Until very recently, the existence of
optimal policies in the state-space framework has not been
investigated in the theory of economic policy. Based on
findings of system theory, Aoki (1973, 1974, 1975) and
Preston (1974) have supplemented Tinbergen's existence

theorem with theorems related to state-space economic models.

2.2.1. Existence Theorem in the Tinbergen Model

Recall the Tinbergen model
{y} = R{z,} + s{z,} . (1.3)

In the original formulation, (1.3) represented a static
policy problem, i.e. the targets and thé instruments belonged
to the same time period. The model, however, may include
lagged variables in the vector of uncontrollable variables
{z,}. Contrary to Preston's (1974; p. 65) claim, the
Tinbergen model also fits dynamic situations, where the
targets and instruments belong to different time periods.
This is shown in (1.11). The cornerstone of Tinbergen's
theory of policy is the condition for which there exists
for any {y} a corresponding unicue policy vector {§1} such
that (1.3) is satisfied. 1In other words, under what condi-

tions has (1.3) a unigue solution for {z4}? The necessary



and sufficient condition is that R is of full rank, and

that the number of targets is equal to the number of instru-
ments. This statement is general enough to encounter dynamic
policy problems where time series of targets are given and
where time series of instruments are sought. The uniqueness
of the instrument vector is an unnecessarily restrictive
condition. An infinite number of policy vectors may exist
which lead to the same target vector. The controllability

theorem for the Tinbergen model is, therefore, stated as

follows:

THEOREM 1: Tinbergen Controllability Theorem

The policy model

{yl = Riz } + S{z,} (1.3)

is controllable for all {y} = {y} if and only if the

matrix multiplier R satisfies the condition

rank (R) = N
where N is the number of targets. The control vector {21}

is unique if R is N x N. This condition is a reformulation
of Tinbergen's proposition that there exist as many instru-
ments as there are targets.

To prove Theorem 1, recall that R is a N x K matrix,
where N is the number of targets and K is the number of
instruments. 1In the previous chapter, we made the assump-

tion that both the targets and the instruments are linearly



independent. This implies that the eauations of (1.3) are
independent. The system (1.3) is consistent, i.e. has a
solution if and only if the number of unknowns K is greater
than or equal to the number of equations N. But this
implies that the rank of R is N. If K is less than N, the
rank of R is K < N, and the system is inconsistent. The
general solution to a consistent system is (Rogers, 1971;

p. 258):

(z,} = 13(”[{3}} - s{z }] + [; - gD R] {c}  (2.15)

~ ~

(1)

where R is a generalized inverse of R, satisfying
RR(1)R=R ’
and {c} is an arbitrary vector.

If K > N, there exists an infinite number of instrument
vectors associated with {i}. However, in most cases, there
is only one instrument vector which is most suited to the
policy maker's preferences. The design of such a policy
vector will be discussed in the next chapter. If on the
other hand K = N, then R is nonsingular and (1.3) has a

unigue solution:

~

z) = 2@ - ostzy] (2.16)



- 39 -

2.2.2. Existence Theorems in the State-Space Model

In the previous chapter, the state-space model was
derived by introducing the assumptions of unidirectional
causality and time independence into the Tinbergen model.

Recall

{§(t + 1)}

g{§(t)} -+ I~3{13(t)} (2.3a)

{y(t)} = cix(t)} + Elu(t) } . (2.3b)
Two existence problems mav be distinguished. The first deals
with the question of whether there is a seauence of control
vectors {E(t)}' t =0,...,T-1, such that a desired target
vector can be achieved at a predefined planning horizon T.
The second deals with the cguestion whether there exists a
sequence of control vectors {g(t)}, t =0,...,T-1, such that
any sequence of target vectors {z(t)}, t=1,...,T can be
realized. The first existence problem is known in system

theory as state and output controllability; the latter is

sometimes referred to as output function controllability.

The state and output controllability has received most
attention in the literature. Both existence problems will be
dealt with below. Two applications will be discussed:

the separation of the controllable and the noncontrollable
parts of the system, and the achievement of the targets with

a minimum number of instruments.




a. State and Output Controllability

The system
{x(t + 1} = G{x(t)} + Blu(t)} (2.3a)

is said to be controllable (state controllable) if and only
if there exists a control {u(t)} which transfers any initial
state {§(to)} at any time t, to any arbitrary final state
{§(t1)} at any time t; > t; > 0, (Wolovich, 1974; p. 65).
Otherwise, the system is uncontrollable or only "controllable
in part," i.e. it may be possible to transfer certain states
to any desired final states or to transfer all the states to
a position close to the desired states.

The controllability concept assumes that there is no
constraint on {g(t)}. The only requirement is that there
exists a trajectory between the initial and the terminal
state.

In order to determine conditions for controllability

of (2.3a), consider its solution
t e
x(t)} =G {x(0} + ) G B{u(i)} (2.4)
° J 2 igo - 2z

which may be rewritten as

{u(t - 1}
x(©)} - 6" x(0} = [BigBic?Bi--16* "Bl [ fu(t - 2))
{u(0)}

(2.17)



where {x(t)} and {x(0)} are given and G is time-invariant.
The dimension of the target vector {x(t)} is N (t =1,...,T)
and of the control vector {g(t)} is K (t = 0,...,T-1). The
matrix

D = [B*GB:G“B:++:G

is therefore of dimension N x Xt. Equation (2.3a) is control-

lable, or there exists a solution to (2.17) if the rank of D is N.

If t ? N, i.e. if the number of control intervals is greater

than the number of targets, then we don't need to consider

the whole matrix D to evaluate the controllability of (2.3a).
According to the Cayley-Hamilton theorem, each matrix

satisfies its own characteristic equation. If G has the

characteristic eguation

N N-1 N-2 _

AT+ CqA + czx to..t oy = 0
then

I A PUUEIR-IS e (2.18)

N b N N= <

N N+1i . . .
Therefore G~ and any G (i > 0) is linearly dependent on

« . . « N- .

[E;g;gz;'°;§ 1}. It follows that no extra independent

column vectors would be added to D if there are more than

N control intervals.

This result is formulated as follows:
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THEOREM 2: State Controllabilitv Theorem

The dynamic system
{x(t + 1)} = 6{x(t)} + Blu(t)!} (2.3a)

is completely controllable for all {x(t)} = {g(t)} if and
only if the N x KN matrix
1

D = [B!GB:-+ic" 'B] (2.19)

is of rank N. This theorem has been considered by Preston
(1974, p. 68) as the dynamic generalization of Tinbergen's
theorv of policy. Several observations may be made at this
point.

a) It is a corollary to the theorem that if a target
vector {g} cannot be reached in N control intervals, it will
never be reached. This is impbrtant for policy purposes,
since it answers the question of how fast a target population
distribution, for example, can be achieved3.

b) Tinbergen-controllability implies state control-
lability. If the rank of B is N, as required for
Tinbergen controllability, then the rank of D is N also.

If the rank of B is N, then the targets can be reached in
only one control interval (t1 = t0 + 1).
c) An argument similar to the one leading to Theorem

2, may be used to derive the conditions for output

3Under the assumption that no constraints are imposed
on the trajectory of control and state variables.



controllability. The system

{§(t + 1)}

g{§(t)} + g{g(t)} (2.3a)

{y(e)}

§{§(t)} + g:{g(t)} (2.3b)

is output'controllable if and only if there exists a control
vector {u(t)} which transfers any initial output {X(to)} at
time t, to any arbitrary final output {g(t1)} at any

t1 > tO' Wolovich (1974; p. 71) states the condition for

output controllability to be
rank [CB:CGB:--:cG 'BIE] = P (2.20)

if P x 1 is the dimension of the output vector. Output

controllability is sometimes referred to as reproducibility

(Brockett and Mesarovié, 1965; p. 549).

d) The "dual" notion of controllability is observ-
ability. The system (2.3) is said to be observable if and
only if the entire state {§(t)} can be’determined over any
finite interval [t,,t;] from complete knowledge of {u(t)}
and {y(t)} over the interval [tyrtq] with t, > £5 2 0
(Wolovich, 1974; p. 73). The condition for observability

is that the MN x N matrix

Q = ’ (2.21)




be of rank N. Eqguation (2.3b), written out for the time

periods t = 0,...,N-1, while noting that

{x(t)} = 6% {x(0)} + Blu(t - 1)

’

gives
(y(} | c ] (0} E{u(0)} |
{y(1)} CG cB{u(0)} E{u(1)}
" = w {x(0)} + LT + T
{y(N - 1)} cal1 cB{u(N - 2)} E{u(N-1)}
_ | . L= - — |~ —

(2.22)
where {E(t)} and {y(t)} are known for t = 0,...,N-1, and
{5(0)} is unknown. System (2.22) consists of MN eguations in
N unknowns. {x(0)} can be calculated if Q has rank N. If
{§(0)} is known, the whole sequence of state vectors is known
by (2.3a).

The notion of observability might be useful in the
study of populations with incomplete data. For example,
let {3(0)} be the spatial distribution of a population by
age group, at time t = 0. Let {Y(t)} be the observed spatial
distribution of the total population at time t and let
{g(t)} = {9} for all t. The matrix C is then a consolidation
matrix. Assuming that the condition for observability is met,
and that G is known and remains constant in time, {x(0)} can
be computed from {y(t)} [t = 0,...,N-1]. If G is unknown, it
may be approximated by some underlying model mortality,
fertility and migration schedules.

The problem of controllability and observability has

been studied by Vajda (1975) in manpower planning, although



the author does not refer to the concepts and theorems just
described and instead focuses on totally different techniques.
He uses the simplex algorithm to determine the population
distribution from which a given distribution can be obtained,
and to find out if’a target distribution can be reached from

the present distribution in one, two or more steps.

b. Output Function Controllability

The controllability concept discussed in the previous
section dealt with the existence of a control vector, such
that a desired target vector can be achieved at a predefined
planning horizon. In practice, policy makers would be
interested in not only achieving desired target values, but
also keeping them on some desired time trajectory once
achieved, or achieving the targets along a desired path.

It is not uncommon in politics that short term objectives
conflict with long term goals. In designing a policy to
achieve the short term objectives, the policy maker includes
element$ which make the long term goals unattainable. The
careful policy-maker, therefore, will design a policy that
enables him not only to achieve, for example, a desired
population distribution at a certain point in time, but also
to control the growth path of the multiregional population
system bnce the target distribution is achieved. A system

whose trajectory is controllable is called output function

controllable or, equivalently, functionally reproducible

(Brockett and Mesarovié&, 1965; p. 556).
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Recall the dynamic system described by (2.3)

{x(t + )} = Gix(t)} + Blu(t)} (2.3a)

{y(®)} = c{x(t)} (2.3b)
where {x(t)} is the N x 1 state vector,
{u(t)} is the K x 1 control or input vector, and

{y(t)} is the P x 1 output vector.

