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P r e f a c e  

I n t e r e s t  i n  human s e t t l e m e n t  sy s t ems  and p o l i c i e s  h a s  been  

a  c r i t i c a l  p a r t  of u r b a n - r e l a t e d  work a t  IIASA s i n c e  i t s  incep -  

t i o n .  Recen t ly  t h i s  i n t e r e s t  h a s  g i v e n  r i se  t o  a  c o n c e n t r a t e d  

r e s e a r c h  e f f o r t  f o c u s i n g  on m i g r a t i o n  dynamics and s e t t l e m e n t  

p a t t e r n s .  Four  s u b - t a s k s  form t h e  c o r e  of  t h i s  r e s e a r c h  e f f o r t :  

I. t h e  s t u d y  o f  s p a t i a l  p o p u l a t i o n  dynamics;  

11. t h e  d e f i n i t i o n  and e l a b o r a t i o n  of  a  new r e s e a r c h  

a r e a  c a l l e d  demometr ics  and i t s  a p p l i c a t i o n  t o  

m i g r a t i o n  a n a l y s i s  and s p a t i a l  p o p u l a t i o n  

f o r e c a s t i n g ;  

111. t h e  a n a l y s i s  and d e s i g n  o f  m i g r a t i o n  and se t t le -  

ment p o l i c y ;  

I V .  a  compara t i ve  s t u d y  o f  n a t i o n a l  m i g r a t i o n  and 

s e t t l e m e n t  p a t t e r n s  and p o l i c i e s .  

T h i s  p a p e r ,  t h e  t h i r d  i n  t h e  p o l i c y  a n a l y s i s  series,  

d e v e l o p s  a  paradigm f o r  a  f o r m a l  t h e o r y  o f  no rma t ive  demography, 

d rawing  on r e l a t e d  work i n  economics and i n  o p t i m a l  c o n t r o l  

t h e o r y .  I t  adds  a  goals-means d imens ion  t o  o u r  c u r r e n t  e f f o r t s  

i n  demographic  and demometric m o d e l l i n g  and shows how a  number 

of  a p p a r e n t l y  d i v e r s e  a s p e c t s  o f  p o p u l a t i o n  d i s t r i b u t i o n  p o l i c y  
I 

may be  c o n s i d e r e d  w i t h i n  a  s i n g l e  o v e r a l l  a h a l y t i c a l  framework. 

W i l l e k e n s '  s t u d y  was conduc ted  h e r e  a t  IIASA t h i s  p a s t  y e a r  

and forms p a r t  o f  a  d o c t o r a l  d i s s e r t a t i o n  s u b m i t t e d  t o  Nor thwes te rn  

U n i v e r s i t y .  . T h i s  work was f i n a n c i a l l y  s u p p o r t e d  by t h e  I n s t i t u t e  

by means o f  a  r e s e a r c h  f e l l o w s h i p .  

R e l a t e d  p a p e r s  i n  t h e  p o l i c y  a n a l y s i s  series and o t h e r  

p u b l i c a t i o n s  o f  t h e  m i g r a t i o n  and s e t t l e m e n t  s t u d y  a r e  l i s t e d  on  

t h e  back page o f  t h i s  r e p o r t .  

A.  Rogers  

J u n e  1976 





A b s t r a c t  

T h i s  pape r  e x p l o r e s  t h e  a n a l y t i c a l  f e a t u r e s  
o f  a  P o p u l a t i o n  d i s t r i b u t i o n  o r  human s e t t l e m e n t  
p o l i c y .  I t  examines l i n e a r  s t a t i c  and dynamic 
p o l i c y  models i n  t h e  Tinbergen  f o r m u l a t i o n  and i n  
t h e  s t a t e - s p a c e  fo rma t  and shows how t h e y  may b e  
d e r i v e d  from demographic and demometric models by 
add ing  a  new dimension:  t h e  goals-means r e l a t i o n -  
s h i p  of  p o p u l a t i o n  d i s t r i b u t i o n  p o l i c y .  Al though 
o u r  g e n e r a l  t r e a t m e n t  encompasses most p o l i c y  
models ,  a t t e n t i o n  i s  focused  on models f o r  which 
s o l u t i o n s  may be e x p r e s s e d  a n a l y t i c a l l y ,  such  a s  
t h e  i n i t i a l  p e r i o d  c o n t r o l  problem and t h e  l i n e a r -  
q u a d r a t i c  c o n t r o l  problem. 

Acknowledgements 

T h i s  paper  i s  p a r t  o f  my Ph.D. d i s s e r t a t i o n ,  e n t i t l e d  
The ~ n a l ~ t i c s  o f  ~ u i t i r e g i o n a l  P o p u l a t i o n  ~ i s t r i b u t i o n  
P o l i c v  and s u b m i t t e d  t o  t h e  Graduate  School  o f  Nor thwes te rn  
_ri_L 
University, Evans ton ,  U.S.A. During t h e  development  o f  
t h i s  s t u d y ,  a s  d u r i n g  my whole Ph.D. program, I have 
b e n e f i t e d  from t h e  c l o s e  c o o p e r a t i o n  of  D r .  A .  Rogers ,  
my a d v i s e r .  H i s  i d e a s  and e x p e r i e n c e  have been most  
v a l u a b l e  and I am ex t r eme ly  g r a t e f u l  t o  him. 

I a l s o  would l i k e  t o  t hank  a l l  t h e  peop le  who c o n t r i b -  
u t e d ,  d i r e c t l y  and i n d i r e c t l y ,  t o  t h i s  s t u d y .  I n  p a r t i c u l a r ,  
I a m  i n d e b t e d  t o  t h e  o t h e r  d i s s e r t a t i o n  commit tee  members: 
P r o f e s s o r s  J.  B l i n ,  G .  P e t e r s o n  and W. P i e r s k a l l a .  

T h i s  s t u d y  h a s  been w r i t t e n  a t  IIASA where I was a  
r e s e a r c h  a s s i s t a n t .  The i n t e l l e c t u a l  a tmosphere  and t h e  
s c i e n t i f i c  s e r v i c e s  a t  IIASA have l a r g e l y  s t i m u l a t e d  my 
work. 

The burden  o f  t y p i n g  t h e  manusc r ip t  was borne  by 
Linda Samide. She performed t h e  d i f f i c u l t  t a s k  o f  t r a n s -  
forming my c o n f u s i n g  handwr i t i ng  i n t o  a  f i n a l  copy w i t h  
g r e a t  s k i l l  and good humour. 





Table  o f  Con ten t s  

Page 

iii P r e f a c e  ...................................... 
A b s t r a c t  and Acknowledgements ................ 
Foreword .................................... 
OPTIMAL MIGRATION POLICIES: 
A CONCEPTUAL FRAMEWORK ....................... 
The Tinbergen  Paradigm ....................... 
Survey of  P o l i c y  Models ...................... 
C l a s s i f i c a t i o n  o f  P o l i c y  Models 
According t o  t h e  Rank of  t h e  Ma t r ix  
M u l t i p l i e r  ................................... 
C l a s s i f i c a t i o n  of P o l i c y  Models 
According t o  t h e  S t r u c t u r e  of  t h e  
M a t r i x  M u l t i p l i e r  ............................ 
From t h e  Tinbergen  Model t o  t h e  Optimal  
C o n t r o l  Model ................................ 
REPRESENTATION AND EXIS,TENCE THEOREMS 
OF MIGRATION POLICIES ........................ 

Sta t e -Space  R e p r e s e n t a t i o n  o f  
Demometric Models ............................ 
The S ta t e -Space  Model ........................ 

............ S o l u t i o n  o f  t h e  S ta te -Space  Model 

S t a t e -Space  R e p r e s e n t a t i o n  o f  t h e  
Reduced Form Model ........................... 

..... E x i s t e n c e  Theorems o f  Mig ra t ion  P o l i c i e s  

..... E x i s t e n c e  Theorem i n  t h e  Tinbergen  Model 

E x i s t e n c e  Theorems i n  t h e  S ta te -Space  
Model ........................................ 

......... DESIGN OF OPTIMAL MIGRATION POLICIES 

Design i n  t h e  Tinbergen  Framework ............ 
The Mat r ix  M u l t i p l i e r  i s  Nons ingular  
and o f  Rank N ................................ 
The Mat r ix  M u l t i p l i e r  i s  S i n g u l a r  and 
of  Rank N ................................... 
The Mat r ix  M u l t i p l i e r  i s  S i n g u l a r  and 
o f  Rank K ...................................... 



Page 

3.2. Design i n  t h e  S t a t e -Space  Framework: 
F i x e d  T a r g e t s  a t  t h e  P l ann ing  Horizon .... 66 

3.2.1. I n i t i a l  P e r i o d  C o n t r o l  .................. 69 

3.2.2. L i n e a r  Feedback C o n t r o l  .................. 78 

3.2.3. Horizon C o n s t r a i n e d  Optimal  C o n t r o l  ...... 84 

3.3. Design i n  t h e  S t a t e -Space  Framework: 
T r a j e c t o r y  O p t i m i z a t i o n  .................. 85 

3.3.1. S p e c i f i c a t i o n  o f  t h e  Optimal  C o n t r o l  
Model .................................... 87 

3.3.2. The Discrete Minimum P r i n c i p l e  . 89 

3.3.3. The L i n e a r - Q u a d r a t i c  C o n t r o l  Problem ..... 92 

4 . CONCLUSION .............................. 102 

4.1. ~ i g r a t i o n  P o l i c y  Models and D e m o m e t r i c s  .. 104 

...... 4.2. ~ecomrnendat ions  f o r  F u t u r e  Research  108 

Appendix: THE LINEAR-QUADRATIC CONTROL MODEL: 
SOLUTION OF THE TWO-POINT BOUNDARY- 

........................ VALUE PROBlLEM 110 



Foreword 

I n  r e c e n t  y e a r s  t h e r e  h a s  been an i n c r e a s i n g  i n t e r e s t  

i n  t h e  dynamics of  s p a t i a l  demographic growth.  Plodels f o r  

m u l t i r e g i o n a l  p o p u l a t i o n  growth have been developed  t o  

d e s c r i b e  t h e  growth p r o c e s s  and t o  a n a l y z e  i t s  impact on 

f u t u r e  p o p u l a t i o n  c h a r a c t e r i s t i c s  (Rogers ,  1975)  . The 

v a r i o u s  economic, s o c i a l ,  c l i m a t o l o g i c a l  and c u l t u r a l  f o r c e s  

i n f l u e n c i n g  s p a t i a l  p o p u l a t i o n  growth have been brought  

t o g e t h e r  i n  e x p l a n a t o r y  demometric models (Greenwood, 1 9 7 5 a ) .  

The mathemat ica l  demographic models and t h e  demometric 

models have a  common f e a t u r e .  They a r e  des igned  t o  d e s c r i b e  

and t o  e x p l a i n  t h e  dynamics o f  t h e  s p a t i a l  p o p u l a t i o n  growth. 

Once t h e  dynamics of  a  phenomena a r e  unde r s tood ,  human 

n a t u r e  comes up w i t h  t h e  u l t i m a t e  q u e s t i o n :  can  w e  c o n t r o l  

it and how? The models a s s o c i a t e d  w i t h  t h i s  t h i r d  concern  

a r e  p o p u l a t i o n  p o l i c y  models.  The s u b j e c t  o f  m i g r a t i o n  

p o l i c y  models h a s  been t r e a t e d  by Rogers (1966; 1968, 

Chapter  6 ;  1971, pp. 98-108),  and more r e c e n t l y ,  MacKinnon 

(1975a, 1975b) d e v o t e s  c o n s i d e r a b l e  a t t e n t i o n  t o  t h e  d e s i g n  

of op t ima l - seek ing  m i g r a t i o n  p o l i c y  models. 

T h i s  paper  i s  devoted  t o  a  me thodo log ica l  a n a l y s i s  

of  m i g r a t i o n  p o l i c y  models. W e  assume t h a t  a  demometric 

o r  a  demographic model, c o n s i s t i n g  o f  a  system o f  l i n e a r  

s imul t aneous  e q u a t i o n s ,  h a s  been s u c c e s s f u l l y  s p e c i f i e d  and 

e s t i m a t e d .  T h e r e f o r e ,  w e  do  n o t  d e v o t e  any a t t e n t i o n ,  f o r  

example, t o  i d e n t i f i c a t i o n  and e s t i m a t i o n  p rocedures .  The 

main t h r e a d  o f  t h e  a n a l y s i s  i s  provided  by t h e  Tinbergen  

paradigm, t o  which w e  w i l l  r e f e r  f r e q u e n t l y .  Chapter  1 

i s  a  c o n c e p t u a l  survey  o f  v a r i o u s  p o s s i b l e  p o l i c y  models.  



Each model i s  r e l a t e d  back t o  t h e  o r i g i n a l  T inbergen  

framework. The m a t r i x  o f  impact  m u l t i p l i e r s ,  w e l l  known 

i n  economic a n a l y s i s ,  i s  s e e n  t o  be  of c r u c i a l  impor tance  

t o  t h e  c l a s s i f i c a t i o n  scheme. A f t e r  t h e  i n t r o d u c t o r y  

c h a p t e r  h a s  se t  t h e  s c e n e ,  w e  d e v o t e  o u r  a t t e n t i o n  t o  t h e  

two c e n t r a l  i s s u e s  i n  t h e  t h e o r y  of p o l i c y :  t h e  c o n c e p t s  

of  e x i s t e n c e  and o f  d e s i g n .  The e x i s t e n c e  problem d e a l s  

w i t h  t h e  q u e s t i o n  whether  t h e  sys tem is  c o n t r o l l a b l e ,  i . e . ,  

whether  a  se t  of  a r b i t r a r y  t a r g e t s  can  be a c h i e v e d  a t  a l l ,  

g i v e n  t h e  i n t e r n a l  dynamics o f  t h e  sys tem and  g i v e n  t h e  

se t  of  a v a i l a b l e  i n s t r u m e n t s .  The answer t o  t h e  c o n t r o l -  

l a b i l i t y  problem p r o v i d e s  i n p u t  i n f o r m a t i o n  f o r  t h e  d e s i g n  

problem. Fo r  t h e  d e s i g n  o f  an o p t i m a l  p o l i c y ,  t h e  p o l i c y  

maker may a p p l y  a  wide r ange  of ma thema t i ca l  programming 

t e c h n i q u e s ,  assuming t h a t  he h a s  a  c l e a r  i d e a  o f  h i s  p r e f e r -  

ences .  To f a c i l i t a t e  t h e  d i s c u s s i o n  o f  t h e  c o n t r o l l a b i l i t y  

o f  dynamic sys t ems  i n  Chapter  2 and o f  t h e  d e s i g n  o f  o p t i m a l  

p o l i c i e s  i n  Chap te r  3 ,  w e  i n t r o d u c e  i n  Chapter  2 t h e  s t a t e -  

s p a c e  r e p r e s e n t a t i o n  o f  demometric models.  
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CHAPTER 1 

OPTIMAL MIGRATION POLICIES: 

A CONCEPTUAL FIWMETfiTO!U 

T h e r e  a r e  s e v e r a l  a n a l y t i c a l  d i f f e r e n c e s  h e t b ~ e e n  a p o l i c y  

model and a  c o n v e n t i o n a l  demograph ic  o r  demomet r ic  mod-el. 

The most  b a s i c  c l a s s i f i c a t i o n  o f  v a r i a b l e s  i n  any  model 

c o n s i s t s  o f  two c a t e g o r i e s :  endogenous  v a r i a b l e s ,  which 

a r e  d e t e r m i n e d  w i t h i n  t h e  model,  and  exogenous  v a r i a b l e s ,  

which are p r e d e t e r m i n e d .  Suppose  t h e  p o p u l a t i o n  s y s t e m  i s  

l i n e a r  and may be  modeled a s  

where  { y )  i s  a  M x  1  v e c t o r  o f  endogenous  v a r i a b l e s ,  - 
{ z )  i s  a L  x  1  v e c t o r  o f  exogenous  v a r i a b l e s ,  - 
F i s  a  M x M m a t r i x  o f  c o e f f i c i e n t s ,  - 
E  i s  a  M x  L  m a t r i x  o f  c o e f f i c i e n t s .  - 

E q u a t i o n  (1 .  ' I )  i s  t h e  r e d u c e d  form o f  a, p o p u l a t i o n  model.  

The endogenous  and t h e  exogenous  v a r i a b l e s  are s e p a r a t e d .  

4ssuming  t h a t  A - i s  n o n s i n g u l a r ,  w e  o b t a i n  

where  C i s  t h e  m a t r i x  o f  m u l t i p l i e r s ,  i . e .  t h e  reduced.  form - 
m a t r i x .  The e l e m e n t s  o f  C r e p r e s e n t  t h e  impac t  on { y )  o f  a  - - 
u n i t  change  i n  { z ) .  - 

The p o l i c y  models  t r e a t e d  h e r e ,  w i l l  h e  d i s c u s s e d  w i t h  

r e f e r e n c e  t o  ( 1 . 2 )  . T i n b e r g e n  (1963)  p roposed  a  c lass i -  

f i c a t i o n  o f  t h e  v a r i a b l e s  o f  ( 1 . 2 )  b e t t e r  s u i t e 2  f o r  t h e  



p o l i c y  problem. H i s  i d e a s  a r e  g e n e r a l  enough t o  encompass 

t h e  whole r ange  of p o l i c y  models.  S t a r t i n g  from t h e  Tinbergen  

paradigm, we t r y  t o  p r e s e n t  a  u n i f i e d  t r e a t m e n t  o f  v a r i o u s  

c l a s s e s  o f  models ,  which a r e  r e l e v a n t  f o r  p o p u l a t i o n  p o l i c y .  

1 .1 .  THE TINBERGEN PARADIGM 

Tinhergen  (1963) d i s t i n g u i s h e d  two c a t e g o r i e s  o f  v a r i -  

a b l e s  i n  b o t h  t h e  endogenous and t h e  exogenous v a r i a b l e s .  