If the target is related to the state of the system, (2.3h)
may be deleted, or C may be set identical to the identity
matrix. 1In order to derive the condition for output function
controllability, we take z-transforms in equation (2.3)

(Director and Rohrer, 1972; p. 317):

z{x(z)} - z{x(0)}

G{x(z)} + Blu(z)}

{v(2)}

Ccl{x(z)} .

Thus

[zI - Gl{x(z)} = z{x(0)} + Blu(z)}

{xtz)} = [2I - 617" z{x(0)} + [2I - 617" Blu(z)}

1

"

{y(z2)} = clzI - 617" z{x(0)} + clzI - 617" Blu(z)}

(2.23)



The P x K matrix
-1

ClzI - G B = H(z) (2.24)

is called the discrete transfer matrix (Director and Rohrer,

1972; p. 317)”. The transfer matrix describes the relation-
ship between the output {y(t)} and the input {u(t)} of the
system. It is independent of any particular choice of
{x(0)}. Ecuation (2.23) may be written as

1

H(z) {u(z)} = {y(2)} - ClzI - G]~

z{§(0)} . (2.25)

This allows us to formulate precisely the gquestion of out-

put function controllability and to answer it.

The question of output function controllability is:
given any desired P-dimensional output vector {g(t)},
defined for all t > tys and the initial state {x(0)}, can
the sequence {g(t)}, t > t, be obtained by choosing the
appropriate sequence {u(t)}, t > to? The answer to this

guestion is formulated in the following theorem.

THEOREM 3: Output Function Controllability Theorem

The system

{x(t + 1)} = clx(t)} + Blu(e))

uThe discrete transfer matrix is the analoque of the
transfer matriy of continuous models, derived using Laplace
transforms:
T(s) = C[sI - G 7' B (2.26)
See Director and Rohrer (1972; p. 303) and Wolovich (1974;
po. 101).



is output function controllable if and onlv if the rank of
the transfer matrix
-1

H(z) = g[z; - g] B (2.24)

~ ~

is equal to P. The control {u(t)}, t > ty, is unicue if P
is equal to K. The existence theorem, formulated by Wolovich
(1974; p. 1l6d4) states that the transfer matrix must have an
inverse, i.e. must be nonsingular. The control sequence he
derives, is, therefore, unique. However, the uniqueness of
{g(t)} is not a necessary condition for output function
controllability. If P < K, an infinite number of control
sequences leads to the desired output sequence.

The condition for output function controllability may
also be expressed in terms of the matrices G, B and c of
the original system (2.3) (Brockett and Mesarovié, 1965;

p. 556).

THEOREM 3':

The system

{x(t + 1} = 6lx(t)} + Blu(t)} (2.3a)

{y (t)}

cix(t)} (2.3b)

is output function controllable if and only if the

PN x (2N - 1) K matrix



- -1
cB cGB CG°B -» ca¥ s e ... N 'p
0 B CGB ++- cGV%p ¥ Tp ... N2y
- - -
F=|lo o B --- V3B 6V % ..h o3| (2.27)
0 0 0 CB CGB cc¥ g

is of rank PN. (See R. Brockett and M. Mesarovic¢ (1965;
pp. 556~559) for the formal proof.) Two observations, which
are corollaries to theorem 3', may be made at this point.

a) Output function controllability implies output
controllability. In a corollary to Theorem 2, the system

(2.3) was said to be output controllable if

.

rank CQ = [CBiCGB:--icG™ 'm] = p .

The matrix CQ is the last row of F. Now, if the rank of
F is PN, then the rank of CQO must be P and the system is

output controllable,

b) A sufficient condition for F to be of rank PN is
that

PN < 2(N - 1) K + K

or

P E ________N K (2.28)

for any N. This means that the number of target variables
must be less than or equal to the number of instrument

variables (Aoki, 1975; p. 295). This leads Aoki to conclude




that the condition for output function controllability is a

more proper dynamic generalization of Tinbergen's theory of

policy than is the condition for output controllability pro-
posed by Preston (1974; p. 68), because the former contains

original Tinbergen condition that the number of targets

cannot exceed the number of instruments.

c. Separation of Controllable and Non-Controllable

Parts of a System

If a system is not completelv state controllable, i.e.
the rank of D is less than N, it is important for policy
purposes to determine the controllable part of the system.
Two relevant methods are given below. The first is based
on the diagonalization of the matrix G. The other method
starts directly from the controllability condition.

Assume that the growth matrix Q is primitive, a common
assumption in the mathematical demography literature. Then
G has N distinct eigenvalues, and N linearly independent
eigenvectors. Now, any square matrix of order N that has N
linearly independent eigenvectors may be diagonalizedS.

Let P be the modal matrix, formed by stacking the N eigen-
vectors side by side. Because the eigenvectors are linearly
independent, P is nonsingular. Equation (2.3a) can be

written in its canonical form

(x(t + 1} = Mx(©)} + Blu(t)) (2.29)

5The condition of distinct eigenvalues is sufficient
but not necessary. (Rogers, 1971; p. U412.)

the



where

1]
av]
-
b
o
=

{x(t) }

L=
Il
av]

|
9!
g

B=7P 'B , rank (B) = K < N

A is the diagonal matrix of eigenvalues of G.

We now use the result that system controllability is
unaffected by any eguivalence transformation of the state
(Wolovich, 1974; p. 76). The system (2.3a) is controllable
if and only if (2.29) is controllable. With A diagonal,
an element ¥, (t + 1) is only affected by %i(t) and is
uncoupled from X.(t), 3 # i. Therefore, a control of

J
Qi(t + 1) reqguires that

{by}' {u(t)} # 0

where {@i}' is the i-th row of %. The vector {%i}' must have
at least one nonzero element. Preston (1974; p. 69) labels
the condition that there exists at least one nonzero element
in each row of the transformed instrument coefficient matrix

-1B as the coupling criterion. The coupling criterion

(>
(av]

is an alternative condition for the controllability of the
dynamic system (2.3a).

In order to separate the controllable part of a system,
it is not necessary to compute all the eigenvalues and eigen-
vectors. An alternative transformation is given by MacFarlane

(1970; pp. 466-469). It starts out from the matrix:




a1 . ' (2.19)

~

D = [B:GB:-+:GN"

Define § as the N x N, matrix obtained by selecting from left
to right as many linearly independent columns of D as possible.
The column vectors of S span the controllable subspace of the
target space, and any vector in this subspace can be expressed
as a lineér combination of these basic vectors. If the

system is controllable, § is of full rank, i.e. N = Nk'

If the system is only controllable in part, Nk < N. Define

any N x (N - Nk) matrix X such that

T = S X]

is nonsingular. Then

Y
1= |
~ W
_ Y Ys  ¥Xx 1 0
ol = Tl Is x1 =77 T = ~ (Ny) ~ .
RO 17} ~ WS WX 0 I
Sage ~ ~ (N - Ny

Hence, Y and W satisfy the conditions

YS =

~

WS =

YX

~

WX =

tH
I
to

1o
tH

And the dynamic system

{x(t + 1)} = cix(t)} + Blu(t)} (2.3a)



is transformed to

1

T Hx(t + D) = 1 lerr Hx(0) ) + 77 Blu(e) )

R+ D} = T lGTiR(O)} + g'1§{9(t)}

A YGS  vex | YB

{x(t + 1} = T T x(v) )+ Tl {u ()} .(2.30)
- WGS WGX ~ WB ¥

~ o~ o~ ~ o~

It already has been stated that the controllability of
(2.3a) is not affected by an equivalence transformation.
It is also true that the controllable subspace is invariant
under the operator G. Therefore, for any vector {§i} in the
controllable subspace, the vector §{§i} must lie in the same
subspace. However, since WS = 0, the rows of W are orthog-
onal to the coclumns of S, and, therefore, to any vector

lying in the subspace spanned by the columns of S. This

impiies

The column vectors of B also belong to the controllable

subspace spanned by S, so that

ws =0
We may write
(xg (e + 1) o8 yox ||{x ()} | yB
= o+ {u(t)}
xy(t + 13 0 Wex {%2<t>{ 0

(2.31)




It follows that the controllable part of the sSystem is given

by
{x,(t + 1)} = ¥GS{x,(t)} + yB{u(t)} (2.32)
where {§1(t)} has dimension N; x 1. The vector ¥GX{§ (t)} can

be treated as a known disturbance. The (N - Nk) dimensional

subsystem defined by the remaining rows of (2.31), namely
{x,(t + 1)} = Wex{x, (t)} (2.33)

is completely independent of {u(t)}, and therefore is

uncontrollable.

d. Achieving the Targets with a Minimal Number of

Instruments

Applying the above transformations to uncouple the
controllable part of the system from the uncontrollable
part, an important question in policy-making may be answered:
what is the minimal number of dynamic instruments, needed
to steer the system towards a set of targets. Consider
(2.3a). Assume that only one instrument ui(t) is used in
policy implementation. Whether this instrument can transfer
the system from {x(0)} to {x(T)} depends on the control-

lability of the subsystem

{x(t + 1)} = Gc{x(t)} + {b,} uy(t) (2.34)

where {b.} is the i-th column of the matrix B. The system

(2.34) will be controllable with the i-th instrument if



the matrix
_ 2 N=-1

is of rank N.
In terms of the coupling criterion, the existence

condition is that

- -1
by} = p7'iby)

~

contains N nonzeroc elements, since the zero elements indicate
the noncontrollable part of the system. A zero element

occurs in {bi} whenever a row of P~ is orthogonal to the

vector {bi}. The rows of p~! are the normalized left eigen-

6

vectors of G. Zero elements in {Bi} are precluded if and

only if {?i} is linearly dependent on all the N eigenvectors
of 9.7 Preston (1970; p. 70) refers to this condition

as the eigenvector condition. If there exists one instrument

that does not violate the eigenvector condition, the svstem
can be controlled by just one instrument. If no instrument
satisfies the eigenvector condition, a combination of instru-
ments may still satisfy the coupling criterion, if their
nonzero elements mutually offset the zero elements that

disqualify them individually. Therefore, the minimal set

6The first row of P-1 has special meaning in demography.
It shows the reproductive values of the population.
(Keyfitz, 1968; p. 53.)

7This may be compared with the possibility of writing
the observed population distribution as a linear combina-
tion of the right eigenvectors of G. (Keyfitz, 1968; p. 56.)




of instruments necessary and sufficient for dynamic control-
lability is equal to the number of columns, ﬁ, of the
smallest @ﬁ matrix possessing N nonzero rows.

The result that under certain circumstances defined by
é, all the targets can be reached by using only one instru-
ment, is rather intriguing and is totally contrary to the
thinking engendered by the Tinbergen framework. It means,
for example, that a desired population distribution over N
regions can be realized by having a population policy in
only one region. The achievement of the target distribution,
however, needs time, From looking at the g—matrix, it is
clear that if there is only one instrument, the objective
can only be reached after N periods of timea. Therefore,
there exists a trade-off between the minimal length of the
planning horizon and the minimal number of instruments.

If the targets must be reached immediately (T = 1),

the minimal number of instruments is N, since

Q = [G'B] = B (2.35)

must be of rank N. Eguation (2.35) is the static control-

lability condition, discussed earlier.

8It should be remembered that the controllability
condition is based on the assumption that no constraints are
imposed on the instrument. Constraints would reduce the
degrees of freedom associated with dynamic controllability.



CHAPTER 3

DESIGN OF OPTIMAL MIGRATION POLICIES

Any design of optimal policies should begin with a
statement of objectives. Thus far we have focused our
attention on the description of system dynamics by means of
a demometric model. We have answered the guestion under what
conditions it is possible to specify certain objectives or
targets and to achieve them by the instruments at hand.

Under very specific conditions, there is a unique instrument
vector assuring the achievement of the targets. The optimal
levels of the instrument variables then follow directly. Under
other conditions, however, there is an infinite number of
combinations of the instruments that lead to the desired
targets. 1In this case, the policy maker is confronted with
an additional decision problem: which alternative set of
instruments to choose. This requires the set-up of a cost
function or welfare loss function which aggregates the
relative costs incurred in the implementation of each instru-
ment. Or the feasible set of instruments may be limited by
imposing constraints on them. A further possibility is that
the objectives are overstated, i.e. that no combination of
instruments can be found that realizes all the targets.

The system is uncontrollable and again the policy maker

has an additional decision to make: where should he modify
his preference system? Is he willing to give up some

targets completely in order to achieve the others, or is

he satisfied with approximating all the targets without
reaching them exactly? This amounts to specifying a welfare

function of the target variables of interest. The




coefficients of the welfare function are the trade-offs
between the target variables. The specification of the
cost and the welfare function is the most difficult and
the most socially sensitive task in the policy design
process. In this paper, we make the assumption that these
functions are given by the policy maker.

This chapter is divided into three sections. The
first discusses the design of optimal policies in the
Tinbergen framework. It will be shown that in some instances
implicit objective functions may be used to derive the
optimal policy. The unifying feature of this section is
the notion of the generalized inverse. The importance of
the minimizing properties of generalized inverses for policy
analysis will be illustrated. The other two sections are
related to the state-space model and consider time series
of controls. The policy problem in which all targets relate
to the planning horizon is discussed in the second section.
The last section treats the policy design in the case that
a target trajectory is given. It applies the theory of

optimal control to migration policy problems.

3.1. DESIGN IN THE TINBERGEN FRAMEWORK

From the previous chapter, we know that an optimal
policy exists if the rank of the impact multiplier matrix
R is equal to the number of targets. The targets may
belong to one time period or to different periods. Follow-
ing Tinbergen, we consider three cases according to the
relationship between the number of targets (N) and the
number of instruments (K) or, equivalently, to the rank of

the multiplier matrix and its singularity property.



3.1.1. The Matrix Multiplier is Nonsingular and of Rank N

Recall equaticn (1.3):

{y} = Rz } + sl{z,} . (1.3)
If R is nonsingular, then the optimal policy is unigue

and given by (1.4)

It is clear from (1.4) that the policy depends not only on

the target vector, but also on the uncontrollable variables.

1f {z,} has some lagged endogenous variables, then the

effects of past policies will be felt in the current policy.
The nature of the dependence of {§1} upon {g} is

associated with different types of structures of the matrix R.

They wert discussed 'in Chapter 1. Since there is only one

possible set of instruments leading to the target vector

{g}, no cost or welfare function is needed to distinguish

between alternatives.

3.1.2. The Matrix Multiplier is Singular and of Rank N

If N < K, there exists an infinite number of instrument
vectors which lead to the achievement of a preassigned
value of the target vector. The solution set to (1.3) may

be represented by

Riz,} = {y) - siz,)

(3.1)

~ ~ ~ ~

G =g - stzp] e [r- =Y ] e




(1)

where R is a generalized inverse of R, satisfving
RR(1) R =R
and {c} is an arbitrary vector.

In order to get a unigue instrument vector, one must
impose additional conditions on {% }. Two illustrations
are given of how this mav bhe done. Both minimize a function
of {g1} over a constrained set. The first illustration is
the formulation of a general mathematical programming prob-
lem. The second makes use of the minimizing broperties of
some types of generalized inverses.

Tllustration a: Suppose a cost or welfare loss function

f({g1}) has been defined. One wants to minimize this
function subject to the dvnamic behavior of the system and
to some other constraints impmosed upon the instrument vector
and represented by the vector-valued ineauality q({g1}) > 0.
The problem then mav be formulated as a mathematical program-

ming problem,
min f({g1})

subject to
{y} = Riz,} + s{z,} (3.2)
g({z4}) 20 .

If g({gz}) and f({g1}) are both linear, the problem is a

linear programming problem and can be solved by the simplex

technique.
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Illustration b: This illustration is a ‘special case

of the problem (3.2). We delete the constraint g({§1}) > 0,
and we let f({§1}) be the Euclidean norm defined on {51},

i.e.,
1

ez = [z2p2]? (3.3)

Ben-Israel and Greville (1974; p. 114) prove that the unigue

solution to this problem is given by

fzy} = "3(1'“[{;3} - §{§2}] (3.4)

where R(1’u) is a generalized inverse satisfying

RR(1’u) R =R

and

R ] - B 13]

(1,4)

Because R defines a minimum norm solution to (1.3},

it is often called the "minimum-norm inverse."

There may be other norms defined on the instrument
vector. Suppose the policy maker lists some most acceptable
values of the instrument variables {%1}, and wants to
minimize the scauared deviation between the optimal values

and these preassigned values. The policy model is then



iz = 1= [tz - @] [z - 307

min f({g1})

(3.5)
s.t. {y} = R{z,} + s{z,}
The optimal solution is given by
(3 = &0 - stzn] +[1- 200 2] @)
(3.6)

(1,4) has a special meaning for policy analysis.

(1,4)
ij

The matrix R
An element r indicates the change in the i-th instru-
ment variable required for a unit change in the j-th target
variable, assuming that {52}, and, in the second case, also
{g1} remain unchanged. It is, therefore, a multiplier in

the economic sense, measuring the relative effectiveness of

the i-th instrument.

3.1.3. The Matrix Multiplier is Singular and of Rank K

If N > ¥, the system (1.3) is inconsistent and no
solution exists, i.e. the residual vector {r} is nonzero, where
(rh = [(3) - slz,}] - Riz ) = () - @)
where {§} is the realized value of the target vector.

In this case, it is common to search for an approximate
solution of (1.3), which makes {r} closest to zero in some
sense. Again two illustrations will be given. As before,
the first is a mathematical programming model, namely, a

quadratic programming model, and the second applies the

minimizing properties of some generalized inverses.



Illustration a: Theil (1964; . 159) was the first

to assume that a policy-maker, confronted with an over-
statement of his goals set, i.e. N > K, formulates his
preferences as a quadratic function of the target and

control variables. The Theil model has been given in

Chapter 1 without proposing a solution to it.. Recall

the model
min W(lz,}) = {a}'{z,) + (B} {3} + 1[(zy) 2tz
(1.7)
+ g} 'BIGY + {zlCiE) + (9} Clizg)]
s.t. {y} = R{z,} + siz,) (1.3)

where A, g, g are symmetric positive definite weight
matrices. This optimization problem may be solved by means
of the Lagrangean technique. An alternative method of
deriving the optimum consists of using the constraints to
eliminate the target vector in the objective function and
then minimizing this function unconditionally with respect
to the instruments (Theil, 1964; pp. 40-41). This solution
procedure is also followed by Friedman (1975; pp. 159).

Substituting the constraint in the objective function gives

W({g1})

Ko + {k}'{z,) + 5 {2z} '%{z,) (3.7)

where

1=
~
!

o = (3'sizy) + 3[Is1z,01"BIs(z,)1]
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{k} = {a} + R'{b} + [C + R'B] [5{z,}]

'R
I

A+ R'BR + CR + R'C!
The first order condition for minimizing W({z1}) with

respect to the instrument vector {51} is

dW({g1})

d{z,}
The optimal solution follows immediately

{z,} = K '{x} (3.8)
where K and {E} are as defined in (3.7). The second order
condition for the minimization of W({z1}) with respect to
{z,} is that X is positive definite. The corresponding
value of the target vector is

~ o~

{y} = RK'1{5} + s{z,} . (3.9)

It should be noted that a nontrivial solution to (3.9)
exists only if {k} is nonzero.

Illustration b: Suppose the policy maker only wants
to minimize {f}. The model may be considered as a variant

of the Theil model.

~

1
min [[(7) - G107 - Gh)° (2.43)

s.t. {y}

Riz ) + §{§2}



The objective function defines the Euclidean norm of {r}.
Ben-Israel and Greville (1974; p. 104) show that the optimal

solution to this problem is given by:

tz,3 = R 15y o sz} (3.10)

~

(1,3)

where R is the generalized inverse of R satisfying

RR(1,3) R =

~ o~ ~

3|

[RR(1,3)]. _pr(13)

~ o~ ~ o~

(1,3)

Because of the property that R minimizes the Fuclidean

norm of the residual vector, i.e., the sum of squares of
the residuals, it is called the "least-souares inverse."

An element r£;’3) indicates how much the i-th instrument

has to change for a unit change in the j-th target variable,
in order to maintain the smallest sum of socuared deviations
between the realized and the preassigned values of the
target variables. The general least-sguares solution is
20 = RO - stz,)] +[1- 2P &] () arn)
where {c} is an arbitrary K x 1 vector.
Ben-Israel and Greville note that the least-sguares
solution is unique only when R is of full column rank.
This condition is always satisfied in policy models discussed

here, since we have assumed initially that the instruments

are linearly independent.




This illustration shows that the least-squares

generalized inverse is the solution to a special variant

of the Theil model. A similar observation has recently

been made by Russell and Smith (1975; p. 143).

3.2 DESIGN IN THE STATE-SPACE FRAMEWORX: FIXED TARGETS

AT THE PLANNING HORIZON

Consider the discrete system

{x(t + 1)}

where {g(t)}

{g(t)}

{g(t)}

m @

@]

Gix(t)} + Blu(t))} (2.3a)

{y(t)} = cix(t)} (2.3b)
is the population distribution at time t.