The endogenous v a r i a b l e s  c o n s i s t  of  t a r q e t  v a r i a b l e s ,  which 

a r e  of d i r e c t  i n t e r e s t  f o r  p o l i c v  pu rposes ,  and o t h e r  v a r i -  

a b l e s  which a r e  n o t .  The l a t t e r  a r e  l a b e l e d  by Tinhergen  

a s  i r r e l e v a n t  v a r i a b l e s .  However, t h e y  may be  o f  i n d i r e c t  

i n t e r e s t  f o r  p o l i c y  p l a n n i n g ,  s i n c e  t h e i r  v a l u e s  may i n  t u r n  

i n f l u e n c e  v a r i o u s  t a r g e t  v a r i a b l e s .  The exogenous v a r i a b l e s  

a r e  d i v i d e d  a c c o r d i n g  t o  t h e i r  c o n t r o l l a b i l i t y .  In s t rumen t  

v a r i a b l e s  a r e  s u b j e c t  t o  d i r e c t  c o n t r o l  by t h e  p o l i c y  

a u t h o r i t i e s .  Data  v a r i a b l e s  a r e  beyond t h e i r  c o n t r o l .  The 

l a t t e r  i n c l u d e  exogenously prede termined  and u n c o n t r o l l a b l e  

v a r i a b l e s ,  a s  w e l l  a s  l agged  endogenous v a r i a b l e s .  They 

d e f i n e  t h e  environment  i n  which t h e  l e v e l s  of  i n s t r u m e n t  

v a r i a b l e s  have t o  b e  set .  Applying t h i s  approach ,  e a u a t i o n  

(1 .2 )  may b e  p a r t i t i o n e d  t o  g i v e  

where C Y  3 i s  t h e  ?J x 1 v e c t o r  o f  t a r g e t  v a r i a b l e s ,  

Cy23 i s  t h e  (M - N )  x  1  v e c t o r  o f  o t h e r  endogenous 

v a r i a b l e s ,  

{ z l )  i s  t h e  K x 1 v e c t o r  o f  i n s t r u m e n t  v a r i a b l e s ,  - 
Cz23 i s  t h e  (L - K )  x  1  v e c t o r  o f  u n c o n t r o l l a b l e  - 



exogenous v a r i a b l e s  and l agged  endogenous 

v a r i a b l e s ,  

R ,  S ,  P I  Q a r e  conformable  p a r t i t i o n s  o f  t h e  mode l ' s  - - - - 
reduced  form m a t r i x .  

The v a l u e  o f  t h e  t a r g e t  v e c t o r  i s  

The p o l i c y  problem,  a s  f o r m u l a t e d  by T inbe rgen ,  i s  t o  

choose an  a p p r o p r i a t e  v a l u e  o f  t h e  i n s t r u m e n t  v e c t o r  { z , }  - 
s o  a s  t o  r e n d e r  t h e  v a l u e  o f  t h e  t a r g e t  v e c t o r  { y l )  e q u a l  t o  - 
some p r e v i o u s l y  e s t a b l i s h e d  d e s i r e d  v a l u e  { i t } .  The c h o i c e  

o f  t h e  l e v e l  o f  t h e  i n s t r u m e n t  v a r i a b l e s  depends on t h e  

l e v e l s  o f  t h e  u n c o n t r o l l a b l e  v a r i a b l e s ,  r e p r e s e n t e d  by 

{ z 2 } ,  and on how much t h e y  a f f e c t  t h e  t a r g e t s .  

I t  i s  i m p o r t a n t  t o  keep  i n  mind t h a t  t h e  p o l i c y  model 

( 1 . 3 )  i s  d e r i v e d  from t h e  e x p l a n a t o r y  model ( 1 . 2 )  by add ing  1 
l 

a  new dimension t o  ( 1 . 2 ) .  T h i s  new dimension i s  t h e  g o a l s -  1 

means r e l a t i o n s h i p  o f  p o p u l a t i o n  p o l i c y .  The e x p l a n a t o r y  

model may b e  a  p u r e  demographic model,  r e l a t i n g  p o p u l a t i o n  

growth and d i s t r i b u t i o n  t o  demographic f a c t o r s  such  a s  f e r t i l -  

i t y ,  m o r t a l i t y  and m i g r a t i o n .  I t  may a l s o  b e  a  demometric 

model,  which s t a t i s t i c a l l y  r e l a t e s  s p a t i a l  p o p u l a t i o n  growth 

t o  socio-economic v a r i a b l e s .  Any model may b e  c o n v e r t e d  i n t o  

a p o l i c y  model i f  and o n l y  i f  a l l  t h e  t a r g e t  v a r i a b l e s  of  t h e  

p o l i c y  model a r e  p a r t  o f  t h e  se t  o f  endogenous v a r i a b l e s  o f  

t h e  e x p l a n a t o r y  model and i f  a t  l e a s t  one of  t h e  exogenous 

v a r i a b l e s  i s  c o n t r o l l a b l e .  Most m i g r a t i o n  models found i n  

t h e  l i t e r a t u r e  a r e  s i n g l e - e a u a t i o n  models w i t h  g r o s s  o r  n e t  



migration as the dependent variable. They serve only a 

restricted category of policy models, namely those with 

targets that consist of migration levels and instruments 

which are socio-economic in nature. Various regional 

economic models include migration as an exogenous variable. 

Therefore, they are not suited to become migration policy 

models if population distribution is the goal. Simultaneous 

equation models, such as the ones developed by Greenwood 

(1973, 1975b) and Olvey (1972), are relevant to model popu- 

lation policy problems of all types, because they include 

demographic and socio-economic variables in both the set 

of endogenous and the set of exogenous variables. Thus they may 

be applied in situations where the goals-means relationship 

consists of demographic, as well as of socio-economic measures. 

Finally, the multiregional population growth models of Rogers 

(1975) may be converted to policy mod-els to study purely 

demographic policy problems, i.e., both targets and instruments 

are demographic in nature. 

Before going into greater detail in our exposition, 

we would like to stress that the analytical solution of 

Tinbergen's formulation of the policy problem is restricted 

to linear policy models. If the model is nonlinear, one can 

only solve it numerically. The latter approach is denoted 

by Naylor (1970; p. 263) as the simulation approach, and has 

been applied extensively by Fromm and Tauhman (1068). In 

this part, we only deal with linear models and do not discuss 

the simulation approach. 



1.2. SURVEY OF POLICY MODELS 

Conceptually, any policy model may be related to 

(1.3). For convenience, we drop the subscript of the 

target vector. 

Throughout our discussion of policy models, it will be 

assumed that both the targets and the instruments are 

linearly independent. The matrix R then plays a crucial - 
role in policy analysis. The existence of an optimal policy, 

i.e., a solution to (1.3), depends on the rank of R. The - 
design of an optimal policy, i-e., the assignment of values 

to the instrument variables, depends on the structure of R, - 
and on the values of its entries. The matrix R is known in - 
the economic literature as the matrix of im~act multi~liers. 

The name refers to the fact that an element rij gives the 

change in the value of the target variable i when the instru- 

ment variable j is varied by one unit. The ratio -rij/rik 

is the amount by which the j-th instrument may be cut down 

without changing the level of the i-th target, if the value 

of the k-th instrument is increased with one unit. It is, 

therefore, the marginal rate of substitution between the 

two instruments (Frornrn and Taubman, 1968; p. 109). 

It is the purpose of this section to classify relevant 

policy models without going into technical detail. Detailed 

treatment will be given later. The survey revolves around 

the matrix multiplier R and its characteristics. A first - 



classification scheme is based on the rank of R, - or alter- 

natively on the relation between the number of targets and 

the number of instruments. A second classification scheme 

relates to the structure of R. The structure of R also - - 
provides us with a link between the reduced form models and 

the models of optimal control. 

1.2.1, Classification of Policy Models According to the 

Rank of the Matrix Multiplier 

We may distinguish between three categories of policy 

models: R is nonsingular and of rank V ;  R is singular and of .., .., 

rank K; R is singular and of rank N. The parameters N and K - 
are, respectively, the number of instruments and the number 

of targets. An illustration is given by a typical policy 

model, namely the Theil (1964) model. 

a. The matrix multiplier is nonsingular and of rank V .  

If R is nonsingular, i.e., there are as many instruments - 
as there are targets, then there exists a uniaue combination 

of instruments leading to the set of desired targets. Once 

the targets are specified, the uniuue ihstrument vector is 

qiven by 

The solution to (1.3) is unique, and. there is no need for 

the policy maker to provide any other information than the 

set of target values. 



b.  The m a t r i x  m u l t i p l i e r  i s  s i n g u l a r  and of 

r a n k  I< < N. 

I f  t h e  number of i n s t r u m e n t s  i s  less t h a n  t h e  number 

of  t a r g e t s ,  however,  t h e  sys tem (1 .3 )  i s  i n c o n s i s t e n t  and 

t h e r e  i s  no way t h a t  a l l  t h e  t a r g e t  v a l u e s  c a n  be r eached .  

T h i s  poses  an a d d i t i o n a l  d e c i s i o n  problem f o r  t h e  p o l i c y  

maker. Does he g i v e  up some t a r g e t s  i n  o r d e r  t o  r e a c h  

o t h e r s ,  o r  does  he  want t o  a c h i e v e  a l l  t h e  t a r g e t s  a s  c l o s e l y  

a s  p o s s i b l e  w i t h  t h e  l i m i t e d  r e s o u r c e s ?  I n  t h e  l a t t e r  c a s e ,  

t h e  p o l i c y  maker may a l s o  wish t o  we igh t  t h e  t a r g e t s  d i f f e r e n t l y .  

I f  t h e  f i r s t  a l t e r n a t i v e  i s  chosen ,  some t a r g e t s  a r e  d e l e t e d ,  

and t h e  i n s t r u m e n t  v e c t o r  i s  g i v e n  by ( 1 . 4 ) .  The second a l t e r -  

n a t i v e  o f t e n  l e a d s  t o  t h e  f o r m u l a t i o n  o f  a  a u a d r a t i c  program- 

ming model.  I f  17)  i s  t h e  v e c t o r  o f  d e s i r e d  t a r g e t  v a l u e s ,  - 
and { $ I  i s  t h e  v e c t o r  o f  r e a l i z e d  v a l u e s ,  t h e n  t h e  problem - 
i s  t o  minimize t h e  squa red  d e v i a t i o n  between I $ )  and I$)  - - 
s u b j e c t  t o  ( 1 . 3 ) ,  which d e s c r i b e s  t h e  b e h a v i o r  o f  t h e  popu- 

l a t i o n  sys tem.  T h a t  i s ,  

min [{GI - { $ I ] '  A[{GI - {$I1 - - - - - 

s u b j e c t  t o  

The we igh t  m a t r i x  A r e p r e s e n t s  t h e  p o l i c y  m a k e r ' s  d i f f e r e n t i a l  - 
p r e f e r e n c e s  towards  t h e  t a r g e t s .  The t a r g e t  v a r i a b l e s  w i t h  

t h e  h i g h e s t  w e i g h t s  w i l l  be f o r c e d  v e r y  c l o s e  t o  t h e i r  



c .  The m a t r i x  m u l t i p l i e r  i s  s i n g u l a r  and of 

r a n k  N .  

I f  t h e  number o f  i n s t r u m e n t  v a r i a h l e s  exceeds  t h e  number 

o f  t a r g e t s ,  t h e n  t h e r e  i s  an  i n f i n i t e  number o f  s o l u t i o n s  t o  

( 1 . 3 )  a n d ,  t h e r e f o r e ,  an i n f i n i t e  number o f  i n s t r u m e n t  v e c t o r s .  

To g e t  a  u n i q u e  s o l u t i o n ,  t h e  p o l i c y  maker may f o r c e  t h e  

number o f . i n s t r u m e n t s  t o  b e  e u u a l  t o  t h e  number o f  t a r g e t s ,  

by d e l e t i n g  some i n s t r u m e n t s .  On t h e  o t h e r  hand., he  may p u t  

some c o n s t r a i n t s  on t h e  i n s t r u m e n t s .  There  i s  a  wide v a r i e t y  

o f  p o s s i b l e  c o n s t r a i n t s ,  b u t  w e  c o n s i d e r  o n l y  two c a t e g o r i e s .  

c.1. Some I n s t r u m e n t s  a r e  L i n e a r l y  Dependent.  

By making some i n s t r u m e n t s  l i n e a r l y  dependen t ,  t h e  

freedom o f  p o l i c y  a c t i o n  i s  reduced  i n  a  way such  t h a t  o n l y  

one  s t r a t e g y  i s  a v a i l a b l e  t o  a c h i e v e  t h e  t a r g e t s .  An i l l u s -  

t r a t i o n  o f  t h i s  c o n s t r a i n t  i s  t h e  i n t e r v e n t i o n  model o f  

Rogers  (1971; pp.  99-101).  T a r g e t s  a r e  s p e c i f i e d  o n l y  f o r  

t h e  p l a n n i n g  h o r i z o n ,  b u t  i n s t r u m e n t s  a r e  a v a i l a b l e  i n  each  

t i m e  p e r i o d .  I n  o r d e r  t o  g e t  a  u n i a u e  p o l i c y ,  t h e  c o n s t r a i n t  

i s  i n t r o d u c e d  t h a t  t h e  v a l u e s  o f  t h e  i n s t r u m e n t s  i n  a l l  t h e  

t i m e  p e r i o d s  a r e  l i n e a r l y  r e l a t e d  t o  ea'ch o t h e r .  

c . 2 .  I n t r o d u c t i o n  of  Accep tab le  Values  o f  t h e  

I n s t r u m e n t s .  

I n  most c a s e s ,  t h e  p o l i c y  maker h a s  a  qood i d e a  o f  what 

l e v e l s  o f  t h e  i n s t r u m e n t  v a r i a b l e s  a r e  a c c e p t a b l e  p o l i t i c a l l y .  

Minimizing t h e  sauarec! d e v i a t i o n s  between t h e  r e a l i z e d  and 

t h e  most  a c c e p t a b l e  v a l u e s  a s s u r e s  a  u n i a u e  i n s t r u m e n t  v e c t o r .  



d .  ~ l l u s t r a t i o n :  t h e  T h e i l  a u a d r a t i c  programming 

model .  

W e  h a v e  d e s c r i b e d  how p o l i c y  mode ls  are r e l a t e d  t o  t h e  

r a n k  o f  t h e  m a t r i x  o f  impac t  m u l t i p l i e r s  o r ,  e q u i v a l e n t l y ,  

t o  t h e  number o f  t a r g e t s  and i n s t r u m e n t s .  Only some a l t e r -  

n a t i v e  p o l i c y  mode ls  have  been  i n d i c a t e d .  A w i d e r  v a r i e t y  

i s  p o s s i b l e .  F o r  example ,  t h e  t a r g e t s  and t h e  i n s t r u m e n t s  

may be  c o n s t r a i n e d  a t  t h e  s a m e  t i m e ,  an? t h e s e  c o n s t r a i n t s  

need  n o t  t o  be  l i n e a r .  The o b j e c t i v e  f u n c t i o n  ( 1 . 5 )  may 

n o t  be  q u a d r a t i c ,  and  ( 1 . 6 )  c a n  be  supp l emen ted  w i t h  b o t h  

e q u a l i t y  and i n e q u a l i t y  c o n s t r a i n t s .  The r e a d e r  i s  r e f e r r e d  

t o  t h e  m a t h e m a t i c a l  programming l i t e r a t u r e  f o r  s u c h  i l l u s t r a -  

t i o n s .   he q u a d r a t i c  0 5 j e c t i v e  f u n c t i o n  w i t h  l i n e a r  c o n s t r a i n t s ,  

however ,  i s  common i n  economic p o l i c y  a n a l y s i s .  I t  i s  

b a s e d  on two a s s u m p t i o n s .  The f i r s t  i s  t h a t  t h e  p o l i c y  

m a k e r ' s  p r e f e r e n c e s  a r e  q u a d r a t i c  i n  t a r g e t s  and c o n t r o l s .  

The s econd  a s s u m p t i o n  i s  t h a t  e a c h  o f  t h e  t a r g e t s  depends  

l i n e a r l y  on  a l l  t h e  i n s t r u m e n t s ,  t h e  c o e f f i c i e n t s  o f  t h e s e  

l i n e a r  r e l a t i o n s  b e i n g  f i x e d  and known. The b a s i c  s t r u c t u r e  

o f  t h i s  l i n e a r  q u a d r a t i c  model i s  d u e  t o  T h e i l  (1964;  

pp.  34-35) ,  and  may b e  e x p r e s s e d  a s  

s u b j e c t  t o  



where {GI is the vector of realized values of the target - 
variables, 

{zll is the vector of instrument variables, - 
{z21 - is the vector of exogenous variables, 

A, Q, C are weight matrices, - - - 
R, S are matrices of multipliers. - - 

~pplications of the Theil model in economic policy 

literature may be found in Fox, Sengupta and Thorbecke (1972; 

p. 215), and in Friedman (1975; pp. 158-160). To simplify 

matters we may suppose that {a) = {b) = 101 and C = 0. The - - - 
problem then reduces to 

subject to 

{$I - = R { z ~ I  -2 - + s{z21 where - - 

Q and A are weights attached to the target vector and to - -2 

the instrument vector respectively. 

To illustrate the application of the Theil model in 

migration policy analysis, consider the following problem. 

The costs of public services a.re held to be too high 

because some regions are over-urbanized and are subject to 

diseconomies of scale, while other areas have insufficient people 

to reach the threshold needed for an efficient public service 

system. The high costs in the public sector can, therefore, 

be related to the inefficient population distribution. To 

reduce the costs, a migration policy is needed. However, 



t h e r e  i s  a  c o s t  a s s o c i a t e d  w i t h  t h e  r e d i s t r i b u t i o n  o f  p e o p l e  

o v e r  s p a c e .  Assume t h a t  t h e  c o s t  f u n c t i o n  o f  p u b l i c  ser- 

v i c e s  i s  a  q u a d r a t i c  f u n c t i o n  o f  t h e  p o p u l a t i o n  d i s t r i b u t i o n  

{-1, i . e .  

A s s u m e  a l s o  t h a t  t h e  c o s t  a s s o c i a t e d  w i t h  p o p u l a t i o n  d i s t r i -  

b u t i o n  i s  q u a d r a t i c  i n  t h e  v e c t o r  o f  t h e  number o f  peop le  

r e l o c a t e d  by t h e  p o l i c y  program, { z l l ,  i . e .  