It can be the age distribution, the regional
distribution, or both.

is any policy relevant measure dependent on

the population distribution.

is the intervention vector, control or instru-
ment vector at time t.

is the N x N growth matrix without intervention.
is the N x K dynamic impact multiplier matrix.

is the P x N conversion matrix.

In the following, we make the simplifying assumption that

C is the identity matrix. The solution to (2.3a) for

t0 =0 1is



t_
(x(t)} = cHx(®} + 7
- - =0

1 .
¢ 5711 prugiyy (2.4)

The policy design problem starts out from (2.4) and seeks
to answer the question: what is the sequence of control
vectors {g(i)}, such that, given the initial condition
{x(0)} and the assumption of time-invariance of the
coefficient matrices, a target vector at the horizon {§(T)}
will be reached in an optimal manner. The intermediate
states are of no importance in this formulation.

Equation (2.17) may be written as

[tucr - 7
1B] .

T .
~ {u(1)}

1 Q

{(x(T)} - 6" {x(0)} = [BiGBI--iG (3.12)

{u(0)}

i
()
~=
c
(-
n
jol]

<

(3.13)

The system is state controllable if the N x KT matrix

g

is of rank N, where N is the dimension of the target
vector {x(T)}. The controllability condition implies that

N < KT. We distinguish two cases: N = KT and N < KT.

CASE 1: N = KT

In the dynamic policy model, it is the combined
magnitude of the number of instruments and the planning
horizon that determines the state controllability. 1In the
previous chapter, we saw that a trade-off exists between
the minimal length of the planning horizon and the minimal

number of instruments. Any target vector may be reached



by only one instrument, provided that the planning horizon
is not less than N. Also, any target vector can be achieved
in only one time period, if the policy maker may handle at
least N instruments®. If N = KT, and if the instruments

of the different time periods are independent, then D is

nonsingular, and the unique control sequence is
fa} = 07 HR(M Y - GTix(0))] (3.14)

where {x(T)} is the target vector at the planning horizon.

CASE 2: N < KT

If D has rank N and is rectanqular, then an infinite
number of combinations of the controls leads to the pre-

defined target population. The solution of (3.13) is
w =M Em:i - Tk + M - 11 e} (3.15)

where {cl is arbitrary,

and p'1 is a generalized inverse of D.

In order to find a unique policy, the policy maker may
minimize a cost function of the instruments, he may put
constraints on the instruments, or he may do both. The
introduction of a cost function will be discussed at the

end of this section. First, we deal with the imposition

9This is exactly the controllability condition
derived by Tinbergen for a static policy model.



of constraints on the instruments to ensure unicueness of
the instrument vector. The idea is to reduce the degrees

of freedom of the policy measures by making the instrument
vector at a certain time period depend on the controls
exercised at previous time periods. Two reduction methods
are distinguished. The first formulates the control vector
at time t as a linear combination of the control vector

at £t - 1. This implies that the control at t may be direct-
ly related to the control vector at the initial time period.

Therefore, we call this the initial period control. This

method has been developed bv Rogers (1966; 1968, Chapter 6;
1971; pp. 98-108) for migration policy purposes. The

second reduction method, known as feedback control, makes

the control vector at time t a linear function of the state

vector at the same time t.

3.2.1. Initial Period Control

Suppose that the control vector at time period t is

{g(t)} = Wlu(t - 1)} (3.16)

where W is nonsingular, fixed, and known.

Recall the state-space model of (2.3a):

{x(t + 1} = cix(t)} + Blu(t)} . (2.3a)

Its solution is given by (2.4). Let t = T be the planning

horizon, then
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{x(T)}

]
XD

x(} + § ¢T7 Bluiyy . (3.17)

But

fu(i)} = wlu(i - N} = wiu}

Therefore (3.17) becomes

1

T- . .
{x(™} = cT{x(0)} + [ ) T~ 11 gyt | tu(o))
% 2 D iZo - bl
and
™ TSV peqei i
{x(M?} -6 {x(} =]} 6 BWw [ {u(o)} . (3.18)
~ T i=Q ~ T -
Let
T=1 o .
A(m) = } 67 Tt B, then

equation (3.18) may he written as
(x(m} = ¢"{x(0)} = Aa(T) {u(0)} (3.19)

which is in fact the formulation of the Tinbergen model,
with {§(T)} the target vector, {x(0)} the vector of uncon-
trollable variables and {9(0)} the control vector. The

multiperiod problem (3.17) with the target vector given for

the planning horizon, and with the control vector at each
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time period being a linear combination of the control

vector at the initial time period, is in fact a single-

period problem. Only the control at the initial time

period must be specified. The existence and the uniqueness
of {9(0)} depends only on the rank of B and is independent
of the choice of T. If B is nonsingular, then the unique

and optimal value of {9(0)} is given by

-1

@) =2 @ [xm) -t xo)] . (3.20)

A special case of the initial period control is discussed

by Rogers (1971; pp. 99-100). Suppose that W is a scalar

matrix, i.e.

W = wl

~

with w being a scalar. It means that the controls change
in time at a constant rate. Equation (3.18) may be

rewritten as

i=0

T-1 o
x(M} - 6" {x(0)} = [ ) wT"1‘l~l§] {u(0)}

Premultiplying both sides with (wI - G) gives

T R
(Wl - g)[{§(T)} - G {x(O)}]= (WwI - G) ) ow G {u(0)}
R - ~ i=0 T
[ T-1 .. T=1 .
- z wli-igi Z wT—1—1G1+1] B{u(0)}
| i=0 ¥ i=0 ¥ T
= [T+ w0 s w6 h Tl - WG L




Therefore

w1 - o [m) - ¢Ttxo3] =[w1 - 67| Btuco))

(3.21)

1

(x(M} =6 {x(0} + (wI - &)~ w1 - ¢") Blu(0)}

and, given that B is nonsingular,

wo =8 wr-6¢"H" w-a [xm) - ¢Txo)]
(3.22)
which is in fact also a single-period problem:
fu} = A(M {x(T)} - {a(T)} (3.23)

where

Am =B w1 -¢hH! wI- o

~ ~

-1, T GT)

~ ~

-1

{a(m} WI - G) 6T {x(0))}

I
e
T
H

|

The special case, w 1, is the intervention model of
Rogers (1971; pp.99-100) with constant policy.
We now consider two illustrations of the initial period

control model. We will assume that W is equal to the iden-

tity matrix. The constant instrument vector is given by

B{Q} = (1 - G" -1

~ ~

7t a - o [y - o] e
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and the target vector is

(x(M} = ¢ {x(@} + (I-067" (1-¢) Blal . (3.25)
The first illustration is the stationary population model

and the second is the pure migration model.

Illustration a: Stationary Population HModel.

In the literature on zero population growth, it is
emphasized that an immediate reduction of fertility to
replacement level will result in a further increase of the
population for at least 50 years in most countries. A
policy that would keep the population constant at the current
level, would result in an unrealistic fluctuation of fertility
and mortality rates over the next decades (Coale, 1972;

p. 595).

In the multiregional case, keeping total population as
well as the population distribution at the current level
implies that {x(T)} = {x(0)}, hence we have that

T

x(0)} = ¢ {x(0)} + (I -3

(1 -G B{u}

(1 -6 x(®) =1 -06"" a-ch Bia
B{) = (1 -6H 7' (1 -6 -chH x0)
= (x(0} - 1 -6NH"" e -6H (x(0)}
T, -1 T+1




B{u} = (I - G) {x(0)}
If B is nonsingular then

=51 -0 x(0) . (3.26)

If B is singular, we have
w=3"1-0 xo+ Vs -1 1) . 27

The result then may be given as follows: If equation (3.24)
has a solution for an arbitrary T, then there exists a con-
stant policy vector {g} which keeps the total population as
well as its distribution constant at the current level.
The vector {g} does not depend on the planning horizon, but
only on the current population level and distribution.

Illustration b: Pure Migration Model.

The procedure to compute the intervention vector is
described by Rogers (1971; p. 106) as follows. The migration
rates are taken out of the growth matrix and the migration
flows are introduced via the control vector {g}. The new
matrix is S. However, an in-migrant with respect to one
region is an out-migrant with respect to another region, and
therefore net internal migration must be equal to zero. The
instruments are not independent. After computing {g} by

(3.24) with the revised growth matrix S, and a target vector

{x(T)} by (3.25), some elements of {g} are adjusted such that



where {}} is a vector of ones. A change of an element ﬁi
implies that the target population of region i will not be
reached. xi(T) becomes uncontrollable. After the adjust-
ment procedure, the revised target population is computed
using (3.25).

For an illustration of another approach that draws on
the controllability concept, consider (3.25) once again:
x(M} = ¢ {x(} + (1 -7 (1 -¢H Bl (3.25)
where G is the unreduced growth matrix. Any linear constraints
on {g} may be introduced in (3.25) via B. The idea is similar
to the introduction of linear restrictions in the general
linear regression model (Johnston, 1972; p. 157). 1In the
general case where {g} is unrestricted, B is the identity
matrix.

Suppose the policy problem is to find {u} such that
{x(T)} = {g(T)} is the target vector, and such that the

level of the fourth control variable is equal to the sum

of the first and the third variable, i.e.
u, = uy + u; . (3.28)

Equation (3.25) may then be written as:

— e N

10000 u,

01000 u

T -1 T ol | -2

x(M} -6 {x(0)} = (I -6" (I-G6)[oo100 uy
10100 ‘?u

00001, .

0 1L1:1N

(3.29)
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Because of the linear restriction (3.28), B is no longer of
full rank. Since the instrument vector must remain constant

in time, (3.25) may be written as

{y(T)} = FB{u} (3.30)
where
fy(m?} = {x(M} - ¢"{x(0)}
r=ax-07la-9”

Equation (3.29) is equivalent to a static policy problem.

By Theorem 1, it has a solution if
rank (FB) = N

m
. L . s .
Since I, G and G° are nonsingular, F is nonsingular. There-

fore (Lancaster, 1969; p. 45):

rank (FB) = rank (B) = N - 1 ’

10

and the system is not controllable Because the fourth

column of FB is {0}, ﬁu may be deleted, and (3.30Q) becomes

10The fourth column of FB is {0}.
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| —— —'__‘\
FT_ 0 0 0 u,
i 0 1 0 O ?2
{y(mr=r |0 0O 1 0O ug (3.31)
1 0 1 0 55
0 0 0 1, :
"1 a
| —1 LN

The non-controllable part of the system may be determined
by the methods described in Chapter 2. If {g} is a
vector of in-migrations, it is immediately clear that
xu(T), or equivalently yu(T), cannot be controlled. One
may delete §4(T) and the fourth row of FB, giving a new
vector {21(T)} and a new matrix (§§)1 respectively. The

instrument vector {§} is then found as
(a} = ‘}g§)1]'1 y,(m1 . (3.32)

Entering {§} in (3.31) gives the value of §4(T), which will
not coincide with the target value.
In the pure migration model the net internal migration

must add up to zero. The restriction on {g} is
{1} {urt =0 . (3.33)
In a two region case, the people leaving one region must

enter the other. The incorporation of this constraint in

(3.25) or (3.30) yields



hence 52 may be deleted. The system is not controllable.
If the number of regions is greater than two, and the policy
maker is interested in setting a target for only one region,
then various combinations of ﬁi's satisfy the constraint
(3.33). At the planning horizon, the population distribution
over the other regions depends on the combination chosen
initially, i.e. the entries of B.

It has been assumed throughout this section that the
policy maker is willing and able to give up an element of
his target vector for each linear constraint on the instru-
ment variables. By doing so, he makes it possible to
achieve the other target variables exactly. In some
situations, it may be more realistic to assume that he
wants to approximate the target vector as closelyv as possible
with the restricted instrument vector. The vector {g}
which minimizes the deviation between the realized {y(T)}

and the target {Q(T)} is

@t = 33 NG () (3.34)

where B(1’3)

~

is the least-squares generalized inverse of

B, defined in (3.10).

~

3,2.2. Linear Feedback Control

Suppose that the intervention vector at time t is a

linear function of the population distribution:

fu(t)} = z{x(e)} . (3.35)
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Equation (2.3a) may then be written as

{x(t + 1)} = G{x(t)} + Bz{x(t)}
{x(t + 1)} = [G + BZ] {x(t)} (3.36)
{x(t)} = [G + BZ]® {x(0)} . (3.37)

Suppose {%(T)} is the desired population distribution
at time T. The problem is to find 2, such that {g(T)} is

a solution of the equation system
(x(m} = (6 + Bz]" {x(0)} . (3.38)

Feedback control changes the growth matrix of the
system and, therefore, also its properties at stability.
The impact of the linear output feedback control on the
stable population characteristics depends on the eigen-
values and eigenvectors of 6 + gg]. If [G + BZ] is
nonnegative and primitive, then we can apply the Perron-
Frobenius theorem to this controlled growth matrix. It
has a dominant eigenvalue, and a corresponding eigenvector
associated with it. The former is the stable growth ratio
and the latter represents the stable distribution of the
population controlled by an output feedback law. In this
regard, a direct application of the feedback control is
the determination of the feedback matrix Z, such that the
population will converge to a desired stable distribution.
Useful algorithms are given by Schulze (1974), Kreisselmeier
(1975), and Mahesh and Wumar (1975). We will not elaborate

on this aspect of the problem in this study.




Equation (3.35) is known as the linear state variable

feedback control law (Wolovich, 1974; o. 195). 1If the

policy authorities choose the value of the policy instru-
ments according to equation (3.35), then their actions
cease to represent an external influence, but instead
become part of the population system. The feedback control
law defines a closed-loop solution to the optimal control
problem.

Equation (3.35) is the simplest case of linear state
feedback control. It is unrealistic in the sense that it
takes all freedom of action out of the hands of the policy-

makers. A linear state feedback control of the form
{u(t)} = zix(t)} + H{v(t)} . (3.39)

is certainly more realistic.

Here {Y(t)} is an external input or a vector of real
exogenous variables. The state space representation of
the compensated system is obtained by substituting for

{g(t)} in (2.3)

x(t + 1))

1]
@
+

BZ) {§(t)} + gg{y(t)} (3.40a)

{y(t)}

1l
Q
+

EzZ) {x(t)} + EB{v(t)} . (3.40b)

Instead of a state feedback, one can also imagine a

linear output feedback

{fu(t)} = Fly(t)} + Blivie)} . (3.41)
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Substituting (3.41) in (2.3), we obtain
{x(t + 1)} = 6lx(t)} + BF{y(t)} + BH{v(t)}
{y(t)} = ci{x(t)} + EF{y(t)} + EH{v(t))
(I - EF) {y(t)} = Ci{x(t)} + ER{v(£)} .

If (I - EF) is nonsingular, then

1

{y(t)} = [T - EF]" " [c{x(t)} + EH{v(t)}] (3.42)

x(e + 103 = |6+ Brrz - B0)7

c] txee)
(3.43)

+ [ B+ iz - B! ] veen)

I1f {v(t)} = {0}, i.e., the dynamics of the system is
governed by a pure output feedback, then we have the closed
loop system

1

{x(t + 1)} =[g+§g[g—gg]‘ g] {x(t)} . (3.44)

There are two noteworthy special cases of (3.44):
i) E =0, i.e., the output {y(t)} depends only on

the state vector {g(t)}. Equation (3.44) becomes:

x(t + 1} = [6 + BFC] {x(t))



ii) E =0 and C = I, i.e., the output vector is equal
to the state vector. Eaquation (3.44) then reduces
to the exvression for a linear state feedback

control law

{x(t + 1} = [6 + BF] {x(t)} . (3.45)

To illustrate the usefulness of the feedback control
model for migration policy, we take a policy problem
described by Hansen (1974; p. 17). In the last twenty
years, central governments of several Western countries
have been trying to decrease regional differences in
living conditions. A popular strategv to achieve this
objective, which is based on equity considerations, was
to allocate development funds to lagged regions. The funds
allocated by the central government to the regions are a
function of its "backwardness." A major indicator of it
is the level of out-migration. In order to model this
policy, assume that the development funds each region gets
at time t is a linear combination of its level of out-
migration and the level of out-migration of all the other

regions.

Let {x(t)} be the regional population distribution at
time t,
{g(t)} be the regional distribution of the development
funds,

{g(t)} be the level of out-migration of the regions.



The dynamics of the multiregional system is described by

the state-space model

{x(t + 1)}

Gi{x(t)} + Blu(t)} (2.3a)

{y(t)} = cix(t)} (2.3Db)

where G is the population growth matrix,

i

is the matrix of impact multipliers. The element

bij is the effect of a dollar allocated to region

j at time t on the population of region i at time

t + 1,

e

is a diagonal matrix of out-migration rates.

The policy may be written as a linear output feedback

control law

fu(t)} = Fly(®)}

where the i-th row of F gives the coefficients of the linear
combination between u; (t) and the regional levels of out-
migration. The dynamics of the controlled population

system is then given by:
{x(t + 1)} = [G + BFC] {x(t)} (3.45)
where G is a nonnegative matrix,

B has supposedly nonnegative diagonal elements and

nonpositive off-diagonal elements,



F describes the trade-offs set by the policy maker.
It is realistic to assume that the diagonal
elements are positive and most off-diagonal
elements are nonpositive. A positive off-diagonal
element fij would mean that the funds region i
gets increase with the out-migration of region j.
This is not unrealistic if the out-migrants of j,
who go to i, cause a congestion problem in region
i necessitating additional investments (population

responsive policy).

3.2.3. Horizon Constrained Optimal Control

If the number of target variables at the planning
horizon is less than the product of the number of instruments
and the length of the planning horizon, then there is an
infinite number of combinations of controls leading to the
desired target variables. Suppose, as before, that the
target is the regional population distribution at the
horizon T. All the feasible control vectors are given by
(3.15), which is the general solution to (3.12).

To arrive at a unique instrument vector, the policy
maker may apply the design techniques described under the
Tinbergen framework to this multiperiod situation. The
first technique is based on the minimizing properties of
the generalized inverse. If (3.15) is the general solution
to (3.12), then there is a unique solution which minimizes
the Euclidean norm of the instrument vector {u}. This

solution is given by

h:n} = D“'”)[{{((T)} - gT{§(0)}] (3.46)



(1,4) is the "minimum norm inverse" of D.

~

where D
The other approach is to formulate a mathematical
programming model, similar to (3.2). However, we have
seen in Chapter 1 that by assuming inter-temporal separa-
bility of the objectives, and by neglecting the inequality
constraint of (3.2), we may write it as an optimal control
problem.‘ Assuming, in addition, a quadratic objective
functional, the problem becomes identical to (1.19),

except for the addition of the horizon constraint,
{x(M}l = {x(mMm} . (3.47)

In the literature, this problem is known as the linear-
guadratic control problem with zero terminal error or
with a right-hand-side constraint. The solution will be

discussed in the next section.

3.3 DESIGN IN THE STATE-SPACE FRAMEWORK: TRAJECTORY

OPTIMIZATION

In the models discussed in the previous section, the
migration policy objectives were formulated only for
the planning horizon. It was assumed that the policy-
maker did not care about how the target variables
converged to their desired values. In order to
identify a unique combination of instruments, we have
imposed severe restrictions on the path of the control
vector. Now, we broaden the perspective by allowing
the policy-maker to define a dynamic preference system,
i.e., the targets are defined for each time period instead

of only one. The instruments may vary more freely




in the sense that no fixed pattern is imposed. The range
of admissible instruments and their variation, however,
may be constrained for economic, political or stability
reasons. The latter means that the inclusion of the
instruments in the policy maker's preference function is
an appropriate way to avoid an excessive fluctuation of
the values of the instruments over time (Holbrook, 1972;
p. 57).

It has been argued in Chapter 1 that, if the policy-
maker seeks to define a time path of the control vector
out of all the feasible trajectories, such that his dynamic
preference system, expressed in the form of a functional,
is optimized, the policy problem becomes very similar to
the optimal control problem. The models presented earlier
may also be encompassed in this framework. In what follows,
we specify a dynamic policy model using the optimal
control technique. This enables us to list the set of
necessary conditions for optimizing the preference func-
tional. These conditions are known as the Pontryagin
minimum (or maximum) principle.

The optimal control problem specified here covers a
wide variety of dynamic policy problems. Its solution
however is at least quite difficult and its interpretation
is not always easy. A frequently used policy model in the
economic literature is the linear-quadratic model11. It

is characterized by a quadratic objective function and a

11'See, for examnle, Sengupta (1970), Turnovsky (1971},
Pindyck (1971, 1973a, 1973b), Vishwakarma (1974), Garbade
1975), and Chow (1970, 1972, and 1975, Chapter 9).



linear constraint. This problem formulation is attractive
because it allows one to exvress a direct relation between
the control vector and the target vector at each time period,
thereby leading to a simple analytic solution of the optimal
control problem. It is also interesting because it is a

direct extension of the Theil model to dynamic situations.

3.3.1. Specification of the Optimal Control Model

Policy problems of dynamic systems may be solved by
the theory of optimal control. The basic ingredients of
a discrete optimal control model are:

1) A set of difference equations that represent the
system to be controlled. The system is described by a

demometric model in state-space notation

{x(t + O} = Fx()}, (u®)}, t) , t=20,...,T-1
(3.48)
In control theory, {x(t)} is called the state vector and
describes the state of the system. The vector {u(t}} is
the control vector, and {E(‘)} is a vector-valued function
of dimension T x 1. The equation is known as the state
equation or transition equation. Throughout this study,

we have dealt with a linear time invariant system, i.e.