An e l emen t  z l i  o f  { z l )  i s  p o s i t i v e  i f  t h e  program a t t r a c t s  

peop le  t o  r e g i o n  i. I t  i s  n e g a t i v e  i f  t h e  program h a s  an  

ou t -mig ra t ion  e f f e c t .  On comparing t h e  c o s t  f u n c t i o n s  w i t h  

t h e  p r e f e r e n c e  f u n c t i o n  ( 1 . 7 )  , w e  see t h a t  

and 

S i n c e  { z l }  r e p r e s e n t s  t h e  a d d i t i o n a l  m i g r a t i o n ,  R = I i n  t h e  - - - 
c o n s t r a i n t .  The v e c t o r  o f  u n c o n t r o l l a b l e  v a r i a b l e s  i s  t h e  

p o p u l a t i o n  d i s t r i b u t i o n  i n  t h e  p r e v i o u s  t i m e  p e r i o d ,  and 

S  i s  t h e  m u l t i r e g i o n a l  p o p u l a t i o n  growth m a t r i x .  - 



1 . 2 . 2 .  Classification of Policy Models According to the 

Structure of the Matrix llultiplier 

We now turn to the question of how policy models may 

be related to the structure of the matrix R. The structure 
* 

determines the nature of the dependence of {zl} - upon {y}. - 
Several assumptions may be adopted to simplify the form of 

R. They have been studied by Tinbergen (1963, Chapter 4), - 
by Fox, Sengupta and Thorbecke (1972; pp. 24-25) and by 

Friedman (1975; pp. 149-153) among others. We consider 

four different structures of R: diagonal, triangular, - 
block-diagonal and block-triangular. Our illustration 

considers the block-triangular multiperiod policy model. 

a. The matrix multiplier is diagonal. 

If R is diagonal, then each target variable can be - 
associated with one and only one instrument variable and 

vice versa. Since R-' is also diagonal, equation (1.4) - 
implies a series of expressions 

each of which may be solved independently. The practical 

implication of this is that the policy maker can, in such 

an instance, pursue each target with a single specific 

instrument, and no coordination between the various policies 

is required. 



b .  The m a t r i x  m u l t i p l i e r  i s  t r i a n g u l a r .  

E q u a t i o n  ( 1 . 3 )  i s  r e c u r s i v e .  The two-way s i m u l t a n e i t y  

be tween  t h e  v e c t o r s  { y j  - and  { z 1 3 ,  - i . e . ,  { z l l  - a f f e c t i n g  

I y 3  - and I y )  ... a f f e c t i n g  I z l l ,  - c a n  b e  r e d u c e d  t o  a  n n i l a t e r a l  

dependence  o r  a  u n i d i r e c t i o n a l  c a u s a l i t y .  Suppose  R - i s  

lower  t r i a n g u l a r ,  t h e n  R-' i s  a l s o  l ower  t r i a n g u l a r ,  and  

t h e  d e c i s i o n  making p r o c e d u r e  i s  r e c u r s i v e :  

These  e x p r e s s i o n s  may b e  s o l v e d  i n  s e q u e n c e ,  and t h e  

model h a s  a  s i m p l e  p o l i c y  i n t e r p r e t a t i o n .  I f  e a c h  

e q u a t i o n  w e r e  a s s i g n e d  t o  a  d i f f e r e n t  p o l i c y  maker ,  t h e  

s y s t e m  of  e q u a t i o n s  would s p e c i f y  a  h i e r a r c h y .  I n  o r d e r  

t o  make an  o p t i m a l  d e c i s i o n ,  e a c h  p o l i c y  maker would n o t  

need  t o  l o o k  a t  t h e  i n s t r u m e n t s  s e l e c t e d  by t h o s e  who w e r e  

below h i s  p o s i t i o n  i n  t h e  h i e r a r c h y .  

c. The m a t r i x  m u l t i p l i e r  is  b l o c k - d i a g o n a l .  

I n  t h e  c a s e  o f  a  b l o c k - d i a g o n a l  p o l i c y  mode l ,  t h e  

o v e r a l l  model c a n  b e  decomposed i n t o  s e v e r a l  i n d e p e n d e n t  

p a r t s .  T h i s  would o c c u r  i f  a  p o l i c y  can  be  d e c e n t r a l i z e d  

i n t o  i n d e p e n d e n t  s u b p o l i c i e s ,  e a c h  h a v i n g  a  goa l s -means  

r e l a t i o n s h i p  u n r e l a t e d  t o  t h e  g o a l s  and t h e  i n s t r u m e n t s  o f  

t h e  o t h e r  s u b p o l i c i e s .  T h i s  would p e r m i t  e f f i c i e n t  decen-  

t r a l i z e d  d e c i s i o n  making.  



d. The matrix multiplier is block-triangular. 

Here, as in the case of a triangular R, - the set of 

instruments corresponding to any given block can be solved 

for without any knowledge of the instruments belonging to 

blocks which are lower in the hierarchy. The overall policy 

could be decompose6 into a hierarchical system of poLicies. 

e. Illustration: the multiperiod policy problem. 

An important application of the block-triangular form 

of R is found in dynamic policy analvsis. The models pre- - 
sented thus far have been static, hut thev are general 

enough to handle dynamic policy problems as well. If the 

entries of the target vector and of the instrument vector 

belong to different time periods, we clearly have a dynamic 

or multiperiod policy model. Suppose, for example, that a 

target vector is given for a sequence of time periods from 

1  to T, say. Then {y) is itself composed of vectors, one - 
for each time period. Suppose, moreover, that there exists 

an instrument vector for each time period. The reduced form 

model ( 1 . 3 )  now may be expressed as 

where 



Vec to r  { z l j  - i s  of  o r d e r  KT, and {z21  and {y} - are o f  o r d e r  NT. 

The s u b m a t r i x  Rij - i s  N x  K and i t s  e l e m e n t s  a r e  dynamic 

p o l i c y  m u l t i p l i e r s  which e x p r e s s  t h e  impact  on t h e  t a r g e t  

v e c t o r  {y - ( t )  1 i n  t i m e  p e r i o d  t = i o f  changes  i n  t h e  i n s t r u -  

ment v e c t o r  { z l  ( t ) }  i n  t i m e  p e r i o d  t = j .  R i s  NT x  KT: 

s i s  NT x  NT and t h e  s u b m a t r i c e s  S i j  a r e  o f  o r d e r  N x  N .  - 
S - shows t h e  dynamic e f f e c t s  o f  p rede t e rmined  v a r i a b l e s  on 

t h e  t a r g e t  v a r i a b l e s .  

Most p o l i c y  models assume t h a t  p o l i c y  a c t i o n s  do  n o t  

i n f l u e n c e  e v e n t s  which p recede  them i n  t i m e  and ,  t h e r e f o r e ,  

g e n e r a l l y  i g n o r e  e x p e c t a t i o n a l  e f f e c t s  o r  advance announce- 

ment e f f e c t s .  T h i s  assumpt ion  o f  u n i d i r e c t i o n a l  c a u s a l i t y  

y i e l d s  a  b l o c k - t r i a n g u l a r  R - m a t r i x :  



where t h e  e l emen t s  of  Ri a r e  dynamic p o l i c y  m u l t i p l i e r s .  ... 
A t r i a n g u l a r  R m a t r i x  l e a d s  t o  a  s e q u e n t i a l  d e c i s i o n  making ... 
procedure  ana logous  t o  t h a t  o f  t h e  s t a t i c  model. The key 

d i s t i n c t i o n  i s  t h a t  h e r e  t h e  sequence i s  a c r o s s  t i m e ,  r a t h e r  

t h a n  a c r o s s  i n d i v i d u a l  i n s t r u m e n t  and t a r g e t  v a r i a b l e s .  

By way o f  i l l u s t r a t i o n ,  c o n s i d e r  t h e  a p p l i c a t i o n  o f  

t h e  T h e i l ' m o d e l  i n  p o p u l a t i o n  p o l i c y .  Assume t h a t  t h e r e  

i s  a  t i m e  sequence  o f  t a r g e t  p o p u l a t i o n  d i s t r i b u t i o n s ,  and 

a  t i m e  sequence o f  v e c t o r s  o f  induced  m i g r a t i o n .  Suppose 

t h a t  no tough p o l i c y  a c t i o n s  a r e  expec ted  by t h e  p o t e n t i a l  

m i g r a n t s ,  t h e r e f o r e  t h e  p o p u l a t i o n  d i s t r i b u t i o n  a t  t i m e  t 

does  n o t  depend on t h e  m i g r a t i o n  p o l i c i e s  beyond t .  Equat ion  

(1.11)  may, t h e r e f o r e ,  be w r i t t e n  w i t h  R be ing  lower h lock-  

t r i a n g u l a r .  

W e  may r educe  t h e  form o f  t h i s  p o l i c y  model even f u r t h e r .  

Suppose t h a t  t h e  m i g r a t i o n  p o l i c y  a t  t i m e  t o n l y  a f f e c t s  t h e  

p o p u l a t i o n  d i s t r i b u t i o n  a t  t + 1  d i r e c t l y .  The impact  on t h e  

p o p u l a t i o n  d i s t r i b u t i o n s  a t  a  l a t e r  t i m e  i s  i n d i r e c t  i n  t h e  

s e n s e  t h a t  t h e  p o p u l a t i o n  d i s t r i b u t i o n  a t  t + 1  a f f e c t s  t h e  

d i s t r i b u t i o n  beyond t + 1.  T h i s  i m p l i e s  t h e  r e c u r r e n c e  e a u a t i o n  

The submat r ix  - i s  t h e  growth m a t r i x  o f  t h e  p o p u l a t i o n  

between t and t + 1 .  I f  w e  assume t h e  growth m a t r i x  t o  b e  

t ime- independent ,  i . e .  G = S  ... - t + l  , t  f o r  a l l  t ,  w e  may w r i t e  



T h e r e f o r e ,  ( 1 . 1 1 )  may b e  r e d u c e d  t o  a  s e t  o f  r e c u r r e n c e  

e q u a t i o n s  

I n  m a t r i x  fo rm,  w e  h a v e  t h a t  

( 1 . 1 5 )  

w q u a t i o n  ( 1 . 1 4 )  h a s  r e c e i v e d  much a t t e n t i o n  i n  

s y s t e m  t h e o r y .  I t  i s  c a l l e d  t h e  d i s c r e t e  s t a t e  e q u a t i o n  

a n d  f o r m s  t h e  c e n t r a l  component  o f  t h e  d i s c r e t e  v e r s i o n  o f  

t h e  s t a t e - s p a c e  mode l .  S t i m u l a t e d  by  r e c e n t  work i n  s y s t e m  

t h e o r y  a n d  o p t i m a l  c o n t r o l ,  a n  i n c r e a s i n g  number o f  a u t h o r s  

h a v e  a d o p t e d  t h e  s t a t e - s p a c e  a p p r o a c h  t o  d e s c r i b e  dynamic  

1 m o d e l s  i n  t h e  s o c i a l  s c i e n c e s  . W e  h a v e  shown how t h e  

1 
S e e ,  f o r  e x a m p l e ,  P i n d y c k  ( 1 9 7 3 ) ,  Kenke l  (1974)  a n d  

Chow ( 1 9 7 5 ) .  



state-space model may be derived conceptually from the 

reduced form model. IIow the transformation is done mathe- 

matically will be shown later. 

By introducing the assumption of unidirectional causal- 

ity of the population system, we may write the Theil model 

1 . 8  , ( 1 . 3 )  as 

min J = ' [{GI' OIGI + A{Z~I] Z - - - - - - 

subject to 

Recall that Q is a NT x NT matrix, where T is the planning - 
horizon, N is the number of target variables at each 

period, and A is a KT x KT matrix, where K is the number - 
of instrument variables. 

Model 

In this chapter, we started out with the Tinbergen 

paradigm. The original model, based on this paradigm, was 

simple in nature, in the sense that the number of instruments 

was equal to the number of targets and that the optimal policy 

was the uniaue solution to a system of linear eauations. Frhen 

the number of instruments and targets differs, the policy maker 

is confronted witb an additional decision problem. He needs to 

specify his preferences in order to get a uniaue policy which 

is optimal. This led us to the Theil model and to the hroad 

application of mathematical oroqramming. when policv problems 



become l a r g e ,  t h e r e  i s  a  need f o r  s i m p l i f i c a t i o n .  The 

s i m p l i f y i n g  a s sumpt ions ,  d i s c u s s e d  up t o  now, a r e  r e l a t e d  

t o  t h e  s t r u c t u r e  o f  t h e  m u l t i p l i e r  m a t r i x  R.  The assumpt ion  - 
o f  u n i d i r e c t i o n a l  c a u s a l i t y  o f  t h e  sys tem,  r e p r e s e n t e d  by 

t h e  b l o c k - t r i a n g u l a r i t y  o f  R - i s  c r u c i a l  t o  t h e  f u r t h e r  

development  o f  dynamic p o l i c y  models .  NOW w e  e x t e n d  t h e  

s i m p l i f i c a t i o n  o f  t h e  p o l i c y  models t o  t h e  o b j e c t i v e  f u n c t i o n .  

Assume t h a t  t h e  e f f e c t  o f  t h e  t a r g e t  and c o n t r o l  v e c t o r  

a t  t i m e  t on t h e  v a l u e  of  t h e  o b j e c t i v e  f u n c t i o n ,  i s  inde-  

pendent  of t h e  t a r g e t  and c o n t r o l  v e c t o r s  a t  o t h e r  t i m e  

p e r i o d s .  T h i s  i m p l i e s  t h a t  t h e  m a t r i c e s  Q and A a r e  b lock -  - - 
d i a g o n a l .  The l a r g e  m u l t i p e r i o d  problem may t h e n  be decom- 

posed i n t o  a sequence  of s m a l l e r  s i n g l e - p e r i o d  problems.  

The o b j e c t i v e  f u n c t i o n  becomes 

(1 .17)  

I t  i s  assumed t h a t  { z l ( ~ ) l  = ( 0 1 ;  t h e r e f o r e ,  w e  have - - 

min {$ ( T I  1 ' Q(T)  I- ( T I  1 - 

T- 1  
+ 1 [ { i c t ,  1 '  get, l y ( t )  - 1 + { z l  - ( t )  l '  ~ ( t )  { z l  - ( t )  l] . 

t = O  

The b lock -d iagona l  s t r u c t u r e  o f  Q and A i m p l i e s  t h a t  t h e  .., - 
v a l u e s  o f  t h e  t a r g e t  v a r i a b l e s  a t  t i m e  t a r e  i ndependen t  

o f  t h e i r  v a l u e s  a t  p r e v i o u s  and a t  l a t e r  t i m e  p e r i o d s .  

T h i s  is  deno ted  as t h e  assumpt ion  o f  i n t e r - t e m p o r a l  s e p a r a -  

b i l i t y  o f  t h e  o b j e c t i v e s .  The combina t ion  o f  (1 .18)  w i t h  

( 1 . 1 6 )  is  known as t h e  l i n e a r - q u a d r a t i c  c o n t r o l  problem,  

which h a s  r e c e i v e d  much a t t e n t i o n  i n  c o n t r o l  t h e o r y .  T h i s  



shows that the multiperiod Theil problem may be reduced to 

a linear-quadratic control problem by assuming inter-temporal 

separability of the objective and unidirectional causality 

of the population system. If these conditions are not met, 

one must apply the dynamic generalization of the Theil 

model (Theil, 1964, Chapter 4). 

In control theory, it is common to denote the 

target vector {y(t) by (x(t) 1, and the control vector 
.., - 

{zl(t)) - by (u(t)). - In most practical applications, it is 

also assumed that Q(t) = Q is equal for all time periods 
.., - 

up to T - 1. This assumption is only valid if the preference 

system and tastes do not change over time. It also implies 

that the contribution of a certain set of target and control 

values is independent of when they appear on the time path, 

since no discounting measure has been introduced. The 

matrix Q(T) is commonly denoted by F. The weight matrices - - 
A(t) associated with the instruments or controls are also 
* 

assumed to be time independent, and are denoted by R. The - 
multiplier matrix Ro is denoted by B. To facilitate refer- - - 
ence to the optimal control literature, we will adopt this 

notation in the remaind-er of this study. The linear- 

quadratic problem, therefore, is reformulated as 

subject to 



To s o l v e  ( 1 . 1 9 ) ,  one  c a n  a p p l y  t h e  c ruad ra t i c  program- 

ming a l g o r i t h m  t o  t h e  o r i g i n a l  T h e i l  problem w i t h  t h e  

m a t r i c e s  A ,  0 ,  R and S of  t h e  a p p r o p r i a t e  s t r u c t u r e .  However, - - -  - 
i f  T  and N a r e  of  some p r a c t i c a l  magni tude ,  t h e  s c a l e  o f  t h e  

problem becomes immense. Tn r e c e n t  y e a r s ,  a l g o r i t h m s  have 

been  sough t  which c o u l d  s o l v e  t h e  g e n e r a l  l i n e a r - a u a d r a t i c  

problem and dynamic problems d i r e c t l y .  The o ~ t i m i z a t i o n  o f  

such  dynamic sys t ems  may be  approached  from t h r e e  a l t e r -  

n a t i v e  p e r s p e c t i v e s :  

i .  V a r i a t i o n a l  c a l c u l u s ,  d e a l i n g  w i t h  t h e  problem 

of  f i n d i n g  t h e  f u n c t i o n  d e s c r i b i n g  t h e  o p t i m a l  

t r a j e c t o r y  of  t h e  sys tem.  The s o l u t i o n  of  such  

a  problem i n v o l v e s  t h e  d e t e r m i n a t i o n  o f  maxima 

and minima of  f u n c t i o n a l s  (Gel fand  and Fomin, 1 9 6 3 ) .  

ii. Dynamic programming, based  on B e l l m a n ' s  p r i n c i p l e  

o f  o p t i m a l i t y  (Bel lman,  1957)  . 
iii. Opt imal  c o n t r o l  t h e o r y ,  based  on t h e  "maximum 

p r i n c i p l e "  d e r i v e d  by P o n t r y a g i n  and h i s  a s s o -  

c i a t e s  (1962) .  

A d i s c u s s i o n  o f  t h e  t h r e e  app roaches  i s  beyond t h e  scope  

o f  t h i s  s t u d y .  The i n t e r e s t e d  r e a d e r  i s  r e f e r r e d  t o  t h e  

l i t e r a t u r e .  A c l e a r  e x p o s i t i o n  o f  t h e  r e l a t i o n s h i p  between 

t h e  c a l c u l u s  o f  f u n c t i o n a l s  and t h e  ca1.culus of  f u n c t i o n s  

i s  g iven  by Connors and Teichroew ( 1 9 6 7 ) .  How dynamic 

programming and o p t i m a l  c o n t r o l  t h e o r y  r e l a t e  t o  e a c h  o t h e r ,  

i s  d i s c u s s e d  by Noton (1972) .  A f i n e  t e x t b o o k  on a p p l i e d  

o p t i m a l  c o n t r o l  i s  Bryson and Ho (1969) . 
Optimal  c o n t r o l  h a s  t h e  b r o a d e s t  f i e l d  of  a p p l i c a t i o n .  