{x(t + 1)} = Gc{x()} + Blu(t)} . (2.3a)

2) A set of constraints on the state and control

variables,
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g{x(t)}, fuv)}, ty > {0} . (3.49)

where {g(*)} is a vector-valued function of dimension M.
This function defines the admissible set of state and
control variables.

3) A set of boundary conditions. The initial state

is given

{x(0)} = {x45} . (3.50)

We may also require that at the terminal time, or
planning horizon, the state vector satisfies the vector-

valued function ET({g(T)})g = {9}. (3.51)

4) A preference functional, welfare functional,
cost functional or a performance index which is to be
minimized. The functional may be written
T-1
J = K({g(T)}) + ) L({g(t)}, {g(t)}, t) (3.52)
i=0
The functional reduces all the utilities and disutilities
of the controlled dynamic system to a single scalar.
All the functions of the cost functional and of the
constraints are assumed to be known and to be continuously
differentiable with respect to {x(t)} and {u(t)}. Note
that the control {u(t)} affects the objective functional
both directly and indirectly through the value imparted

to the states {x(t + 2)}, % > 0.



The optimal control problem is formulated now as the

determination of the control sequence {u*(t)} for

t =0,...,T-1, and the corresponding trajectory of the
state vector {x*(t)} for t = 0,...,T, such that the con-
straints (3.48) and (3.49), and the boundary conditions
(3.50) and (3.51) are satisfied and such that the cost
functional (3.52) is minimized. The sequence {u*(t)} is
then called the optimal control, and {x*(t)} the optimal

trajectory. In other words, the optimal control problem

is to steer a dynamic system, so as to optimize a perfor-

mance index, subject to constraints. This formulation is

very general and explains why the theory pertaining to
its solution has found such a wide range of applications,
and why it is also has relevance for population policy

problems1?.

3.3.2. The Discrete Minimum Principle

We now turn to the necessary conditions for optimality.
Originally, these conditions were derived by Pontryagin
and his associates (1962) for continuous-time systems,
described by differential equations. For a thorough
statement of the Pontryagin minimum principle, the reader
is referred to Athans and Falb (1966). To remain consistent

with the other parts of this study, we will state the

discrete version of the minimum principle. Several

derivations of the discrete time minimum principle have

12For a survey of applications of optimal control
in economic policy planning and of possible extensions,
see Athans and Kendrick (1974) and the two special issues
of the Annals of Fconomic and Social Measurement (1972,
1974).




appeared in the literature '>. We will staté the principle

without proof, since it may be found in the literature.

The discrete minimum principle: Suppose the sequence

{u*x(t)}, t 0,...,7-1 constitutes an optimal control and

{}f*(t) }r t

0,...,T is an optimal trajectory of the system
described by (3.48), and constrainted by (3.49), (3.50) and
(3.51). In order for {g*(t)}, t =0,...,T-1 to minimize
the cost functional (3.52), it is necessary that there
exist a sequence of N x 1 vectors {A*(t)}, t =1,...,T,

and a sequence of M x 1 vectors {E*(t)}’ t=1,...,T,

such that the following conditions hold:

1) The scalar function
H({'}f*(t)}r{g(t)}l{é*(t + 1)}I{E*(t + 1)})

==IJQ§*(t)},{g(t)},t) + k(e + DIEEx* () )}, {ut) ), b))

- {u*xt + DI {lgUx*x ()}, {u®) }, )} (3.53)
is minimized as a function of {u(t)} at {g(t)} = {g*(t)}
for all t = 0,...,T-1. This implies that
SH _
5T s = 101 . (3.54)

The vector {A(t)} is the co-state vector, and {u(t)} is
the co-constraint vector. With each difference equation

(3.48) is associated a co-state vector, and with each

3
l"See, for example, Halkin (1964), Holtzman (1966)
and Pindyck (1973a, 1973b).



1lu

constraint (3.49) a co-constraint vector . ° The function

H(*) is called the Hamiltonian.

2) The dynamics of {x*(t)}, {5*(t)} and {E*(t)} are

governed by the equations:

i

fx¥(t + D} = sy 7 = Exx® ), {ux ) 1,8}
(3.55)

{x*(0)} = {x,4} (3.56)

_ 8H
O = T e (3.57)
SK({x(T)1)
{A*(T)} =v—3T§7TTT__ | 4 (3.58)
SH

{g{x* ()}, {ux(t) }, )} = -

SEE T NT I+ 20 (3.59)

fux(t)} > 0 (3.60)
fgix*()}, fux() L, )} {u*(t + 1)} =0 . (3.61)

Condition (3.55) repeats the difference equation (3.48),

and (3.59) is the constraint (3.49). The necessary conditions
are essentially equivalent to the Kuhn-Tucker conditions of
nonlinear programming. Equations (3.55) and (3.57) are
referred to as the canonical difference equations (Athans,
1971; p. 458). Conditions (3.56) and (3.58) are the

boundary conditions.

1uCo—state and co-constraint variables in optimal

control are similar to Lagrange multipliers in function
optimization. They may be interpreted as shadow prices
associated with the constraints (Pindyck, 1973; pp. 35-38).




Note that the minimum principle yields only necessary
conditions for optimality, which are valid locally. Global
optimality also recguires sufficiency conditions. These
involve the convexity of the functions.

If (3.54) is solved for {u(t)} in terms of {(x(t)},
{5(t)} and {B(t)}' and if the resulting expression for
{E(t)} is then substituted into equation (3.48) and (3.57),

a two-point boundary value problem results. A number of
numerical methods are available for solving these problems.
Methods such as steepest descent, conjugate directions,
conjugate gradient, gquasi-linearization, and the Newton-Raphson
method are the best known. A description of these algorithms
falls beyond the scope of this study. The interested reader
should consult Bryson and Ho (1969, Chapter 7), Sage (1968),
McReynolds (1970) or Noton (1972). ©Noton illustrates his
exposition with simple numerical examples. Special
algorithms, which fit some specific population policy

models, have been developed by Evtushenko and MacKinnon

(1975) and by Mehra (1975).

3.3.3. The Linear~Quadratic Control Problem

The linear-guadratic (LO) control problem is one of
many possible optimal control problems. It deserves
special attention because it is the only optimal control
problem for which the solution may be expressed analytically,
and because it generalized Theil's idea of quadratic
objective function with linear constraints. The LQ control

problem fits two types of policy pnroblems. 1In the first,



the policy maker desires to transform an initial state, say
the actual population distribution, to a desired state at
the planning horizon, while exhibiting an acceptable
behavior of the control and state variables on the way.

In the second situation, he tries to keep a system within
an acceptable deviation from a reference condition using
acceptable amounts of control. 1In both situations, the
optimal control is described by feedback equations known

as terminal controllers and as regulators, respectively

(Bryson and Ho, 1969, Chapter 5).
The basic ingredients of the LQ problem arelq

1) A linear state equation,
{x(t + 1} =c6lx()} + Blu(t)} . (2.3a)
2) The boundary condition,
{x(0)} = {50} . (3.50)
The planning horizon T is fixed.

3) A quadratic performance index,

-1
J = % {x(T)}' Fix(T)} + % ) [{x(t)}' o{x(t)}
i=0 + 7 T
(3.62)

+ {u(e)}* R{u(e)?]

15The LO problem has received much attention in the

literature. See, for example, Bryson and Ho (1969,
Chapter 5), Pindyck (1973; pp. 27-35), Noton (1972;
pp. 158-165) and Bar-Ness (1975; pp. 49-56).
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The rationale for the auadratic performance index is
identical to the one on which the Theil model is based.
To assure the convexity of the objective functional, the
matrices F and Q are assumed to be positive semi-definite,
while R is positive definite. They may be functions of time.
However, the t-index is deleted for convenience. The matrices
F, O and‘g give the weights attached to the state and the
control variables. They will normally be diagonal. The
matrix G is W x N and B is N x K with N the number of
targets and K the number of instruments at each period of time.
The optimal control problem is to minimize (3.62)
subject to (2.3a) and (3.50). How the LQ model relates
to the Theil model and to other policy models has been
discussed in Chapter 1. The optimal controls f{u*(t)!},
t =0,...,T-1 are found by applying the discrete minimum
principle. Not all of the necessary conditions listed in the
previous paragraph must be met, since there are no inequality

constraints. The Hamiltonian is

H=5 {x(T)}' F{x(T)} +

Nf—

71

: I [xmietxm + R

t=0 T
(3.63)

£ O+ DGO + Blu(e)]]]

where {é(t + 1)} is the co-state vector evaluated at period
t + 1. From (3.57), we see that {A(t + 1)} is the solution

of:

DN} = ey = 2x ) + 6 A + 1) (3.64)

~
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At + DY - (A} = - 0olx(0)} - [6 - I1'(A(t + 1)}

~

with the final value fixed by (3.58):

$

{(x(T)} =
- S{x(T)}

[{g(T)}'g{g(T)}] = F{x(T)} . (3.65)
Along the optimal trajectory, J and H are minimized with
respect to {u(t)}. The necessary conditions yielding the
extremum are:

a) —H - {0} = Rlu(t)} + B'OA(E + D} . (3.66)

s{u(t)}

b) The constraint (3.3a). This condition is formu-

lated as
- 6H
{x(t + 1} = = {0} = c{x(t)} + B{u(t)}
S{x(t + 1} ~ T T
(3.67)
with the initial condition
{x(tg)} = {x5} . (3.68)

Since R is positive definite, we derive from (3.66) the

optimal trajectory of the control vector
fut(e)} = - R7'B'OA(t + 1) . (3.69)

In order for {g*(t)} to minimize H, R must have an inverse

~
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and

2
_._.§_H_—7=R
S{u(t)}” ~

must be positive definite. After substituting (3.69) into
(3.67), we have a system of 2N first-order difference

equations to solve, together with 2N boundary conditions

)} = olx(e)} + G {x(t + N} (3.64)
x(t + 1} = G{x(£)} + BRB'{A(t + 1)) (3.70)
{x(0)} = {x4} (3.68)
{(A(m} = Fix(m} . (3.65)

-~ o~

The solution to this two-point boundary-value problem is
derived in the Appendix to this part. It starts out from
the assumption that there exists a linear relation between

{A(t)} and {x(t)} at the optimum:
Ax(t)} = R(v) {x*(t)} . (3.71)

The feedback matrix K(t) is the solution of the Riccati
equation. Once K(t) is known for all t, the trajectory of
the state vector is given by

1

{5*(t + 1)} = [}N - g[g + g'g(t + 1) g]— g'g(t + 1)]{5*(t)}

(3.72)



and the optimal control, 9r control law, is-
fut(£)} = - ROVB'K(t + 1) {x*(t + 1)} (3.73)

which gives the control vector in linear state feedback form.