Problems which may be  s o l v e d  bv c a l c u l u s  of v a r i a t i o n s  o r  

by dynamic programming, c a n  a l s o  be  s o l v e d  by o p t i m a l  



control. Therefore, we adopt the optimal control approach 

to the optimization of dynamic population systems. This will 

enable us in Chapter 3 to derive the optimal solution to 

the linear-quadratic control problem. 



CHAPTER 2 

REPRESENTATION AND EXISTENCE THEOREMS 

OF MIGRATION POLICIES 

In this chapter we deal with constraints (1.6) and 

(1.16); in other words, with the demometric model repre- 

sentation of the dynamics of a population system, and with 

the policy model describing the goals-means relationship 

in migration policy. Nothing will be said about goal- 

setting or about the selection of optimal values for the 

instrument variables. These will be considered in the 

next chapter. 

Let us begin with a demometric model in the form of 

a system of simultaneous linear equations. It is assumed 

that the model has been specified and that the coefficients 

have been estimated. The model relates demographic with 

socio-economic variables, in a manner such as is found in 

Greenwood (1973, 1975b). We assume that the model is 

dynamic, i.e., that it contains lagged endogenous and 

exogenous variables. It is also assumed that the goals- 

means relationship of migration policy is known, i.e., the 

target variables and the instrument variables have been 

separated from the other endogenous and exogenous variables. 

We first transform the reduced form of the model into 

the discrete state-space form. A general solution of 

the discrete state-space equation is then derived. Next, 

we consider the question whether arbitrary specified 

levels of target variables can be reached by the existing 

set of instruments. The existence theorems which are 



derived are related to the rank of the matrix of impact 

multipliers. 

2.1. STATE-SPACE REPRESENTATION OF DEMOKETRIC MODELS 

Stimulated by recent work in optimal control and system 

theory, an increasing number of authors have adopted the 

state-space approach to describe dynamic models in the 

social sciences. This section describes the character- 

istics of the state-space model and the proced-ure for its 

solution. Since most demometric models are given in the 

reduced form, we also consider its transformation to the 

state-space form. 

2.1.1.  The State-Space Model 

The state-space representation of a linear system is 

defined by the following set of first order linear differ- 

2 ence equations : 

Iy (t) = C (t) IX - (t) + E - (t) {u - (t) ) 

where Ix(t) is an N-dimensional vector-valued function of - 
time, called the state of the system, 

Iu(t) is an K-dimensional vector-valued function of - 
time, called the input or control to the system, 

'we shall consider only the discrete state-space model. 
The continuous version is a set of differential eauations. 
For details see, for example, Director and Rohrer (1972) 
and Wolovich (1374) . 



{y(t) 1 is an P-dimensional vector-valued function of - 
time, called the output of the system, 

A ( t ) ,  3(t), C(t) and E(t) are real-time dependent - - - - 
matrices of dimension N x N, N x I<, P x N and 

P x K, respectively. 

If G(t) , B(t), C(t) and E(t) are constant over time, the - - - - 
system is time-invariant. In this section, we will only 

consider the case where these matrices are constant. Thus, 

The homogenous part of (2.3a): 

gives the growth of the system without intervention. The 

matrix G is the growth matrix. The discrete model of - 
population growth, studied by Rogers (1975; p. 123), is of 

this form. 

The interpretation of (2.3) as a migration policy model 

is straightforward. Suppose {x(t)) is the interregional - 
and/or age-specific population distribution. The matrix G 

is the population growth matrix, and {u(t)) is a vector of - 
instrument variables, which may range from pure demographic 

variables to socio-economic variables. It defines a 

policy at time t. The impact of each policy variable on 

the population distribution in the next period, is given 

by the elements of B. If {u(t)) has no lagged instrument - - 



variables, and if {u(t) .-- has no impact on {x(t)), - then B - is 
the matrix of impact multipliers. If the policy is a direct 

population influencing policy, then {u(t)) is expressed in - 
numbers of people, exactly as {x(t)), and therefore B is - .-- 

the identity matrix. 

In demographic policy problems with socio-economic 

goals, the target vector is not expressed in terms of popu-- 

lation distribution, but in terms of socio-economic variables. 

The matrix C transforms the population distribution ix(t)) into - - 
the vector {y(t)) of socio-economic target variables, whereas - 
E gives the direct impact of the policy variables on the - 
new target variables. In fact, C can be any transformation 

.-- 

matrix. For example, suppose (x(t)) is the regional distri- ... 

bution of the population by age. If the policy maker is 

interested only in the spatial distribution of the total 

population, then C will he a consolidation matrix. - 

2.1.2. Solution of the State-Space Model 

In order to derive the solution to (2.3a), we write 

(2.3a) for various t: 

Therefore the general solution to (2.3) is 



The solution to the homogenous part of (2.3a) is 

where Gt = @ (t,O) is known as the discrete state-transition - - 
matrix. The solution in terms of the state-transition 

matrix is: 

and 

t 
where @(t) = G . - - 

Consider the system where E = 0. Then - - 

Let ~ ( t )  = CG~-' - - - B, then - 



and, if j = t - i, 

If (~(0) is the initial population distribution, if (u(t) 
w - 

is vector of control or policy actions at time t, and if 

(y(t)) describes the population distribution at time t (in - 
this case, C - = I), - then H(j) is the matrix of dynamic impact - 
multipliers. The element hrs(j) represents the change of the 

population in group or region r at time t due to a unit 

change in the s-th instrument at time t - j. R(j) can also - 
be thought of as the contribution of the polj-cy action at 

time (t - j) to the population distribution at time t. Each 

matrix E(j) corresponds to the various submatrices of (2.15), - 
which are not in the first column. 

2.1.3. State-Space Representation of the Reduced Form Model 

The reduced form of a demometric model is 

where { y )  is the vector of endogenous variables, and 

(2) - is the vector of predetermined variables consist- 

ing of exogenous and lagged endogenous variables. 

The general reduced form is 



(2.9) 

where (t - i) indicates a time lag of i periods. In order 

to put ( 2 .9 )  into state-space form, we must define new 

variables and corresponding equations to replace the 

reduced form variables that have second order or higher 

order lags. The procedure is then one of the replacement 

of an r-th order difference equation by r first-order 

difference equations. 

First, let 

and 

Equation (2.9) then may be simplified to yield 



~ollowing IZenlcel (1974; pp. 295-299), we define a set of 

new vectors: 

{yl - (t) 1 = I v  - (t) 1 

Therefore (2.10) becomes 

{yl - (t) 1 = - A - ~ E ~ { ~ ~  - - (t - 1 + A-1E2{1)2(t - 1) 1*.. 

which may now be rewritten as a recurrence equation of the 

form 

where 

{x - (t) 1 = 



Equa t ion  (2 .11 )  i s  t h e  s t a t e - s p a c e  r e p r e s e n t a t i o n .  The 

s u b m a t r i c e s  i n  t h e  f i r s t  row d e n o t e  t h e  i n p a c t  on { y ( t ) )  o f  - 
t h e  v e c t o r s  o f  l agged  endogenous v a r i a b l e s .  The submat r ix  
- 

A 'D d e n o t e s  t h e  d i r e c t  e f f e c t  on ( y ( t )  ) of  t h e  exogenous - - - 
- 1 v a r i a b l e s .  A D o  i s  t h e  m a t r i x  o f  impac t  m u l t i p l i e r s .  The 

m a t r i x  - A " D ~  - g i v e s  t h e  d i r e c t  e f f e c t  ori i y ( t )  1 o f  t h e  v e c t o r  

of  exogenous v a r i a b l e s ,  l agged  by i p e r i o d s .  These a r e  n o t  

t o t a l  de . lay m u l t i p l i e r s ,  s i n c e  I z ( t  - i)) a l s o  a f f e c t s  - 
{ y ( t ) )  - t h r o u g h  i t s  impact  on  { ~ ( t  - k ) ] ,  k  = 1  ,..., i. 

There  i s  a n o t h e r  t r a n s f o r m a t i o n  o f  t h e  reduced  form t o  

t h e  s t a t e - s p a c e  form. T h i s  t r a n s f o r m a t i o n  h a s  no d i r e c t  

m o t i v a t i o n  f o r  demometric models ,  b u t  it f a c i l i t a t e s  t h e  

s t u d y  o f  t h e  s t a t e -  s p a c e  model.  Equa t ion  ( 2 . 1  0 )  rnay b e  

w r i t t e n  a s  



Suppose Er - is nonsingular, and define the new vectors 

The extended version of (2.13) then is 

where {x(t) - and {u(t) - are as defined in (2.12) , 



The m a t r i c e s  G and 6 a r e  g e n e r a l i z e d  companion m a t r i c e s .  - - 
I n  a  p r e v i o u s  p a p e r ,  we have a l r e a d y  i n t r o d u c e d  t h e  compan- 

i o n  m a t r i x  i n  t h e  demographic a n a l y s i s  (Wi l l ekens ,  1976b, 

p. 4 9 ) .  I t  h a s  been i n d i c a t e d  t h a t  t h i s  m a t r i x  c a n  p l a y  an  

impor t an t  r o l e  i n  t h e  r e c o n c i l i a t i o n  of d i s c r e t e  and c o n t i n -  

uous models of demographic growth.  Here we have shown t h a t  

t h e  companion m a t r i x  p r o v i d e s  t h e  n a t u r a l  l i n k  between t h e  

reduced  form model and t h e  s t a t e - s p a c e  model. A s i m i l a r  

l i n k  may b e  fo rmula t ed  between t h e  s t r u c t u r a l  form and t h e  

s t a t e - s p a c e  model. A d e t a i l e d  d e s c r i p t i o n  of  t h e  t e c h n i q u e  

i s  g i v e n  by Pindyck (1973; pp. 89-94) .  

2 . 2 .  EXISTENCE THEOREMS OF MIGRATION POLICIES I 
I 

I t  i s  argued  t h a t  t h e r e  a r e  two c e n t r a l  i s s u e s  i n  t h e  

t h e o r y  of p o l i c y .  These a r e  t h e  c o n c e p t s  o f  e x i s t e n c e  and 
I 

o f  d e s i g n .  E x i s t e n c e  of  p o l i c y  r e f e r s  t o  t h e  c o n t r o l l a b i l i t y  

of  t h e  sys tem o r  t h e  a b i l i t y  t o  d e s i g n  any p o l i c y  a t  a l l ;  

d e s i g n  r e f e r s  t o  t h e  t e c h n i q u e s  f o r  d e s i g n i n g  o p t i m a l  p o l i c i e s  

once  e x i s t e n c e  i s  a s s u r e d .  Although b o t h  i s s u e s  have been 
I 

r ecogn ized  f o r  a  long  t ime  i n  sys tem t h e o r y ,  p o l i c y  a n a l y s i s  

i n  t h e  s o c i a l  s c i e n c e s ,  l e d  by t h e  t h e o r y  o f  economic 

p o l i c y ,  h a s  focused  a lmos t  e n t i r e l y  on  t h e  d e s i g n  problem. 

Only Tinbergen  (1963)  h a s  g i v e n  c o n s i d e r a b l e  a t t e n t i o n  t o  



both issues. His policy model is formulated in the reduced 

form. An alternative representation is the state-space 

format. 

 his section is divided into two narts. The first 

deals with the existence of optimal policies in the Tinbergen 

framework. The other derives existence theorems for the 

state-space model. Until very recently, the existence of 

optimal policies in the state-space framework has not been 

investigated in the theory of economic policy. Based on 

findings of system theory, Aoki (1973, 1974, 1975) and 

Preston (1974) have supplemented Tinbergen's existence 

theorem with theorems related to state-space economic models. 

2.2.1. Existence Theorem in the Tinbergen Model 

Recall the Tinbergen model 

In the original formulation, (1.3) represented a static 

policy problem, i.e. the targets and the instruments belonyed 

to the same time period. The model, however, may include 

lagged variables in the vector of uncontrollable variables 

{z21. Contrary to Preston's (1974; p. 65) claim, the 

Tinbergen model also fits dynamic situations, where the 

targets and instruments belong to different time periods. 

This is shown in (1.11). The cornerstone of Tinbergen's 

theory of policy is the condition for which there exists 

for any a corresponding unioue policy vector {Ill such - - 
that (1.3) is satisfied. In other words, under what condi- 

tions has (1.3) a unique solution for {zl}? The necessary - 



and s u f f i c i e n t  c o n d i t i o n  i s  t h a t  R i s  o f  f u l l  r a n k ,  and - 
t h a t  t h e  number o f  t a r g e t s  i s  e q u a l  t o  t h e  number o f  i n s t r u -  

men t s .  T h i s  s t a t e m e n t  i s  g e n e r a l  enough t o  e n c o u n t e r  dynamic 

p o l i c y  p rob lems  where t i m e  series o f  t a r g e t s  a r e  g i v e n  and  

where t i m e  series o f  i n s t r u m e n t s  a r e  s o u g h t .  The uniqueness 

o f  t h e  i n s t r u m e n t  v e c t o r  i s  an  u n n e c e s s a r i l v  r e s t r i c t i v e  

c o n d i t i o n .  An i n f i n i t e  number of p o l i c y  v e c t o r s  may e x i s t  

which l e a d  t o  t h e  same t a r g e t  v e c t o r .  The c o n t r o l l a b i l i t y  

theorem f o r  t h e  T inbe rgen  model i s ,  t h e r e f o r e ,  s t a t e d .  as 

f o l l o w s :  

TIIEOREbI 1  : T i n b e r g e n  C o n t r o l l a b i l i t y  Theorem 

The p o l i c y  model 

i y l  .., = R i z l l  - - 

i s  c o n t r o l l a b l e  f o r  a l l  l y l  = l i l  i f  and o n l y  i f  t h e  - 
m a t r i x  m u l t i p l i e r  R s a t i s f i e s  t h e  c o n d i t i o n  - 

r a n k  ( R )  = N - 

where  N i s  t h e  number o f  t a r g e t s .  The c o n t r o l  v e c t o r  { z , }  - 
i s  un ique  i f  R i s  N x  N .  T h i s  c o n d - i t i o n  i s  a  r e f o r m u l a t i o n  - 
o f  T i n b e r g e n ' s  p r o p o s i t i o n  t h a t  t h e r e  e x i s t  a s  many i n s t r u -  

ments  a s  t h e r e  a r e  t a r g e t s .  

To p r o v e  Theorem 1 ,  r e c a l l  t h a t  R i s  a  N x K m a t r i x ,  - 
where  N i s  t h e  number of  t a r g e t s  and  K i s  t h e  number o f  

i n s t r u m e n t s .  I n  t h e  p r e v i o u s  c h a p t e r ,  w e  made t h e  assump- 

t i o n  t h a t  b o t h  t h e  t a r g e t s  and. t h e  i n s t r u m e n t s  a r e  l i n e a r l y  



i ndependen t .  T h i s  i m p l i e s  t h a t  t h e  e q u a t i o n s  o f  ( 1 . 3 )  a r e  

i ndependen t .  The sys tem ( 1 . 3 )  i s  c o n s i s t e n t ,  i . e .  h a s  a  

s o l u t i o n  i f  and  o n l y  i f  t h e  number o f  unknowns Y\ i s  g r e a t e r  

t h a n  o r  e a u a l  t o  t h e  number of e u u a t i o n s  U. But t h i s  

i m p l i e s  t h a t  t h e  rank  of R i s  N .  I f  K i s  less t h a n  N, t h e  
w 

r ank  o f  R i s  K < N, and t h e  sys tem i s  i n c o n s i s t e n t .  The 

g e n e r a l  s o l u t i o n  t o  a  c o n s i s t e n t  sys tem i s  (Rogers ,  1971;  

p .  258 ) :  

where R i s  a  g e n e r a l i z e d  i n v e r s e  of  R ,  s a t i s f y i n g  - - 

and ( c )  i s  an a r b i t r a r y  v e c t o r .  - 

I f  K > N ,  t h e r e  e x i s t s  an  i n f i n i t e  number o f  i n s t r u m e n t  

v e c t o r s  a s s o c i a t e d  w i t h  {i). However, i n  most c a s e s ,  t h e r e  

i s  o n l y  one i n s t r u m e n t  v e c t o r  which i s  most s u i t e d  t o  t h e  

p o l i c y  m a k e r ' s  p r e f e r e n c e s .  The d e s i g n  o f  such  a  p o l i c y  

v e c t o r  w i l l  be d i s c u s s e d  i n  t h e  n e x t  c h a p t e r .  I f  on t h e  

o t h e r  hand K = N ,  t h e n  R is  n o n s i n g u l a r  and (1 .3 )  h a s  a  - 
unique  s o l u t i o n :  



2.2.2. Existence Theorems in the State-Space Model 

In the previous chapter, the state-space model was 

derived by introducing the assumptions of unidirectional 

causality and time independence into the Tinbergen model. 

Recall 

Two existence problems may be distinguished. The first deals 

with the question of whether there is a seuuence of control 

vectors (u(t)), t = 0, ...,T-l, such that a desired target - 
vector can be achieved at a predefined planning horizon T. 

The second deals with the question whether there exists a 

sequence of control vectors {u(t)), t = 0, ..., T-1, such that - 
any sequence of target vectors {y(t)), t = 1, ..., T can be - 
realized. The first existence problem is known in system 

theory as state and output controllability; the latter is 

sometimes referred to as output function controllability. 

The state and output controllability has received most 

attention in the literature. Both existence problems will be 

dealt with below. TWO applications will be discussed: 

the separation of the controllable and the noncontrollable 

parts of the system, and the achievement of the targets with 

a minimum number of instruments. 
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a. State and Out~ut Controllabilitv 

The system 

is said to be controllable (state controllable) if and only 

if there exists a control {u(t)) which transfers any initial - 
state {x(tO)} at any time to to any arbitrary final state - 
{x(tl)} at any time tl > to 2 0, (Wolovich, 1974; p. 65). - 
Otherwise, the system is uncontrollable or only "controllable 

in part," i.e. it may be possible to transfer certain states 

to any desired final states or to transfer all the states to 

a position close to the desired states. 

The controllability concept assumes that there is no 

constraint on {u(t) 1 .  The only requirement is that there - 
exists a trajectory between the initial and the terminal 

state. 

In order to determine conditions for controllability 

of (2.3a), consider its solution 

which may be rewritten as 



where {x(t) 1 and {x(o) 1 are given and G is time-invariant. - - - 
The dimension of the target vector {x(t)) is M (t = 1, ..., T )  - 
and of the control vector {u(t)) is K (t = 0, ..., T-1). The - 
matrix 

is therefore of dimension N x xt. Equation (2.3a) is control- 

lable, or there exists a solution to (2.17) if the rank of D is N. - 
If t > NI i.e. if the number of control intervals is greater 

than the number of targets, then we don't need to consider 

the whole matrix D - to evaluate the controllability of (2.3a). 
According to the Cayley-Hamilton theorem, each matrix 

satisfies its own characteristic eauation. If G has the 
-, 

characteristic eauation 

then 

Therefore G~ and any G - - (i - > 0 )  is linearly dependent on 

2:. . :GN-1 [ I ~ G ~ G  - - - . _ I .  It follows that no extra inde~endent 

column vectors would be added to D if there are more than - 
N control intervals. 

This result is formulated as follows: 



THEOREM 2: State Controllability Theorem 

The dynamic system 

is completely controllable for all {x(t)) ... = {G(t)) ... if and 

only if the N x KN matrix 

is of rank N. This theorem has been considered by Preston 

(1974, p. 68) as the dynamic generalization of Tinbergen's 

theory of policy. Several observations may be made at this 

point. 

a) It is a corollary to the theorem that if a target 

vector cannot be reached in N control intervals, it will ... 
never be reached. This is important for policy purposes, 

since it answers the question of how fast a target population 
7 

distribution, for example, can be achieved". 

b) Tinbergen-controllability impties state control- 

lability. If the rank of B is N, as required for ... 
Tinbergen controllability, then the rank of D is N also. ... 
If the rank of B is N, then the targets can be reached in ... 
only one control interval (tl = to + 1 ) . 

c) An argument similar to the one leading to Theorem 

2, may be used to derive the conditions for output 

'under the assumption that no constraints are imposed 
on the trajectory of control and state variables. 



controllability. The system 

is output controllable if and only if there exists a control 

vector {u(t) 1 which transfers any initial output {y(t )I at - - 0 

time to to any arbitrary final output {y(tl) 1 at any - 
t, > to. Nolovich (1974; p. 71) states the condition for 

output controllability to be 

CGIJ- 1 rank [ c B ~ c G B ~ * * :  - -  ---  - - B:E] = P - - (2.20) 

if P x 1 is the dimension of the output vector. Output 

controllability is sometimes referred to as reproducibility 

(Brockett and ~esarovid, 1965; p. 549). 

d) The "dual" notion of controllability is observ- 

ability. The system (2.3) is said to be observable if and 

only if the entire state {x(t)) can be determined over any - 
finite interval [tO,tll from complete knowledge of {u(t)1 - 
and {y(t) 1 over the interval [tortl] with tl > to 2 0 

(Wolovich, 1974; p. 73). The condition for observability 

is that the PIN x N matrix 



be of rank N. Equation (2.3b), written out for the time 

periods t = 0, ..., N-1, while noting that 

gives 

(2.22) 

where {u(t) - and {y(t)) w are known for t = 0, ..., IJ-1, and 
{x(o) ) is unknown. System (2.22) consists of FIN equations in - 
N unknowns. {x(O)) can be calculated if Q has rank N. If - 
{x(O)) is known, the whole sequence of state vectors is known - 
by (2.3a). 

The notion of observability might be useful in the 

study of populations with incomplete data. For example, 

let {x(O) ) be the spatial distribution of a population by 
* 

age group, at time t = 0. Let {y(t)) - be the observed spatial 

distribution of the total population at tine t and let 

{u(t) = {O) for all t. The matrix C is then a consolidation - - - 
matrix. Assuming that the condition for observability is met, 

and that G is known and remains constant in time, {x(O) can - - 
be computed from {y(t) [t = 0, ..., N-11. If G - is unknown, it 
may be approximated by some underlying model mortality, 

fertility and migration schedules. 

The problem of controllability and observability has 

been studied by Vajda (1975) in manpower planning, although 



the author does not refer to the concepts and theorems just 

described and instead focuses on totally different techniques. 

He uses the simplex algorithm to determine the population 

distribution from which a given distribution can be obtained, 

and to find out if a target distribution can be reached from 

the present distribution in one, two or more steps. 

b. Output Function Controllability 

The controllability concept discussed in the previous 

section dealt with the existence of a control vector, such 

that a desired target vector can be achieved at a predefined 

planning horizon. In practice, policy makers would be 

interested in not only achieving desired target values, but 

also keeping them on some desired time trajectory once 

achieved, or achieving the targets along a desired path. 

It is not uncommon in politics that short term objectives 

conflict with long term goals. In designing a policy to 

achieve the short term objectives, the policy maker includes 

elements which make the long term goals unattainable. The 

careful policy-maker, therefore, will design a policy that 

enables him not only to achieve, for example, a desired 

population distribution at a certain point in time, but also 

to control the growth path of the multiregional population 

system bnce the target distribution is achieved. A system 

whose trajectory is controllable is called output function 

controllable or, equivalently, functionally reproducible 

(Brockett and Mesarovie, 1965; p. 556). 



R e c a l l  t h e  dynamic system d e s c r i b e d  by ( 2 . 3 )  

{x - ( t  + 1 ) = G{x (t) } + ~ { ~ ( t )  } - - - - 

where {x  ( t )  1 is  t h e  N x  1 s t a t e  v e c t o r ,  - 
{ u ( t )  1 i s  t h e  K x  1 c o n t r o l  o r  i n p u t  v e c t o r ,  and - 
{ y ( t ) }  i s  t h e  P x  1 o u t p u t  v e c t o r .  - 

I f  t h e  t a r g e t  i s  r e l a t e d  t o  t h e  s t a t e  o f  t h e  sys tem,  (2 .3h)  

may be  d e l e t e d ,  o r  C may be set i d e n t i c a l  t o  t h e  i d e n t i t y  
.., 

m a t r i x .  I n  o r d e r  t o  d e r i v e  t h e  c o n d i t i o n  f o r  o u t p u t  f u n c t i o n  

c o n t r o l l a b i l i t y ,  w e  t a k e  z - t r ans fo rms  i n  e q u a t i o n  ( 2 . 3 )  

( D i r e c t o r  and Rohrer ,  1972; p .  317) : 

Thus 



The P x K matrix 

is called the discrete transfer matrix (Director and Rohrer, 

4 1972; p. 317) . The transfer matrix describes the relation- 

ship between the output {y(t)) - and the input {u(t)) - of the 

system. It is independent of any particular choice of 

{x(O) ). Euuation (2.23) mav he written as - 

This allows us to formulate precisely the question of out- 

put function controllability and to answer it. 

The question of output function controllability is: 

given any desired P-dimensional output vector {y(t) 1, - 
defined for all t > to, and the initial state {x(0) 1 ,  can - 
the sequence { y  (t) 1, t 2 to be obtained by choosing the 

appropriate sequence {u(t) 1 ,  t 2 to? The answer to this 

question is formulated in the following theorem. 

THEOREM 3: Output Function Controllability Theorem 

The system 

 he discrete transfer matrix is the analogue of the 
transfer matrix of continuous models, derived using Laplace 
transforms : 

See Director and Rohrer (1972; p. 303) and Wolovich (1974; 
p. 101). 



i s  o u t p u t  f u n c t i o n  c o n t r o l l a b l e  i f  and  o n l y  i f  t h e  r a n k  o f  

t h e  t r a n s f e r  m a t r i x  

i s  e q u a l  t o  P. The c o n t r o l  { u ( t )  1 ,  t 2 to ,  i s  u n i u u e  i f  P - 
i s  e q u a l  t o  K .  The e x i s t e n c e  t heo rem,  f o r m u l a t e d  by Wolovich 

(1974;  p.  164 )  s t a t e s  t h a t  t h e  t r a n s f e r  m a t r i x  mus t  have  a n  

i n v e r s e ,  i - e .  mus t  b e  n o n s i n g u l a r .  The c o n t r o l  s e q u e n c e  h e  

d e r i v e s ,  i s ,  t h e r e f o r e ,  u n i q u e .  IIowever, t h e  u n i q u e n e s s  of 

{ u ( t ) )  i s  n o t  a  n e c e s s a r y  c o n d i t i o n  f o r  o u t p u t  f u n c t i o n  - 
c o n t r o l l a b i l i t y .  I f  P  < K ,  a n  i n f i n i t e  number o f  c o n t r o l  

s e q u e n c e s  l e a d s  t o  t h e  d e s i r e d  o u t p u t  s equence .  

The c o n d i t i o n  f o r  o u t p u t  f u n c t i o n  c o n t r o l l a b i l i t y  nay  

a l s o  be  e x p r e s s e d  i n  terms o f  t h e  m a t r i c e s  G I  B and  C o f  - - - 
t h e  o r i g i n a l  s y s t e m  ( 2 . 3 )  ( B r o c k e t t  and Mesa rov ib ,  1965;  

p.  5 5 6 ) .  

The s y s t e m  

{ x  - (t  + 1 )  1 = G { x ( t )  - - 1 + B{U (t) ] 
* - 

i s  o u t p u t  f u n c t i o n  c o n t r o l l a b l e  i f  and  o n l y  i f  t h e  

PN x  (2N - 1) K m a t r i x  



- -  - - -  - -  - - - - - -  - 
CB CGB * - -  cGN-2B - cGN-l - -  . . . 
0 CB *-• - - -  

... 
0 0 CB CGB - - - 

i s  o f  r ank  PN. (See  R .  B r o c k e t t  and M .  Elesarovi6 (1965; 

pp.  556-559) f o r  t h e  formal  p r o o f . )  Two o b s e r v a t i o n s ,  which 

a r e  c o r o l l a r i e s  t o  theorem 3 ' ,  may be  made a t  t h i s  p o i n t .  

a )  Output  f u n c t i o n  c o n t r o l l a b i l i t y  i m p l i e s  o u t p u t  

c o n t r o l l a b i l i t y .  I n  a c o r o l l a r y  t o  Theorem 2 ,  t h e  sys t em 

( 2 . 3 )  was s a i d  t o  be o u t p u t  c o n t r o l l a b l e  i f  

. . 
r a n k  CQ - - = [ C B ~ C G R : * * : C G ~ - ~ B I  = P . - -  - - -  - - - 

The m a t r i x  CQ i s  t h e  l a s t  row of F .  Now, i f  t h e  r ank  o f  - - - 
F is  PN, t h e n  t h e  r ank  of  CQ must b e  P and t h e  sys tem i s  - - - 
o u t p u t  c o n t r o l l a b l e .  

b )  A s u f f i c i e n t  c o n d i t i o n  f o r  F t o  be  o f  r ank  P N  i s  - 
t h a t  

f o r  any N .  T h i s  means t h a t  t h e  number of  t a r g e t  v a r i a b l e s  

must b e  less t h a n  o r  e q u a l  t o  t h e  number o f  i n s t r u m e n t  

v a r i a b l e s  (Aoki ,  1975;  p.  2 9 5 ) .  T h i s  l e a d s  Aoki t o  conc lude  



that the condition for output function controllability is a 

more proper dynamic generalization of Tinbergen's theory of 

policy than is the condition for output controllability pro- 

posed by Preston (1974; p. 6 8 ) ,  because the former contains the 

original Tinbergen condition that the number of targets 

cannot exceed the number of instruments. 

c. Se~aration of Controllable a-nd Non-Controllable 

Parts of a System 

If a system is not completely state controllable, i.e. 

the rank of D is less than N, it is important for policy - 
purposes to determine the controllable part of the system. 

Two relevant methods are given below. The first is based 

on the diagonalization of the matrix G. The other method - 
starts directly from the controllability condition. 

Assume that the growth matrix G is primitive, a common - 
assumption in the mathematical demography literature. Then 

G has N distinct eigenvalues, and N linearly independent - 
eigenvectors. Now, any square matrix of order N that has N 

!J linearly independent eigenvectors may be diagonalized . 
Let P be the modal matrix, formed by stacking the N eigen- - 
vectors side by side. Because the eigenvectors are linearly 

independent, P - is nonsingular. Equation (2.3a) can be 

written in its canonical form 

&(t - + 1) 1 = A C & ~ )  1 + G{u (t) 1 -. - - - 

- - 

ti he condition of distinct eigenvalues is sufficient 
but not necessary. (Rogers, 1971; p. 412.) 



where 

B = P-'B , - - - rank ( 6 )  = K 5 N . - 

A - is the diagonal matrix of eigenvalues of G. - 
We now use the result that system controllability is 

unaffected by any equivalence transformation of the state 

(Wolovich, 1974; p. 76). The system (2.3a) is controllable 

if and only if (2.29) is controllable. With A - diagonal, 
A 

an element si(t + 1) is only affected by :ci(t) and is 

uncoupled from 2 t , j # i. Therefore, a control of 
j 

x (t + 1) requires that i 

where isi)' is the i-th row of 6 .  The vector 16~)' must have - - - 
at least one nonzero element. Preston (1974; p. 69) labels 

the condition that there exists at least one nonzero element 

in each row of the transformed instrument coefficient matrix 

$ = P-'B as the coupling criterion. The coupling criterion - - 
is an alternative condition for the controllability of the 

dynamic system (2.3a) . 
In order to separate the controllable part of a system, 

it is not necessary to compute all the eigenvalues and eigen- 

vectors. An alternative transformation is given by MacFarlane 

(1970; pp. 466-469). It starts out from the matrix: 



Define S as the N x Nk matrix oStained by selecting from left - 
to right as many linearly independent columns of D as possibl-e. - 
The column vectors of S span the controllable subspace of the - 
target space, and any vector in this subspace can be expressed 

as a linear combination of these basic vectors. If the 

system is controllable, S is of full rank, i.e. N = N - k' 

If the system is only controllable in part, Nk < N. Define 

any N x ( N  - Nk) matrix X such that - 

is nonsingular. Then 

Hence, Y and W satisfy the conditions - - 

And the dynamic system 



is transformed to 

Y G S  YGX 
+ 1 ) .  = [.,; ,;]{it)} + [::I {?(ti} (2.30) - 

- - -  - - - - - 

It already has been stated that the controllability of 

(2.3a) is not affected by an equivalence transformation. 

It is also true that the controllable subspace is invariant 

under the operator G .  Therefore, for any vector {siI in the - - 
controllable subspace, the vector O{siI must lie in the same - - 
subspace. However, since WS = 0, the rows of N are orthog- - - - - 
onal to the columns of S ,  and, therefore, to any vector - 
lying in the subspace spanned Sy the columns of S .  This - 
implies 

WGS = 0 . - - - - 

The column vectors of B also belong to the controllable - 
subspace spanned by S, so that - 

W S = O  . - - - 

We may write 



It follows that the controllable part of the system is given 

by 

where {Gl - (t) 1 has dimension Nk x 1. The vector Y G X { ~ ~  ---  - (t)) can 

be treated as a known disturbance. The (N - lJk) dimensional 

subsystem defined by the remaining rows of (2.31), namely 

is completely independent of {u(t) - 1, and therefore is 

uncontrollable. 

d. Achieving the Targets with a Minimal Number of 

Instruments 

Applying the above transformations to uncouple the 

controllable part of the system from the uncontrollable 

part, an important question in policy-making may he answered: 

what is the minimal number of dynamic instruments, needed 

to steer the system towards a set of targets. Consider 

(2.3a). Assume that only one instrument ui(t) is used in 

policy implementation. Whether this instrument can transfer 

the system from {x (0) 1 to {x (T) ) depends on the control- - - 
lability of the subsystem 

where {bi) is the i-th column of the matrix B. The system - 
(2.34) will be controllable with the i-th instrument if 



the matrix 

N- I  

is of rank N. 

In terms of the coupling criterion, the existence 

condition is that 

contains N nonzero elements, since the zero elements indicate 

the noncontrollable part of the system. A zero element 
h 

occurs in {bi} whenever a row of P - I  is orthogonal to the 

vector {b. 1. The rows of P-' are the normalized left eigen- - 1 - 
vectors of G.6 - Zero elements in {Lil are precluded if and - 
only if {bil - is linearly dependent on all the PI eigenvectors 

of G. Preston (1970; p. 70) refers to this condition - 
as the eigenvector condition. If there exists one instrument 

that does not violate the eigenvector condition, the system 

can be controlled by just one instrument. If no instrument 

satisfies the eigenvector condition, a combination of instru- 

ments may still satisfy the coupling criterion, if their 

nonzero elements mutually offset the zero elements that 

disqualify them individually. Therefore, the minimal set 

- - -  - - - -- -- - - - - - 

6 ~ h e  first row of P-I has special meaninq in demography. 
It shows the reproductiGe values of the population. 
(Keyfitz, 1968; p. 53.) 

 h his may be compared with the possibility of writing 
the observed population distribution as a linear combina- 
tion of the right eigenvectors of G .  (Keyfitz, 1968; p. 56.) - 



of instruments necessary and sufficient for dynamic control- 

lability is equal to the number of columns, ;, of the 

smallest matrix possessing N nonzero rows. 
.., 

The result that under certain circumstances defined by 
h 

B, all the targets can be reached by using only one instru- 
.., 

ment, is rather intriguing and is totally contrary to the 

thinking engendered by the Tinbergen framework. It means, 

for example, that a desired population distribution over N 

regions can be realized by having a population policy in 

only one region. The achievement of the target distribution, 

however, needs time. From looking at the Q-matrix, it is 
w 

clear that if there is only one instrument, the objective 

8 can only be reached after N periods of time . Therefore, 

there exists a trade-off between the minimal length of the 

planning horizon and the minimal number of instruments. 

If the targets must be reached immediately (T = I ) ,  

the minimal number of instruments is N, since 

must be of rank N. Equation (2.35) is the static control- 

lability condition, discussed earlier. 

-- - -- - - - -  - 

8 ~ t  should be remembered that the controllability 
condition is based on the assumption that no constraints are 
imposed on the instrument. Constraints would reduce the 
degrees of freedom associated with dynamic controllability. 



CHAPTER 3 

DESIGN OF OPTIMAL MIGRATION POLICIES 

Any d e s i g n  of o p t i m a l  p o l i c i e s  shou ld  b e g i n  w i t h  a  

s t a t e m e n t  o f  o b j e c t i v e s .  Thus f a r  w e  have focused  o u r  

a t t e n t i o n  on t h e  d e s c r i p t i o n  o f  system dynamics by means o f  

a  demometric model. W e  have answered t h e  q u e s t i o n  under  what 

c o n d i t i o n s  it i s  p o s s i b l e  t o  s p e c i f y  c e r t a i n  o b j e c t i v e s  o r  

t a r g e t s  and t o  a c h i e v e  them by t h e  i n s t r u m e n t s  a t  hand. 