The trajectory of the co-state variables is
{(A*(t)} = R(t) {x*{t)} . (3.74)

The optimal value of the cost functional

g = 2 {x(0)}' K(0) {x(0)} (3.75)
depends only on the initial condition {§(0)} and on 5(0).
The matrix 5(0), however, depends on 9, g, 9, B and B and
on the feedback matrices g(t), t=1,...,T.

Some useful extensions of the LQ model have been made.
We present them here as illustrations of how the LQO model
may fit policy problems. The first is the dual tracking
problem where the policy-maker is looking for a regulator
to keep the target and control variables as close as possible
to predefined, most acceptable values. By way of a second
illustration, we take up the horizon constrained optimal
control problem again. Finally, it is shown how the LQ
model may handle additional constraints. The idea is to
assign penalties for the constraints which are not met.

Illustration a: The dual tracking problem.

In most policy applications of the linear quadratic
problem, the objective is to minimize the deviations from

desired values of the target vector and eventually also of




the control vector. Rather than having the ‘objective to
minimize a function with the arguments expressed as

deviations from zero, we have

min J = % {%(T)}' g{%(T)} +

T-1
+ 1 ) [{x(t)}' o{x(t)} + {u(r)}' R{u(t)}]
2 L, L'E QX 4 Ry
(3.76)
where
(x(t)h = (x(t)} - {x(t)}
(a(e)} = fue)} - fac))
with {g(t)} and {u(t)! the desired or most acceptable values

for the trajectory of the target vector and the control
vector, respectively.

The optimum may be found in the same manner as in the
original problem.

Illustration b: Zero terminal error problem.

The dual tracking problem may be supplemented by the
additional requirement that at the planning horizon some,
say N, of the desired levels of the state or target variables
must be met exactly, rather than approximatelyv. This means

that the following constraint must hold
{x, (1)} = {0} (3.77)

where {31(T)} is a N x 1 vector with N < N,



The control problem is now

min J = 4 {x(M)}' Flx(M} +
(3.76)
-1 ¢ R R .
+ ) {x(t)}' of{x(t)} + {u(t)}"' R{u(t)}]
t=0 ~ -7 ” T
subject to
{x(t + N} = G{x()} + Blu(t)} (2.3a)
{x,(m)} = {0} (3.77)

and with {x(0)} = {go} being given.

This is the exact formulation of the horizon constrained
optimal control problem of the previous paragraph. There-
fore, policy problems where the target vector is given for
the planning horizon, and where the restrictions on the
state and control trajectory are not so stringent as those
discussed previously, may be formulated as dual tracking
problems with zero terminal error.

To form the Familtonian, we adjoin equation (2.3a) to
J with a multiplier sequence {A(t)}, t = 1,...,T, and,
in addition, we adjoin (3.77) with a set of N multipliers

(v1,v2,...,v—

N) = {v}'. Thus

: T-1
=5 {(x(T)}" Flx(M} + §

(1) lx(e)) + {u(e) ) Riu(e))
t=0"* -

(3.78)
+ O+ DGO + Bl®]] + ) g m)
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Application of the minimum principle yields 'a two-point
boundary-value problem. Solution algorithms have been
discussed by Bryson and Ho (1969; pp. 158-164) and by
Mehra (1975; pp. 12-16).

Illustration c: Sign restriction.

In policy making it is often desirable to restrict a
target or a control variable in sign. For example, let
{g(t)} be the net migrants of each region, and suppose that
the policy maker, in addition to his quadratic objective
function, would like to make sure that some regions have no
net out-migration or only an "allowable" net out-migration
for some or all the periods between 1 and T. It implies that
the value of the control variable for these regions and time
periods must be positive. He also might want to impose the
restriction that the total population of some regions may not
fall below a predetermined level. Such constraints may be
handled by the formulation of penalty functions. The
procedure has been described by Mueller and Wang (1975;

p. 610). Although their exposition relates to the continuous
model, the application to the discrete version is straight-
forward. To each state and control variable is attached a
humber, which plays the role of a penalty or cost if the

sign restriction is violated. The extended objective functional

hecomes:
1 1 T30
min J = 2 {x(T))}' Flx(M} + & ] [{x(t)}' olx(t)}
X Fix Lo L1 0ix
+ {u(t)}' Rlu()} + 2{x(t)}* {g(t)} (3.79)

+ 2{u(t)}’ {g(t)}]
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where the elements of {g(t)} and {r(t)} are penalties. If

an element gi(t) is positive, then xi(t) will he penalized
when it is positive. A similar idea holds for {r(t)}. The
magnitudes of the elements of penalty-vectors reflect the
weight that the policy-maker puts on the nonnegativity
restrictions of the elements of {x(t)} and {u(t)}. The
objective (3.79) may also be formulated in terms of {%(t)}
and {g(t)}. The optimal control is found by applying the
necessary conditions to the Hamiltonian. No special diffi-
culties are introduced by the sign restrictions.

The use of penalty functions may be extended to include
other equality and inequality constraints as well. The

reader may refer to Evtushenko and MacKinnon (1975).
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CHAPTER 4

CONCLUSION

The purpose of this paper has been the discussion
of some of the analytical problems of population distri-
bution policy. It extends the work of Rogers (1975) on
spatial population dynamics to the policy domain.

The growth of a multiregional population may be
represented by a system of linear, first-order, homogenous

difference equations with constant coefficients:

{x(t + D} = Gix(t)} (4.1)
with {x(t)} the state vector representing the distribution
of the population over space and/or age, and G the growth
matrix. To transform (4.1) into a policy model, we add a
control vector {u(t)}:

{x(t + 1)} =clx(t)} + Blu(t)} . (2.3a)

The vector {u(t)} contains the instruments of population

distribution policy. It has been argued that a fundamental

feature of population distribution policy is that it does

not occur in a vacuum. It is subordinate to social and

economic policies. The ultimate goals are non-demographic

in nature, and the instruments are socio-economic. The
policy models must, therefore, reflect this connection.
The elements of {g(t)} are socio-economic variables repre-
senting the instruments. The relationship between {g(t)}

and the population distribution {x(t)} is assumed to be



- 103 -

linear and constant in time. The matrix multiplier B plays
a pivotal role in our discussion of policy models. The
relation between the population distribution {g(t)} and
the vector of socio-economic policy objectives {z(t)} is

assumed to be linear too:
lyt)b =cix(tv)} . (2.3b)

Equations (2.3a) and (2.3b) constitute the policy model
we have devoted our attention to. It takes the form of a
state-space model. Without loss of generality, we have
assumed in several instances that g = ;, which means that
the objectives of the population distribution policy are
expressed in terms of the multiregional distribution of
people. The policy model becomes then (2.3a).

The state-space model is a powerful tool for policy
analysis, once the behavior of the system is known and the
policy objectives and the range of instruments are
identified. In most of the literature on guantitative
policy, it has been assumed that these conditions are
satisfied. We made similar assumptions in this study.

The validity of those assumptions have been questioned

in Willekens (1976a, Chapter 1). The usefulness of the
state-space model for the analytical treatment of policy
problems is maximal if it is time-invariant. Time invari-
ance of the coefficients of the policy models has therefore
been assumed. For an analytical treatment of the impact of
changes in coefficients on the outcome of the modeling effort,

see Willekens (1976b).
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4.1. MIGRATION POLICY MODELS AND DEMOMETRICS

The derivation of policy models from descriptive or
explanatory models is based on the assumptions that the
behavior of the system to be controlled has been described
by a system of linear equations, denoted as a demometric
model, and that the objectives and instruments of population
distribution policy have been formulated in precise terms
by the policy maker. The policy dimension is introduced
into the demometric model, following the Tinbergen paradigm:
the policy-relevant part of the system is isolated. It has

been shown that any linear descriptive or explanatory model

may be converted to a policy model if and only if all the

target variables of the policy model belong to the set of

endogenous variables of the descriptive or explanatory

model, and if at least one of the exogenous variables is

controllable.

The general formulation of a policy model is (Tinbergen,

1963):
{y} = R{z )} + s{z,} (1.3)
with {y} the vector of target variables, {z;} the vector

of instrument variables and {22} the vector of uncontrollable

exogenous and lagged endogenous variables. An important role

in policy analysis is played by the matrix multiplier R.

Our discussion of policy models centers around this multiplier.
This is consistent with the economic literature on policy
models. However, we go beyond the traditional approach

in economics and draw from recent findings of mathematical
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system theory and the theory of optimal control. To present
an overview of policy models, a classification scheme has
been set up that is based on the rank and the structure of
R. This scheme enables us to relate seemingly unrelated
models to each other. For example, it has been shown that
the linear-quadratic control problem may be derived from
the Tinbergen and Theil model by assuming inter-temporal
separability of the objectives and unidirectional causality
of the population system. The state-space model of (2.3)
also may be derived from the Tinbergen model, and from the
reduced form model in general.

The fundamental qguestions of guantitative migration
policy may be expressed in terms of existence and design.
In Chapters 2 and 3, we have dealt with these two topics.
The discussion revolves around the matrix multiplier.
Whether arbitrarily specified levels of target variables
can be reached by the existing set of instruments, depends
on the rank of R. The conditions that must be satisfied
for a population system to be controllable are formulated
in a number of existence theorems. These theorems enable
us to uncouple the controllable parts of a not-completely
controllable system, and to compute the minimal number
of instruments that assure the achievement of the targets.
It has been shown, for example, that under well-defined
circumstances represented by a specific transformation of
the matrix multiplier, all the desired target-values can
be reached with a single instrument. This result is
intriguing and totally contrary to the thinking engendered

by Tinbergen's Theory of Policy.
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The design procedure of optimal policies is dictated
by the structure and the rank of the matrix multiplier R.
If R is nonsingular, then the unique solution to (1.3) for
{31} is found by simply inverting R. When R is singular,
there may be no instrument vector leading to the desired
target values, or there may be an infinite number of them.
To find a unique optimal solution, an objective function
reflecting the policy maker's preferences is introduced,
and mathematical programming techniques may be applied.
There is a wide variety of algorithms available in the
literature. The common characteristic of most of them
is that they determine the optimal solution numerically.
In this study, we have directed our attention to cases
where solutions to policy problems can be found analytically.
In this regard, there is the applicability of the
notion of generalized inverse. We have shown how the
minimizing properties of generalized inverses may be relevant
in solutions of policy models with a singular multiplier
matrix. For example, no matter what the rank of the N x K

matrix R is, a unique solution to (1.3) is given by
{z,} = RP({y} - s{z,}]

where gp is the Moore-Penrose inverse (Ben-Israel and
Greville, 1974; p. 7). 1If R is nonsingular, then Bp

is the ordinary inverse; if R is singular and of rank N,
i.e., the number of instruments exceeds the number of
targets, then Bp defines a minimum norm solution to (1.3);

and if R is singular and of rank K, i.e., the targets
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exceed the instruments in number, then Bp defines a
solution to (1.3) that minimizes the squared deviations
between the desired and the realized values of the target
variables. No explicit objective function has been speci-
fied, but it is implicit in the minimizing properties of
the generalized inverses. The interesting feature of
generalizéd inverses is that they provide an analytical
solution to policy models.