Under v e r y  s p e c i f i c  c o n d i t i o n s ,  t h e r e  is  a  unique  i n s t r u m e n t  

v e c t o r  a s s u r i n g  t h e  achievement  o f  t h e  t a r g e t s .  The o p t i m a l  

l e v e l s  o f  t h e  i n s t r u m e n t  v a r i a b l e s  t h e n  f o l l o w  d i r e c t l y .  Under 

o t h e r  c o n d i t i o n s ,  however, t h e r e  i s  an i n f i n i t e  number o f  

combina t ions  of t h e  i n s t r u m e n t s  t h a t  l e a d  t o  t h e  d e s i r e d  

t a r g e t s .  I n  t h i s  c a s e ,  t h e  p o l i c y  maker is  c o n f r o n t e d  w i t h  

an a d d i t i o n a l  d e c i s i o n  problem: which a l t e r n a t i v e  se t  o f  

i n s t r u m e n t s  t o  choose .  T h i s  r e q u i r e s  t h e  se t -up  of  a  c o s t  

f u n c t i o n  o r  w e l f a r e  l o s s  f u n c t i o n  which a g g r e g a t e s  t h e  

r e l a t i v e  c o s t s  i n c u r r e d  i n  t h e  implementa t ion  of  each  i n s t r u -  

ment. O r  t h e  f e a s i b l e  se t  o f  i n s t r u m e n t s  may b e  l i m i t e d  by 

imposing c o n s t r a i n t s  on them. A f u r t h e r  p o s s i b i l i t y  i s  t h a t  

t h e  o b j e c t i v e s  a r e  o v e r s t a t e d ,  i . e .  t h a t  no combina t ion  o f  

i n s t r u m e n t s  c a n  b e  found t h a t  r e a l i z e s  a l l  t h e  t a r g e t s .  

The sys tem i s  u n c o n t r o l l a b l e  and a g a i n  t h e  p o l i c y  maker 

h a s  an a d d i t i o n a l  d e c i s i o n  t o  make: where shou ld  he modify 

h i s  p r e f e r e n c e  system? Is he w i l l i n g  t o  g i v e  up some 

t a r g e t s  comple t e ly  i n  o r d e r  t o  a c h i e v e  t h e  o t h e r s ,  o r  i s  

he s a t i s f i e d  w i t h  approximat ing  a l l  t h e  t a r g e t s  w i t h o u t  

r e a c h i n g  them e x a c t l y ?  T h i s  amounts t o  s p e c i f y i n g  a  w e l f a r e  

f u n c t i o n  o f  t h e  t a r g e t  v a r i a b l e s  o f  i n t e r e s t .  The 



coefficients of the welfare function are the trade-offs 

between the target variables. The specification of the 

cost and the welfare function is the most difficult and 

the most socially sensitive task in the policy design 

process. In this paper, we make the assumption that these 

functions are given by the policy maker. 

This chapter is divided into three sections. The 

first discusses the design of optimal policies in the 

Tinbergen framework. It will be shown that in some instances 

implicit objective functions may be used to derive the 

optimal policy. The unifying feature of this section is 

the notion of the generalized inverse. The importance of 

the minimizing properties of generalized inverses for policy 

analysis will be illustrated. The other two sections are 

related to the state-space model and consider time series 

of controls. The policy problem in which all targets relate 

to the planning horizon is discussed in the second section. 

The last section treats the policy design in the case that 

a target trajectory is given. It applies the theory of 

optimal control to migration policy problems. 

3.1. DESIGN IN THE TINBERGEN FRAMEWORK 

From the previous chapter, we know that an optimal 

policy exists if the rank of the impact multiplier matrix 

R is equal to the number of targets. The targets may - 
belong to one time period or to different periods. Follow- 

ing Tinbergen, we consider three cases according to the 

relationship between the number of targets (N) and the 

number of instruments (K) or, equivalently, to the rank of 

the multiplier matrix and its singularity property. 



3 .1 .1 .  The M a t r i x  P l u l t i p l i e r  i s  Mons ingu l a r  and  of  P.ank N 

R e c a l l  e q u a t i o n  ( 1 . 3 )  : 

I f  R i s  n o n s i n g u l a r ,  t h e n  t h e  o p t i m a l  p o l i c y  i s  u n i q u e  - 
and g i v e n  by ( 1 . 4 )  

I t  i s  c l e a r  f rom ( 1 . 4 )  t h a t  t h e  p o l i c y  depends  n o t  o n l y  on 

t h e  t a r g e t  v e c t o r ,  b u t  a l s o  on  t h e  u n c o n t r o l l a b l e  v a r i a b l e s .  

I f  { z 2 1  h a s  some l a g g e d  endogenous  v a r i a b l e s ,  t h e n  t h e  - 
e f f e c t s  o f  p a s t  p o l i c i e s  w i l l  be  f e l t  i n  t h e  c u r r e n t  p o l i c y .  

The n a t u r e  o f  t h e  dependence  o f  {i upon { y )  i s  - 1  - 
a s s o c i a t 6 d  w i t h  d i f f e r e n t  t y p e s  o f  s t r u c t u r e s  o f  t h e  m a t r i x  R.  

They werk d i s c u s s e d ' i n  C h a p t e r  1 .  S i n c e  t h e r e  i s  o n l y  o n e  

p o s s i b l e  s e t  o f  i n s t r u m e n t s  l e a d i n g  t o  t h e  t a r g e t  v e c t o r  

ti}, no c o s t  o r  w e l f a r e  f u n c t i o n  i s  needed t o  d i s t i n g u i s h  

between a l t e r n a t i v e s .  

3 .1 .2 .  The M a t r i x  f l u l t i p l i e r  i s  S i n g u l a r  and o f  Qank M 

I f  N < K ,  t h e r e  e x i s t s  a n  i n f i n i t e  number o f  i n s t r u m e n t  

v e c t o r s  which  l e a d  t o  t h e  ach i evemen t  o f  a  p r e a s s i g n e d  

v a l u e  o f  t h e  t a r g e t  v e c t o r .  The s o l u t i o n  se t  t o  (1 . 3 )  may 

be  r e p r e s e n t e d  by 



where R ( ' )  is a generalized inverse of R ,  satisfying - - 

and {c) is an arbitrary vector. - 

In order to get a unique instrument vector, one must 

impose additional conditions on {al}. TWO illustrations - 
are given of how this may he done. Both minimize a function 

of {zl} over a constrained set. The first illustration is - 
the formulation of a general mathematical programing nroh- 

lem. The second makes use of the minimizing ~ro~erties of 

some types of generalized inverses. 

Illustration a: Suppose a cost or welfare loss function 

f({zlj) has been defined. One wants to minimize this - 
function subject to the dynamic behavior of the system and 

to some other constraints imposed upon the instrument vector 

and represented by the vector-valued inenuality g({zl}) .., 2 0. 

The problem then may be formulated as a mathematical program- 

ming problem, 

min f ({zl - 1 )  

subject to 

If g({z2)) and f ({zl)) - are both linear, the problem is a 

linear programming problem and can be solved by the simplex 

technique. 



Illustration b: This illustration is a'special case 

of the problem (3.2). We delete the constraint g({z,}) - 2 O I  

and we let f({zl}) - be the Euclidean norm defined on {zl). - 

Ben-Israel and Greville (1974; p. 114) prove that the uniaue 

solution to this problem is given by 

where R ( I  4, is a qeneralized inverse satisfying - 

and 

Because R ( ' 4, defines a minimum norm solution to (1 -3) , 

it is often called the "minimum-norm inverse." 

There may be other norms defined on the instrument 

vector. Suppose the policy maker lists some most acceptable 

values of the instrument variables { I and wants to - 
minimize the sauared deviation between the optimal values 

and these preassigned values. The policy model is then 



The optimal solution is given by 

The matrix R - ' 4, has a special meaning for policy analysis. 

('I4) indicates the change in the i-th instru- An element rij 

ment variable required for a unit change in the j-th target 

variable, assuming that {z2), and, in the second case, also .., 

{il 1 remain unchanged. It is, therefore, a multiplier in - 
the economic sense, measuring the relative effectiveness of 

the i-th instrument. 

3.1.3. The Matrix Plultiplier is Singular and of Rank K 

If N > K, the system (1.3) is inconsistent and no 

solution exists, i.e. the residual vector {r) is nonzero, where - 

where is the realized value of the target vector. - 
In this case, it is common to search for an approximate 

solution of (1.3), which malces {r) closest to zero in some - 
sense. Again two illustrations will be given. As before, 

the first is a mathematical programming model, namely, a 

quadratic programming model, and the second applies the 

minimizing properties of some generalized inverses. 



Illustration a: Theil (1964; p. 159) was the first 

to assume that a policy-maker, confronted with an over- 

statement of his goals set, i.e. N > K, formulates his 

preferences as a quadratic function of the target and 

control variables. The Theil model has been given in 

Chapter 1 without proposing a solution to i t .  Recall 

the model 

where A, B, C are symmetric positive definite weight - - -  
matrices. This optimization problem may be solved by means 

of the Lagrangean technique. An alternative method of 

deriving the optimum consists of using the constraints to 

eliminate the target vector in the objective function and 

then minimizing this function unconditionally with respect 

to the instruments (Theil, 1964; ;pp. 40-41). This solution 

procedure is also followed by Friednan (1975; pp.  159). 

Substituting the constraint in the objective Function gives 

where 



K = A + R'BR + CR + R'C' . - - - - -  - - - - 

The first order condition for minimizing b7({z11) - with 

respect to the instrument vector {z,} is - 

The optimal solution follows immediately 

where K and {k) are as defined in (3.7). The second order - - 
condition for the minimization of PI( {z, 1) with respect to - 
{zll - is that K - is positive definite. The corresponding 

value of the target vector is 

It should be noted that a nontrivial solution to (3.9) 

exists only if Ik1 is nonzero. - 
Illustration b: Suppose the policy maker only wants 

to minimize {r). The model may be considered as a variant - 
of the Theil model. 

- 
min [[{TI - - I 1 - - - 



The objective function defines the Euclidean. norm of {r). - 
Ben-Israel and Greville (1974; p. 104) show that the optimal 

solution to this problem is given by: 

where R - ('I3) is the generalized inverse of R satisfying 

Because of the property that R 3, minimizes the Euclidean - 
norm of the residual vector, i.e., the sum of suuares of 

the residuals, it is called the "least-souares inverse." 

An element ri 3, indicates how much the i-th instrument 

has to change for a unit change in the j-th target variable, 

in order to maintain the smallest sum of souared deviations 

between the realized and the preassigned values of the 

target variables. The general least-suuares solution is 

where {c) is an arbitrary K x 1 vector. - 
Ben-Israel and Greville note that the least-squares 

solution is unique only when R is of full column rank. - 
This condition is always satisfied in policy models discussed 

here, since we have assuned initially that the instruments 

are linearly independent. 



This illustration shows that the least-.squares 

generalized inverse is the solution to a special variant 

of the Theil model. A similar observation has recently 

been made by Russell and Smith (1975; p. 143). 

3.2 DESIGN IN THE STATE-SPACE FRAMEWORK: FIXED TARGETS 

AT THE PLANNING YORIZON 

Cohsider the discrete system 

{y - (t) 1 = CIx - - (t) 1 (2.3b) 

where {x(t) - is the population distribution at time t. 

It can be the age distribution, the regional 

distribution, or both. 

Iy(t)) is any policy relevant measure dependent on - 
the population distribution. 

Iu(t) is the intervention vector, control or instru- 
-, 

ment vector at time t. 

G is the N x N growth matrix without intervention. - 
B is the N x K dynamic impact multiplier matrix. - 
C is the P x N conversion matrix. - 

In the following, we make the simplifying assumption that 

C is the identity matrix. The solution to (2.3a) for 
-, 

to = 0 is 



The policy design problem starts out from (2.4) and seeks 

to answer the question: what is the sequence of control 

vectors {u(i)), such that, given the initial condition - 
{x(O)I and the assumption of time-invariance of the - 
coefficient matrices, a target vector at the horizon {x(T)) - 
will be reached in an optimal manner. The intermediate 

states are of no importance in this formulation. 

Equation (2.17) may be written as 

= DIG> , say . 
* - (3.13) 

The system is state controllable if the N x KT matrix D - 
is of rank N, where N is the dimension of the tarqet 

vector Ix(T) 1. The controllability condition implies that - 
N - < KT. We distinguish two cases: N = KT and ?I < KT. 

CASE 1: N = KT 

In the dynamic policy model, it is the combined 

magnitude of the number of instruments and the planning 

horizon that determines the state controllability. In the 

previous chapter, we saw that a trade-off exists between 

the minimal length of the planning horizon and the minimal 

number of instruments. Any target vector may be reached 



by only one instrument, provided that the planning horizon 

is not less than ?I. Also, any target vector can be achieved 

in only one time period, if the policy maker may handle at 

9 least N instruments . If N = KT, and if the instruments 

of the different time periods are independent, then D is - 
nonsingular, and the unique control sequence is 

where {;(T) - 1 is the target vector at the planning horizon. 

CASE 2: N < KT 

If D has rank N and is rectangular, then an infinite - 
number of combinations of the controls leads to the pre- 

defined target population. The solution of (3.13) is 

where {c) is arbitrary, - 
and D(') is a generalized inverse of p .  - 

In order to find a unique policy, the policy maker may 

minimize a cost function of the instruments, he may put 

constraints on the instruments, or he may do both. The 

introduction of a cost function will be discussed at the 

end of this section. First, we d.eal with the imposition 

'This is exactly the controllability condition 
derived by Tinbergen for a static policy model. 



of  c o n s t r a i n t s  on t h e  i n s t r u m e n t s  t o  e n s u r e  u n i a u e n e s s  o f  

t h e  i n s t r u m e n t  v e c t o r .  "he i d e a  i s  t o  r e d u c e  t h e  d e g r e e s  

of  freedom o f  t h e  p o l i c y  measures  by making t h e  i n s t r u m e n t  

v e c t o r  a t  a  c e r t a i n  t i m e  p e r i o d  depend. on t h e  c o n t r o l s  

e x e r c i s e d  a t  p r e v i o u s  t ime  p e r i o d s .  Two r e d u c t i o n  methods 

a r e  d i s t i n g u i s h e d .  The f i r s t  f o r m u l a t e s  t h e  c o n t r o l  v e c t o r  

a t  t i m e  t a s  a  l i n e a r  combina t ion  o f  t h e  c o n t r o l  v e c t o r  

a t  t - 1.  T h i s  i m p l i e s  t h a t  t h e  c o n t r o l  a t  t may be  d i r e c t -  

l y  r e l a t e d  t o  t h e  c o n t r o l  v e c t o r  a t  t h e  i n i t i a l  t i m e  p e r i o d .  

T h e r e f o r e ,  w e  c a l l  t h i s  t h e  i n i t i a l  p e r i o d  c o n t r o l .  T h i s  

method has  been deve loped  by Rogers (1966; 1968,  Chapter  6 ;  

1971;  pp. 98-108) f o r  m i g r a t i o n  p o l i c y  p u r p o s e s .  The 

second r e d u c t i o n  method, known a s  feedback  c o n t r o l ,  makes 

t h e  c o n t r o l  v e c t o r  a t  time t a  l i n e a r  f u n c t i o n  o f  t h e  s t a t e  

v e c t o r  a t  t h e  same t ime  t .  

3.2.1.  I n i t i a l  P e r i o d  C o n t r o l  

Suppose t h a t  t h e  c o n t r o l  v e c t o r  a t  t i m e  p e r i o d  t i s  

where W i s  n o n s i n g u l a r ,  f i x e d ,  and known. ... 

R e c a l l  t h e  s t a t e - s p a c e  model of  ( 2 . 3 a ) :  

{ x ( t  + 1 )  = G{x ... - ( t )  ) + ~ { ~ ( t )  ) , - - ( 2 . 3 a )  

I t s  s o l u t i o n  i s  g i v e n  by ( 2 . 4 ) .  L e t  t = T be  t h e  p l a n n i n g  

h o r i z o n ,  t h e n  



But 

{u(i) - I = ~ { u ( i  - - - 1) 1 = rAli{u(0) - - 1 . 

Therefore ( 3.17) becomes 

and 

Let 

equation (3.18) may he written as 

then 

which is in fact the formulation of the Tinbergen model, 

with {x(T)) the target vector, (~(0)) the vector of uncon- - - 
trollable variables and {u - (0) the control vector. The 

multiperiod problem (3.17) with the tarqet vector qiven for 

the planninq horizon, and with the control vector at each 



t i m e  ~ e r i o d  b e i n s  a  l i n e a r  combina t ion  of t h e  c o n t r o l  

v e c t o r  a t  t h e  i n i t i a l  t i m e  p e r i o d ,  i s  i n  f a c t  a  s i n g l e -  

p e r i o d  problem. Only t h e  c o n t r o l  a t  t h e  i n i t i a l  t i m e  

p e r i o d  must b e  s p e c i f i e d .  The e x i s t e n c e  and t h e  un iqueness  

of  I u ( 0 )  - 1 depends o n l y  on t h e  r ank  o f  B ... and i s  independent  

o f  t h e  c h o i c e  o f  T .  I f  B - i s  n o n s i n g u l a r ,  t h e n  t h e  un ique  

and o p t i m a l  v a l u e  o f  I u ( 0 ) )  - i s  g i v e n  by 

A s p e c i a l  c a s e  o f  t h e  i n i t i a l  p e r i o d  c o n t r o l  i s  d i s c u s s e d  

by Rogers (1971; pp. 99-100).  Suppose t h a t  W i s  a  s c a l a r  
.., 

m a t r i x ,  i . e .  

w i t h  w b e i n g  a  s c a l a r .  I t  means t h a t  t h e  c o n t r o l s  change 

i n  t i m e  a t  a  c o n s t a n t  r a t e .  Equat ion  (3 .18 )  may be  

r e w r i t t e n  a s  

 rem multiplying b o t h  s i d e s  w i t h  ( w I  - G )  g i v e s  - - 



Therefore 

and, given that B is nonsingular, - 

which is in fact also a single-period problem: 

where 

The special case, w = 1, is the intervention model of 

Rogers (1971; pp.99-100) with constant policy. 

We now consider two illustrations of the initial period 

control model. We will assume that W is equal to the iden- - 
tity matrix. The constant instrument vector is given by 



and the target vector is 

The first illustration is the stationary population model 

and the second is the pure migration model. 

Illustration a: Stationary ~opulation 1,lodel. 

In the literature on zero population growth, it is 

emphasized that an immediate reduction of fertility to 

replacement level will result in a further increase of the 

population for at least 50 years in most countries. A 

policy that would keep the population constant at the current 

level, would result in an unrealistic fluctuation of fertility 

and mortality rates over the next decades (Coale, 1972; 

p. 595). 

In the multiregional case, keeping total population as 

well as the population distribution at the current level 

implies that {x(T)~ = (x(o)), hence we have that - - 



~ f  B i s  n o n s i n g u l a r  t h e n  - 

I f  B - i s  s i n g u l a r ,  w e  have 

The r e s u l t  t h e n  may be  g i v e n  a s  f o l l o w s :  I f  e q u a t i o n  (3.24)  

h a s  a  s o l u t i o n  f o r  an  a r b i t r a r y  T I  t h e n  t h e r e  e x i s t s  a  con- 

s t a n t  p o l i c y  v e c t o r  (6) .., which keeps t h e  t o t a l  p o p u l a t i o n  a s  

w e l l  a s  i t s  d i s t r i b u t i o n  c o n s t a n t  a t  t h e  c u r r e n t  l e v e l .  

The v e c t o r  ( G I  - does  n o t  depend on t h e  p l a n n i n g  h o r i z o n ,  b u t  

on ly  on t h e  c u r r e n t  p o p u l a t i o n  l e v e l  and d i s t r i b u t i o n .  

I l l u s t r a t i o n  b: Pure Migra t ion  Model. 

The p rocedure  t o  compute t h e  i n t e r v e n t i o n  v e c t o r  i s  

d e s c r i b e d  by Rogers (1971; p.  106)  a s  f o l l o w s .  The m i g r a t i o n  

r a t e s  a r e  t a k e n  o u t  of  t h e  growth m a t r i x  and t h e  m i g r a t i o n  

f l o w s  a r e  i n t r o d u c e d  v i a  t h e  c o n t r o l  v e c t o r  { G I .  The new - 
m a t r i x  i s  S .  However, an  in-migrant  w i t h  r e s p e c t  t o  one  - 
r e g i o n  i s  an  out -migrant  w i t h  r e s p e c t  t o  a n o t h e r  r e g i o n ,  and 

t h e r e f o r e  n e t  i n t e r n a l  m i g r a t i o n  must be e q u a l  t o  z e r o .  T h e  

i n s t r u m e n t s  a r e  n o t  independent .  A f t e r  computing { G I  .., by 

(3 .24)  w i t h  t h e  r e v i s e d  growth m a t r i x  S ,  - and a  t a r g e t  v e c t o r  

{ x ( T )  I  by ( 3 . 2 5 ) ,  some e l emen t s  o f  a r e  a d j u s t e d  such  t h a t  - - 



where {I}  is a vector of ones. A change of .an element Gi - 
implies that the target population of region i will not he 

reached. xi(T) becomes uncontrollable. After the adjust- 

ment procedure, the revised target population is computed 

using (3.25). 

For an illustration of another approach that draws on 

the controllability concept, consider (3.25) once again: 

where G is the unreduced growth matrix. Any linear constraints - 
on {u} may be introduced in (3.25) via B. The idea is similar - - 
to the introduction of linear restrictions in the general 

linear regression model (Johnston, 1972; p. 157). In the 

general case where {u} is unrestricted, B is the identity - - 
matrix. 

Suppose the policy problem is to find I;) - such that 

Ix(T) = {;(T) is the target vector, and such that the - - 
level of the fourth control variable is equal to the sum 

of the first and the third variable, i.e. 

u4 = u1 + u 3 -  

Equation (3.25) may then be written as: 



Because of the linear restriction (3.28), B'is no longer of - 
full rank. Since the instrument vector must remain constant 

in time, (3.25) may be written as 

where 

Eauation (3.29) is equivalent to a static policy problem. 

By Theorem 1, it has a solution if 

rank (FB) = N . - - 

T 
Since I, G and G are nonsingular. F is nonsingular. There- - - - - 
fore (Lancaster, 1969; p. 45) : 

rank (FB) = rank (B) = N - 1 . - - .., 

1 0  and the system is not controllable . Because the fourth 

column of FB is 0 i4 may be deleted. and (3.30) becomes - - - 

'@The fourth column of FB is 101. - - - 



The n o n - c o n t r o l l a b l e  p a r t  o f  t h e  s y s t e m  may b e  d e t e r m i n e d  

by  t h e  methods  d e s c r i b e d  i n  C h a p t e r  2 .  I f  {u) - i s  a 

v e c t o r  o f  i n - m i g r a t i o n s ,  it i s  immed ia t e ly  c l e a r  t h a t  

x 4 ( T ) ,  o r  e q u i v a l e n t l y  y 4 ( T ) ,  c a n n o t  b e  c o n t r o l l e d .  One 

may d e l e t e  y 4  (T)  and  t h e  f o u r t h  row o f  F B ,  g i v i n g  a new - .., 
v e c t o r  { y l ( ~ ) l  - and  a  new m a t r i x  ( F B ) l  - - r e s p e c t i v e l y .  The 

i n s t r u m e n t  v e c t o r  { E l  i s  t h e n  found  a s  - 

E n t e r i n g  1 i n  ( 3 . 3 1 )  g i v e s  t h e  v a l u e  o f  G 4  ( T )  , which  w i l l  - 
n o t  c o i n c i d e  w i t h  t h e  t a r g e t  v a l u e .  

I n  t h e  p u r e  m i g r a t i o n  model t h e  n e t  i n t e r n a l  m i g r a t i o n  

mus t  add up t o  z e r o .  The r e s t r i c t i o n  on i s  - 

I n  a  two r e g i o n  c a s e ,  t h e  p e o p l e  l e a v i n g  o n e  r e g i o n  must  

e n t e r  t h e  o t h e r .  The i n c o r p o r a t i o n  o f  t h i s  c o n s t r a i n t  i n  

( 3 . 2 5 )  o r  ( 3 . 30 )  y i e l d s  



hence i2 may be deleted. The system is not controllable. 

If the number of regions is greater than two, and the policy 

maker is interested in setting a target for only one region, 

then various combinations of ui's satisfy the constraint 

(3.33). At the planning horizon, the population distribution 

over the other regions depends on the combination chosen 

initially, i.e. the entries of B. - 
It has been assumed throughout this section that the 

policy maker is willing and able to give up an element of 

his target vector for each linear constraint on the instru- 

ment variables. By doing so, he makes it possible to 

achieve the other target variables exactly. In some 

situations, it may be more realistic to assume that he 

wants to approximate the target vector as closely as possible 

with the restricted instrument vector. The vector Iu) - 
which minimizes the deviation between the realized I~(T)) 

and the target (T) is - 

where B - 13) is the least-squares generalized inverse of 

B, defined in (3.10) . - 

3.2.2. Linear Feedback Control 

Suppose that the intervention vector at time t is a 

linear function of the population distribution: 

Iu - (t) 1 = - ZIx - (t) ) . 



Equation (2.3a) may then be written as 

{x(t + 1)) = G{x(t)I + B Z { X ( ~ ) ~  - - - -- - 

Suppose - (T) 1 is the desired population distribution 
at time T. The problem is to find Z, - such that {G(T)} - is 

a solution of the equation system 

Feedback control changes the growth matrix of the 

system and, therefore, also its properties at stability. 

The impact of the linear output feedback control on the 

stable population characteristics depends on the eigen- 

values and eigenvectors of [G + BZ] . If [G + BZ] is 
*. - - - - - 

nonnegative and primitive, then we can apply the Perron- 

Frobenius theorem to this controlled growth matrix. It 

has a dominant eigenvalue, and a corresponding eigenvector 

associated with it. The former is the stable growth ratio 

and the latter represents the stable distribution of the 

population controlled by an output feedback law. In this 

regard, a direct application of the feedback control is 

the determination of the feedback matrix Z ,  such that the 

population will converge to a desired stable distribution. 

Useful algorithms are given by Schulze (1974), Kreisselmeier 

(1975), and Plahesh and Kumar (1975). F7e will not elaborate 

on this aspect of the problem in this stud.y. 



ÿ qua ti on (3.35) is known as the linear'state variable 

feedback control law (Wolovich, 1974; p. 195). If the 

~olicy - authorities choose the value of the policy instru- 

merits according to equation (3.35), then their actions 

cease to represent an external influence, but instead 

become part of the population system. The feedback control 

law defines a closed-loop solution to the optimal control 

problem. 

Equation (3.35) is the simplest case of linear state 

feedback control. It is unrealistic in the sense that it 

takes all freedom of action out of the hands of the policy- 

makers. A linear state feedback control of the form 

is certainly more= raa.1.i sti.c. 

Here {v(t)) is an external input or a vector of real - 
exogenous variables. The state space representation of 

the compensated system is obtained by substitutins for 

{u(t) in (2.3) - 

{y (t) 1 = ( C  + EZ) {X (t) 1 + EH{V (t) 1 . - - - -" - - -  - (3.40b) 

Instead of a state feedback, one can also imagine a 

linear output feedback 



S u b s t i t u t i n g  (3 .41  ) i n  ( 2 . 3 )  , w e  o b t a i n  

( 5  (t  + 1 )  1 = G ( X  - - (t)  1 + B F { ~  - -  .., ( t )  ) + B H ( ~  - -  - (t)  

{ y  - ( t )  1 = C ( X  ... - ( t )  1 + E F ( ~  .-.,- - (t)  ) + EH(V - -  - ( t)  ) 

(1 - - EF) - - ( y ( t ) )  - = C ( x ( t ) )  - - + E H ( v ( t ) )  - -  - . 

I f  ( I  - - 3F) i s  n o n s i n g u l a r ,  t h e n  - - 

I f  { v ( t ) )  = ( O ) ,  i . e . ,  t h e  dynamics  o f  t h e  s y s t e m  i s  - - 
g o v e r n e d  by a p u r e  o u t p u t  f e e d b a c k ,  t h e n  w e  have  t h e  c l o s e d  

l o o p  s y s t e m  

T h e r e  are t w o  n o t e w o r t h y  s p e c i a l  cases o f  ( 3 . 4 4 ) :  

i) E  = 0 ,  i . e . ,  t h e  o u t p u t  { y ( t ) )  depends  o n l y  o n  - - - 
t h e  s t a t e  vector ( x  ( t )  ) .  E q u a t i o n  (3.44,) becomes:  - 

I,: (t  + 1 )  = [G - + BFC] --- ( x  - ( t )  ) . 



ii) E = 0 and C = I, i.e., the output vector is equal - - - -. 
to the state vector. Equation (3.44) then reduces 

to the expression for a linear state feedback 

control law 

{~(t -- + 1 )  = [G - + BF] -- - {~(t) - ) . (3.45) 

To illustrate the usefulness of the feedback control 

model for migration policy, we take a policy problem 

described by IJansen (1974; p. 17). In the last twenty 

years, central governments of several Western countries 

have been trying to decrease regional differences in 

living conditions. A popular strateqy to achieve this 

objective, which is based on equity considerations, was 

to allocate development funds to lagged regions. The funds 

allocated by the central government to the regions are a 

function of its "backwardness." A major indicator of it 

is the level of out-migration. In order to model this 

policy, assume that the development funds each region gets 

at time t is a linear combination of its level of out- 

migration and the level of out-migration of all the other 

regions. 

Let {x(t)) -- be the regional population distribution at 

time t, 

{u(t)) be the regional distribution of the development 

funds, 

{y(t)) - be the level of out-migration of the regions. 



The dynamics of the multiregional system is .described by 

the state-space model 

where G is the population growth matrix, - 
B is the matrix of impact multipliers. The element 
.., 

bij is the effect of a dollar allocated to region 

j at tine t on the population of region i at time 

t + 1, 

C is a diagonal matrix of out-migration rates. - 

The policy may be written as a linear output feedback 

control law 

{u .., (t) = F{y - .., (t) 

where the i-th row of F gives the coefficients of the linear 

combination between ui(t) and the regional levels of out- 

migration. The dynamics of the controlled population 

system is then given by: 

{x(t +., + 1) = [G - + BFC] --...., {x(t) .., ) 

where G .., is a nonnegative matrix, 

B has supposedly nonnegative diagonal elements and - 
nonpositive off-diagonal elements, 



F describes the trade-offs set by the policy maker. - 
It is realistic to assume that the diagonal 

elements are positive and most off-diagonal 

elements are nonpositive. A positive off-diagonal 

element fij would mean that the funds region i 

gets increase with the out-migration of region j. 

This is not unrealistic if the out-migrants of j, 

who go to it cause a congestion problem in region 

i necessitating additional investments (population 

responsive policy). 

3.2.3. Horizon Constrained O~timal Control 

If the number of target variables at the planning 

horizon is less than the product of the number of instruments 

and the length of the planning horizon, then there is an 

infinite number of combinations of controls leading to the 

desired target variables. Suppose, as before, that the 

target is the regional population distribution at the 

horizon T. All the feasible control vectors are given by 

(3.15), which is the general solution to (3.12) . 
To arrive at a unique instrument vector, the policy 

maker may apply the design techniques described under the 

Tinbergen framework to this multiperiod situation. The 

first technique is based on the minimizing properties of 

the generalized inverse. If (3.15) is the general solution 

to (3.12), then there is a unique solution which minimizes 

the Euclidean norm of the instrument vector {u). This 
* 

solution is given by 



where D - 1 4 )  i s  t h e  "minimum norm i n v e r s e "  of  D.  - 
The o t h e r  approach i s  t o  f o r m u l a t e  a  mathemat ica l  

programming model,  s i m i l a r  t o  ( 3 . 2 ) .  However, w e  have 

s e e n  i n  Chapter  1 t h a t  by assuming i n t e r - t e m p o r z l  s epa ra -  

b i l i t y  o f  t h e  o b j e c t i v e s ,  and by n e g l e c t i n g  t h e  i n e q u a l i t y  

c o n s t r a i n t  o f  ( 3 . 2 ) ,  w e  may w r i t e  it a s  an  o p t i m a l  c o n t r o l  

problem. Assuming, i n  a d d i t i o n ,  a  q u a d r a t i c  o b j e c t i v e  

f u n c t i o n a l ,  t h e  problem becomes i d e n t i c a l  t o  ( 1 . 1 9 ) ,  

e x c e p t  f o r  t h e  a d d i t i o n  of t h e  h o r i z o n  c o n s t r a i n t ,  

I n  t h e  l i t e r a t u r e ,  t h i s  problem i s  known a s  t h e  l i n e a r -  

q u a d r a t i c  c o n t r o l  problem w i t h  z e r o  t e r m i n a l  e r r o r  o r  

w i t h  a  r igh t -hand-s ide  c o n s t r a i n t .  The s o l u t i o n  w i l l  be  

d i s c u s s e d  i n  t h e  n e x t  s e c t i o n .  

3.3 DESIGN I N  THE STATE-SPACE FRAMEWORK: TRAJECTORY 

OPTIMIZATION 

I n  t h e  models d i s c u s s e d  i n  t h e  p r e v i o u s  s e c t i o n ,  t h e  

m i g r a t i o n  p o l i c y  o b j e c t i v e s  were fo rmula ted  o n l y  f o r  

t h e  p l a n n i n g  h o r i z o n .  I t  was assumed t h a t  t h e  p o l i c y -  

maker d i d  n o t  c a r e  a b o u t  how th.e t a r g e t  v a r i a b l e s  

converged t o  t h e i r  d e s i r e d  v a l u e s .  I n  o r d e r  t o  

i d e n t i f y  a  unique  combinat ion of  i n s t r u m e n t s ,  w e  have 

imposed s e v e r e  r e s t r i c t i o n s  on t h e  p a t h  of  t h e  c o n t r o l  

v e c t o r .  Now, w e  broaden t h e  p e r s p e c t i v e  by a l l o w i n g  

t h e  pol icy-maker  t o  d e f i n e  a  dynamic p r e f e r e n c e  system, 

i . e . ,  t h e  t a r g e t s  a r e  d e f i n e d  f o r  each  t i m e  p e r i o d  i n s t e a d  

o f  o n l y  one .  The i n s t r u m e n t s  may v a r y  more f r e e l y  



in the sense that no fixed pattern is inposea. The range 

of admissible instruments and their variation, however, 

may be constrained for economic, political or stability 

reasons. The latter means that the inclusion of the 

instruments in the policy maker's preference function is 

an appropriate way to avoid an excessive fluctuation of 

the values of the instruments over time (Ho15rookf 1972; 

p. 57). 

It has been argued in Chapter 1 that, if the policy- 

maker seeks to define a time path of the control vector 

out of all the feasible trajectories, such that his dynamic 

preference system, expressed in the form of a functional, 

is optimized, the policy problem becomes very similar to 

the optimal control problem. The models presented earlier 

may also be encompassed. in this framework. In what follows, 

we specify a dynamic policy model using the optimal 

control technique. This enables us to list the set of 

necessary conditions for optimizing the preference func- 

tional. These conditions are known as the Pontryagin 

minimum (or maximum) principle. 

The optimal control problem specified here covers a 

wide variety of dynamic policy problems. Its solution 

however is at least quite difficult and its interpretation 

is not always easy. A frequently used policy model in the 

1 1  economic literature is the linear-quadratic model . It 

is characterized by a quadratic objective function and a 

"See, for examnle, Sengupta (1970)-, Turnovsky (1971) , 
Pindyck (1971, 1973a, 1973b), Vishwakarma (19741, Garbade 
1975), and Chow (1970, 1972, and 1975, Chapter 9). 



l i n e a r  c o n s t r a i n t .  T h i s  p rob lem f o r m u l a t i o n  i s  a t t r a c t i v e  

b e c a u s e  it a l l o w s  o n e  t o  e x p r e s s  a  d i r e c t  r e l a t i o n  be tween  

t h e  c o n t r o l  v e c t o r  and t h e  t a r g e t  v e c t o r  a t  e a c h  t i m e  p e r i o d ,  

t h e r e b y  l e a d i n g  t o  a  s i m p l e  a n a l y t i c  s o l u t i o n  o f  t h e  o p t i m a l  

c o n t r o l  p rob lem.  I t  i s  a l s o  i n t e r e s t i n g  b e c a u s e  it is  a  

d i r e c t  e x t e n s i o n  o f  t h e  T h e i l  model t o  dynamic s i t u a t i o n s .  