Another case for which the optimal policy may be
found analytically is the initial period control problem,
namely: the case where the target vector is given for the
planning horizon and the control vector at each time period
is a linear combination of the elements of the control
vector of the previous time period. It then can be shown
that the initial period control problem reduces to a single-
period problem and the control only needs to be specified
at the initial period.

A final policy problem for which a solution may be
expressed analytically, is the linear-quadratic control
problem. In this trajectory-optimization problem, the
policy maker wants to minimize a quadratic function of
target variables and instrument variables, subject to
linear constraints imposed by the behavior of the system

and by the initial condition.
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4.2. RECOMMENDATIONS FOR FUTURE RESEARCH

We have based our treatment of population distribution
policy models on three fundamental assumptions:

i) The dynamic behavior of the population system
and its interaction with socio-economic condi-
tions can be modeled adequately.

ii) This model takes the form of a system of
simultaneous linear equations with constant
coefficients.

iii) There exists a policy maker who expresses the
goals-means relationship of population distribu-
tion policy in specific terms of a target vector
or in terms of a social welfare function,
who sets up a range of instruments, and who
is willing and able to implement the policy.

The validity of those assumptions may be questioned.

More research is needed in this regard. The prerequisite
for good population distribution models is a well developed
migration theory. There is no consensus yet on the deter-
minants of migration and on the way the population system
interacts with the socio-economic system. As long as the
dynamics of the population system are not fully understood,
government intervention cannot have a sound basis.

Apart from the problem of identifying the determinants
of population growth and distribution, there is the problem
of modeling the population system once the determinants
are known. Specification and estimation of population

models is the subject of demometrics. This new science,
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initiated by Rogers, ultimately should provide the necessary
input information for policy analysis.

The third assumption on which our discussion of
policy models has been based concerns the goals-means
relationship of population policy. Not much research has
been done to provide a theoretical underpinning for this
relationship. The approach has instead been pragmatic.
The emerging theories of externalities and of government
intervention may be important building blocks for a theory
of population distribution policy (Willekens, 1976a,
Chapter 1). We are convinced that this theory is a
limiting factor for a sound analysis of population distri-

bution policy.
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APPENDIX

THE LINEAR-QUADRATIC CONTROL MODEL:
SOLUTION OF THE TWO-POINT
BOUNDARY-VALUE PROBLEM

The application of the discrete minimum principle to
the LQ control problem yields a system of first-order
difference equations, together with a system of equations
representing the boundary conditions at the initial and
at the terminal time periods, respectively. The optimal
control of the LQ model is given by the solution of this

two-point boundary-value problem. The system has been

derived in Chapter 3, and is given by (3.64), (3.70), (3.68)

and (3.65):
{A(t) =olxt)} + 6 {A(t + N} (A.1)
fx(t + 1} = G{x(t)} + BRT'B'{A(t + 1)} (A.2)
{x(0)} = {x41} (A.3)
(A1)} = F{x(T)} (a.4)

where {x(t)} and {A(t)} are the state vector and the co-
state vector, respectively.

The solution to the two-point boundary-value problem
starts out with the assumption that there exists a linear
relation between the co-state vector and the state-vector

at the optimum:
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D* ()} = K(£) {x*(t)) (A.5)

where the feedback matrix K(t) is the solution of the discrete
Riccati equation. Since by (3.69)

1

{fux(t)} = - RO B'{A(t + D} , (A.6)

we may write the feedback control law as

1

{u*(£)} = - RT B'R(t + 1) {x*(t + D} . (A.7)

The closed-loop system then is

1

{x*(t + 1N} = G{x*(t)} - BR B'K(t + 1) {x*(t + N}

[I + BRT'B'K(t + 1)] {x*(t + D} = Gix*(t)} .  (A.8)

The matrix

(1 + BRB'K(t + 1)

is nonsingular, as will be shown later. Therefore

1 1

{x¥(t + 1)} = [I + BR B'K(t + 1] Glx*(t)}
(A.9)
The solution to this system of homogenous difference

equations is

{x*(£)} = ¢(t,0) {x(0)} (A.10)
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where ¢ (t,0) is the discrete state transition matrix. The

matrix

1

vV(t) = [I + 1§R_ B'K(t + 1)] (A.11)
is function of time. Therefore, the solution of time
invariantAsystems

-1 .t
{g*(t)} = [Y 9] {5(0)}

is incorrect.
We must find a sequence K(t) such that (A.9) and

(A.10) hold for any value of {x(0)). Substituting (A.5)

into (A.1) gives

K(t) {x*(t)} = Qix*(t)} + G'K(t + 1) {x*(t + 1)}
where {g*(t + 1)} is given by (A.9). We find then

K(t) {x*(t)} = o{x*(£)} + G'K(t + 1) [V '(t) G) {x*(t)}
where Y(t) is given by (A.11), whence

K(t) {x*(t)} = [Q + G'K(t + 1) V ' (t) G] {x*(t)}
(A.12)
This equation is a result of the necessary conditions for an
optimum. Therefore, it must hold for any initial condition
{50}' Since only {§*(t)} depends on the initial condition,

(A.12) must hold for any {x*(t)}, and we must have
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K (t) + G'K(t + 1) v"1(t) G , for all t

It
10

1 1

B'K(t + 11 'G

~

= Q + G'RK(t + 1) [I + BR

(A.13)

Equation (A.13) is the discrete Riccati equation. The
Riccati equation may be solved backwards, starting with the

boundary condition
K(T) = F . (A.14)

That this boundary condition holds follows from substituting

(A.5) into (A.4)

K(T) {x*(T)} = F{x*(T)}
or

K(T) = Fo.

If {x(T)}' F{x(T)} = 0, i.e., F = 0, then
{x(T)} = {0} and K(T) = 0 .

It is easy to show that K(t) is positive semi-definite for
all t. Since F was assumed to be positive semi-definite,
K(T) is positive semi-definite. The matrix K(T - 1) may

be found by the relation

K(T - 1) !

l
o

+
@
'

(T) [I +BR B'K(D] G

(A.15)

1

=2+ G'K(T) G+ G'K(T) BR B'K(T) G
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Since Q is positive semi-definite and R_1 is positive
definite, K(T - 1) must be positive semi-definite, and so
all K(t). MNow since all of the K(t) are positive semi-
definite, the matrix

1

V(t) = I + BR_

~

B'K(t + 1)

is nonsingular, and (A.9) has a unique solution. It is
also clear from (A.15) that K(t) is symmetric if Q, F and
R are symmetric. Since R is nonsingular g(t) is also unique.

The solution of the Riccati equation requires the
inversion of Y(t) at each time period. Y(t) is an N x N
matrix, N being the number of elements in the state vector
{§(t)}, i.e., the number of targets. However, it is possible
to reduce the dimension of the matrix to be inverted. It is
known from matrix algebra that

1 -1

[Ty + W2') 0 = Iy = WiL, + 2'W) 0 2 (r.16)

where W and Z' are N x K and K x N respectively, with
K < N. Let
W =B
2" = ROVB'K(t + 1)
then
-1 _ -1_, -1 -1,
Y(t)—IN-§[5+13B(t+1)B] R B'K(t + 1)



is K x K. X is the number of instruments, and is generallv
much smaller than N.

Once g(t) is known for all t, the sequence of the state
vector is computed from (A.3) and (A.18):
1

Iy - BIR + B'R(t + 1) B]  B'K(t + 1)] {x*(t)}

e+ 103 =
{A.18)
and the seguence of the control vector follows from (A.19)

1

fus ()} = - RO B'R(t + 1) {x*(t + )} . (A.19)

The co-state variables are computed by (A.20)
A (e)} = K(r) {x*x(t)} . (A.20)

The optimal cost functional is

T-1
J= 3 {xx(M} Flx*x(m} + %‘[ Iodxx ()} ofx*(t)}
i=0 -~ T
(A.21)

+ {u*(t)}' 5{9*(t)}]
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Substituting for {u*(t)} vields

T~ 1
J = % {x*(T)}' F{x*(T)} + % [ b Ax*(8) )" olx*(t)}
z ~ 2 ifo =~ IS

1

+ {x*(t + D} K(t + 1)° gg‘ B'K(t + 1) {x*(t + 1)]]

Substituting Of{x*(t)} using (A.12) vyields

T-1
(x*(T)}' F{x*(T)} + % [ I {x*(5)}' K(t) {x*(t)}

2 i20

N =

{(x*(£)}' G'K(t + 1) V' (£) Gix*(t))

1

+

{x*(t + 1)}’ K(t + 1) gg' B'K(t + 1) {x*(t + 1)}]

But by (A.9)
vle) Glx*()} = (x*(t + 1))
and, therefore,
1 1| T
J =3 {xx(M)}' Flx*(T)} + 5| ] {x*(£)}' X(t) {x*(t)}

i=0

+ [{x*(t + 1)}* K(t + 1)* BR |

B' - {x*(£)}' G']
(A.22)

K(t + 1) {x*(t + 1)}]

By (A.9)

1

{x*(t)}' G' = {x*(t + 1)}' [I + BR” B'K(t + 1)]"
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And

1

[{x*(t + 1)}" K(t + 1)' BR" B' - {x*(t)}' G']

= [{x*(t + 1} K(t + N 95'1

B' - {x*(t + 1))

S {x*(t + DY K(E + 1) BRTB'] = [-{x*(t + D]

The objective function (A.22) becomes

J =5 (x*(T)}' Fl{x*(T)} + %-[:z; Ix*(0) 1 K(t) {x*(t)}
- {x*(t + 1)} Kt + 1) {x*(t + 1)}]
3= 3 (M} Fx* (M} + 5 {x(0)}' X(0) {x(0))
- 2 {x* (D))" K(D) {x*(T)}
But since K(T) = F, we have
J* = % {x(0)}' K(0) {x(0)} . ((n.23)

The optimal value of the objective functional depends on the
initial condition {§(O)} and on K(N). The matrix K(0) depends
on the matrices G, F, Q, R and B and on the feedback matrices

Ij(t), t=1,I'.’TI
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