3 .3 .1 .  S p e c i f i c a t i o n  o f  t h e  Op t ima l  C o n t r o l  Yode l  

P o l i c y  p rob l ems  o f  dynamic s y s t e m s  nay  b e  s o l v e d  by 

t h e  t h e o r y  o f  o p t i m a l  c o n t r o l .  The b a s i c  i n g r e d i e n t s  o f  

a  d i s c r e t e  o p t i m a l  c o n t r o l  model a r e :  

1 )  A se t  o f  d i f f e r e n c e  e q u a t i o n s  t h a t  r e p r e s e n t  t h e  

s y s t e m  t o  b e  c o n t r o l l e d .  The s y s t e m  i s  d e s c r i b e d  hy  a  

demomet r ic  model  i n  s t a t e - s p a c e  n o t a t i o n  

{ ~ ( t  .-., + 1 ) )  = F ( { x ( t ) ) ,  + .., { ~ ( t ) ) ,  t )  , t = 0, ..., T-1 . 
( 3 . 4 8 )  

I n  c o n t r o l  t h e o r y ,  { x ( t ) )  i s  c a l l e d  t h e  s t a t e  v e c t o r  and 

d e s c r i b e s  t h e  s t a t e  o f  t h e  sy s t em.  The v e c t o r  { u ( t ) )  i s  - 
t h e  c o n t r o l  v e c t o r ,  and {F(*)) i s  a  v e c t o r - v a l u e d  f u n c t i o n  

+ 

o f  d imens ion  T  x  1 .  The e q u a t i o n  i s  known a s  t h e  s t a t e  

e q u a t i o n  o r  t r a n s i t i o n  e q u a t i o n .  Throughout  t h i s  s t u d y ,  

w e  have  d e a l t  w i t h  a  l i n e a r  t i m e  i n v a r i a n t  s y s t e m ,  i . e .  

2 )  A se t  o f  c o n s t r a i n t s  on t h e  s t a t e  and. c o n t r o l  

v a r i a b l e s ,  



where {g(-) is a vector-valued function of dimension M. 

This function defines the admissible set of state and 

control variables. 

3) A set of boundary conditions. The initial state 

is given 

We may also require that at the terminal time, or 

planning horizon, the state vector satisfies the vector- 

valued function ]m(lx(~) - - ) )  [ = {O). - (3.51) 

4) A preference functional, welfare functional, 

cost functional or a performance index which is to be 

minimized. The functional may be written 

The functional reduces all the utilities and disutilities 

of the controlled dynamic system to a single scalar. 

All the functions of the cost functional and of the 

constraints are assumed to be known and to be continuously 

differentiable with respect to {x(t)) and Iu(t) 1 .  Note - - 
that the control {u(t)) affects the objective functional - 
both directly and indirectly through the value imparted 

to the states Ix(t + R)), 9, > 0. - 



The o p t i m a l  c o n t r o l  problem i s  f o r m u l a t e d  now a s  t h e  

d e t e r m i n a t i o n  o f  t h e  c o n t r o l  sequence  { u * ( t ) )  - f o r  

t = 0 ,  ..., T-1, and  t h e  c o r r e s p o n d i n g  t r a j e c t o r y  of  t h e  

s t a t e  v e c t o r  { x * ( t ) }  f o r  t = 0 ,  ..., T, such  t h a t  t h e  con- - 
s t r a i n t s  (3 .48)  and (3 .49)  , and t h e  boundary c o n d i t i o n s  

(3 .50 )  and (3 .51 )  a r e  s a t i s f i e d  and such  t h a t  t h e  c o s t  

f u n c t i o n a l  (3 .52 )  i s  minimized. The sequence  { u * ( t ) )  i s  .., 

t h e n  c a l l e d  t h e  o p t i m a l  c o n t r o l ,  and { x * ( t ) }  - t h e  o p t i m a l  

t r a j e c t o r y .  I n  o t h e r  words,  t h e  o p t i m a l  c o n t r o l  problem 

i s  t o  s teer a  dynamic sys tem,  s o  a s  t o  o p t i m i z e  a  p e r f o r -  

mance i n d e x ,  s u b j e c t  t o  c o n s t r a i n t s .  T h i s  f o r m u l a t i o n  i s  

v e r y  g e n e r a l  and e x p l a i n s  why t h e  t h e o r y  p e r t a i n i n g  t o  

i t s  s o l u t i o n  h a s  found such a  wide r a n g e  o f  a p p l i c a t i o n s ,  

and why it i s  a l s o  has  r e l e v a n c e  f o r  p o p u l a t i o n  p o l i c y  

1 2  problems . 

3.3.2.  The Discrete Minimum P r i n c i p l e  

W e  now t u r n  t o  t h e  n e c e s s a r y  c o n d i t i o n s  f o r  o p t i m a l i t y .  

O r i g i n a l l y ,  t h e s e  c o n d i t i o n s  w e r e  d e r i v e d  by P o n t r y a g i n  

and h i s  s . s s o c i a t e s  (1962) f o r  cont i .nuous- t ime s y s t e m s ,  

d e s c r i b e d  by d i f f e r e n t i a l  e q u a t i o n s .  For  a  t ho rough  

s t a t e m e n t  o f  t h e  P o n t r y a g i n  minimum p r i n c i p l e ,  t h e  r e a d e r  

i s  r e f e r r e d  t o  Athans and F a l b  ( 1 9 6 6 ) .  To remain c o n s i s t e n t  

w i t h  t h e  o t h e r  p a r t s  o f  t h i s  s t u d y ,  w e  w i l l  s t a t e  t h e  

d i s c r e t e  v e r s i o n  o f  t h e  minimum p r i n c i p l e .  S e v e r a l  

d e r i v a t i o n s  of  t h e  d i s c r e t e  t i m e  minimum p r i n c i p l e  have 

I L ~ o r  a  s u r v e y  of  a p p l i c a t i o n s  of  o p t i m a l  c o n t r o l  
i n  economic p o l i c y  p l a n n i n g  and  of  p o s s i b l e  e x t e n s i o n s ,  
s e e  Athans and Kendrick (1974)  and t h e  two s p e c i a l  i s s u e s  
of  t h e  Annals  of  Rconomic and S o c i a l  F!easurement (1972,  
1 9 7 4 ) .  



appeared in the literature13. We will state the principle 

without proof, since it may be found in the literature. 

The discrete minimum principle: Suppose the sequence 

{u*(t)), t = 0, ..., "-1 constitutes an optimal control and - 
{x*(t)), t = 0, ..., T is an optimal trajectory of the system - 
described by (3.48), and constrainted by (3.49), (3 .SO) and 

(3.51). '1n order for {u*(t)), - t = 0, ..., T-1 to minimize 
the cost functional (3.52), it is necessary that there 

exist a seauence of bl x 1 vectors {X*(t)), .., t = 1,. ..,T, 

and a sequence of M x 1 vectors {u*(t)), t = 1, ..., T I  - 
such that the following conditions hold: 

1) The scalar function 

is minimized as a function of {u(t) - at {u(t) - ) = Iu* - (t) 1 

for all t = 0, ..., T-1. This implies that 

The vector {X (t) is the co-state vector, and { l ~  (t) is - - 
the co-constraint vector. With each difference equation 

(3.48) is associated a co-state vector, and with each 

''see, for example, Halkin (1964), Holtzman (1966) 
and Pindyck (1973a, 197313). 



constraint (3.49) a co-constraint vector14. . The function 

H(-) is called the Hamiltonian. 

2) The dynamics of {x* - (t) 1 ,  {A* - (t) and { p *  - (t) ) are 

governed by the equations: 

( 9  ({x* (t) I {u* (t) ), t) ) 

Condition (3.55) repeats the difference equation (3.48), 

and (3.59) is the constraint (3.49). The necessary conditions 

are essentially equivalent to the Kuhn-Tucker conditions of 

nonlinear programming. Equations ( 3.55) and (3.57) are ~ 
referred to as the canonical difference equations (Athans, 

1971; p. 458). Conditions (3.56) and (3.58) are the 

boundary conditions. 

14co-state and co-constraint variables in optimal 
control are similar to Lagrange multipliers in function 
optimization. They may be interpreted as shadow prices 
associated with the constraints (Pindyck, 1973; pp. 35-38). 



Note that the minimum principle yields only necessary 

conditions for optimality, which are valid locally. Global 

optimality also reauires sufficiency conditions. "bese 

involve the convexity of the functions. 

~f (3.54) is solved for {u(t) - 1 in terms of {x(t) 1, - 
{X(t)) and {~(t)), and if the resulting expression for 

.." .." 

{u (t) 1 is then substituted into eauation (3.48) and (3.57), 
.." 

a two-point boundary value problem results. A number of 

numerical methods are available for solving these problems. 

Methods such as steepest descent, conjugate directions, 

conjugate gradient, quasi-linearization, and the Newton-Raphson 

method are the best known. A description of these algorithms 

falls beyond the scope of this study. The interested reader 

should consult Bryson and Ho (1969, Chapter 7), Sage (1968), 

McReynolds (1970) or Noton (1972). Noton illustrates his 

exposition with simple numerical examples. Special 

algorithms, which fit some specific population policy 

models, have been developed by Evtushenko and MacKinnon 

(1975) and by Mehra (1975). 

3.3.3. The Linear-Ouadratic Control Problem 

The linear-quadratic (LO) control problem is one of 

many possible optimal control problems. It deserves 

special attention because it is the only optimal control 

problem for which the solution may be expressed analytically, 

and because it generalized Theil's idea of quadratic 

objective function with linear constraints. The LC) control 

problem fits two types of policy problems. In the first, 



t h e  p o l i c y  maker d e s i r e s  t o  t r a n s f o r m  a n  i n i t i a l  s t a t e ,  s a y  

t h e  a c t u a l  p o p u l a t i o n  d i s t r i b u t i o n ,  t o  a  d e s i r e d  s t a t e  a t  

t h e  p l a n n i n g  h o r i z o n ,  w h i l e  e x h i b i t i n g  a n  a c c e p t a b l e  

b e h a v i o r  o f  t h e  c o n t r o l  and  s t a t e  v a r i a b l e s  on t h e  way. 

I n  t h e  s econd  s i t u a t i o n ,  h e  t r i e s  t o  k e e p  a  s y s t e m  w i t h i n  

an  a c c e p t a b l e  d e v i a t i o n  f rom a r e f e r e n c e  c o n d i t i o n  u s i n g  

a c c e p t a b l e  amounts  o f  c o n t r o l .  I n  b o t h  s i t u a t i o n s ,  t h e  

o p t i m a l  c o n t r o l  i s  d e s c r i b e d .  by f e e d b a c k  e q u a t i o n s  known 

as t e r m i n a l  c o n t r o l l e r s  and a s  r e g u l a t o r s ,  r e s p e c t i v e l y  

(Bryson and 110, 1969 ,  C h a p t e r  5 ) .  

The b a s i c  i n g r e d i e n t s  o f  t h e  LQ prob lem a r e 1 5 :  

1) A l i n e a r  s t a t e  e q u a t i o n ,  

2 )  The boundary  c o n d i t i o n ,  

The p l a n n i n g  h o r i z o n  T  i s  f i x e d .  

3 )  A q u a d r a t i c  pe r fo rmance  i n d e x ,  

1 5 ~ h e  LQ p rob l em h a s  r e c e i v e d  much a t t e n t i o n  i n  t h e  
l i t e r a t u r e .  S e e ,  f o r  example ,  Bryson and  Eo (1969 ,  
C h a p t e r  5 ) ,  P indyck  (1973; pp.  27-35) ,  Noton (1972; 
pp.  150-1651 and  B a r - N e s s  (1975; pp.  49 -56 ) .  



The rationale for the auadratic performance index is 

identical to the one on which the Theil model is based. 

TO assure the convexity of the objective functional, the 

matrices F and Q are assumed to he positive semi-definite, 
* - 

while R is positive definite. They may be functions of time. - 
However, the t-index is deleted for convenience. The matrices 

F, o and R give the weights attached to the state and the - - - 
control variables. They will normally be diagonal. The 

matrix G is rJ x N and B is N x K with N the number of - - 
targets and K the number of instruments at each period of time. 

The optimal control problem is to minimize (3.62) 

subject to (2.3a) and (3.50) . How the LQ model relates 

to the Theil model and to other policy models has been 

discussed in Chapter 1. The optimal controls {u*(t)), - 
t = 0, ..., T-1 are found by applying the discrete minimum 
principle. Mot all of the necessary conditions listed in the 

previous paragraph must be met, since there are no inequality 

constraints. The Hamiltonian is 

where {X(t + 1) is the co-state vector evaluated at period - 
t + 1. From (3.57), we see that {X(t + 1 ) )  is the solution - 
of: 



with the final value fixed by (3.58): 

Along the optimal trajectory, J and H are minimized with 

respect to u (t) 1 . The necessary conditions yielding the 

extremum are: 

b) The constraint (3.3a). This condition is formu- 

lated as 

with the initial condition 

Since R is positive definite, we derive from (3.66) the - 
optimal trajectory of the control vector 

In order for {u*(t)) to minimize I I ,  R must have an inverse - - 



and 

must be positive definite. After substituting (3.69) into 

(3.67), we have a system of 2N first-order difference 

equations to solve, together with 2N boundary conditions 

The solution to this two-point boundary-value problem is 

derived in the Appendix to this part. It starts out from 

the assumption that there exists a linear relation between 

(X (t) and Cx(t) at the optimum: - - 

The feedback matrix K(t) is the solution of the Riccati - 
equation. Once K(t) is known for all t, the trajectory of - 
the state vector is given by 



and the optimal control, or control law, is. 

which gives the control vector in linear state feedback form. 

The trajectory of the co-state variables is 

ix* (t) 1 = X(t) - {x* - (t) } . 

The optimal value of the cost functional 

depends only on the initial condition {x(O)} and on K(0). - - 
The matrix K ( O ) ,  however, depends on G, F, Q, R and B and - - - - -  - 
on the feedback matrices R(t), t = 1 ,  ..., T. - 

Some useful extensions of the LO model have been made. 

We present them here as illustrations of how the LO model 

may fit policy problems. The first is the dual tracking 

problem where the policy-maker is looking for a regulator 

to keep the target and control variables as close as possible 

to predefined, most acceptable values. By way of a second 

illustration, we take up the horizon constrained optimal 

control problem again. Finally, it is shown how the LQ 

model may handle additional constraints. The idea is to 

assign penalties for the constraints which are not met. 

Illustration a: The dual tracking problem. 

In most policy applications of the linear quadratic 

problem, the objective is to minimize the deviations from 

desired values of the target vector and eventually also of 



the control vector. Iiather fban having the 'objective to 

minimize a function with the arguments expressed as 

deviations from zero, we have 

where 

with (x(t) I and {u(t) I the desired 01- most acceptable values - 
for the trajectory of the target vector and the control 

vector, respectively. 

The optimum may be found in the same manner as in the 

original problem. 

Illustration b: Zero terminal error problem. 

The dual tracking problem may be supplemented by the 

additional requirement that at the planning horizon some, 

say i, of the desired levels of the state or target variables 

must be met exactly, rather than approximately. This means 

that the following constraint must hold 

where {fl(T)} is a x 1 vector with < N. - 



The c o n t r o l  problem i s  now 

s u b j e c t  t o  

and w i t h  {x ( 0 )  I = {xOI  b e i n g  g i v e n .  - - 
T h i s  i s  t h e  e x a c t  f o r m u l a t i o n  of t h e  h o r i z o n  c o n s t r a i n e d  

o p t i m a l  c o n t r o l  problem of  t h e  p r e v i o u s  pa rag raph .  There-  

f o r e ,  p o l i c y  problems where t h e  t a r g e t  v e c t o r  is  g i v e n  f o r  

t h e  p l a n n i n g  h o r i z o n ,  and where t h e  r e s t r i c t i o n s  on t h e  

s t a t e  and c o n t r o l  t r a j e c t o r y  a r e  n o t  s o  s t r i n g e n t  a s  t h o s e  

d i s c u s s e d  p r e v i o u s l y ,  may be  fo rmula t ed  a s  d u a l  t r a c k i n g  

problems w i t h  z e r o  t e r m i n a l  e r r o r .  

To form t h e  Eami l ton ian ,  w e  a d j o i n  e q u a t i o n  (2 .3a )  t o  

J w i t h  a  m u l t i p l i e r  sequence  { X ( t ) I ,  t = 1 ,  ..., T I  and ,  - 
i n  a d d i t i o n ,  w e  a d j o i n  ( 3 . 7 7 )  w i t h  a  set  of  N m u l t i p l i e r s  

( v I r v 2 , . . . , v ~ )  = { v ) ' .  - Thus 

1 - T-l [ { -  - - - - - 14 = 2 {X ( T )  I I ~ { x  ( T )  I + I x  ( t )  I 'Q{X ( t )  I + {U ( t )  1 'R{U ( t )  I 
t = O  - 



~pplication of the minimum principle yields .a two-point 

boundary-value problem. Solution algorithms have been 

discussed by Bryson and Eo (1969; pp. 158-164) and by 

Mehra (1975; pp. 12-16). 

Illustration c: Sign restriction. 

In policy making it is often desirable to restrict a 

target or a control variable in sign. For example, let 

Iu(t)) be the net migrants of each region, and suppose that - 
the policy maker, in addition to his quadratic objective 

function, would like to make sure that some regions have no 

net out-migration or only an "allowable" net out-migration 

for some or all the periods between 1 and T. It imnlies that 

the value of the control variable for these regions and time 

periods must be positive. Ile also might want to impose the 

restriction that the total population of some regions may not 

fall below a predetermined level. Such constraints may be 

handled by the formulation of penalty functions. The 

procedure has been described by Mueller and Wang (1975; 

p. 610). Althouqh their exposition relates to the continuous 

model, the application to the discrete version is straight- 

forward. To each state and control variable is attached a 

number, which plays the role of a penalty or cost if the 

sign restriction is violated. The extended objective functional 

hecones : 

+ {u - (t) 1' R{U (t) 1 + 2{x (t) 1 ' {g (t) - - - - 



where the elements of {g(t)) and {r(t)) are penalties. If - - 
an element gi(t) is positive, then xi(t) will be penalized 

when it is positive. A similar idea holds for {r(t)). - The 

magnitudes of the elements of penalty-vectors reflect the 

weight that the policy-maker puts on the nonnegativity 

restrictions of the elements of {x (t) and {u (t) 1 .  The - - 
objective (3.79) may also be formulated in terms of C; (t) 1 

and {6(t) - 1 .  The optimal control is found by applying the 

necessary conditions to the Hamiltonian. No special diffi- 

culties are introduced by the sign restrictions. 

The use of penalty functions may be extended to include 

other equality and inequality constraints as well. The 

reader may refer to Evtushenko and MacKinnon (1975). 



CHAPTER 4 

CONCLUSION 

The purpose of this paper has been the discussion 

of some of the analytical problems of population distri- 

bution policy. It extends the work of Rogers (1975) on 

spatial population dynamics to the policy domain. 

The growth of a multiregional population may be 

represented by a system of linear, first-order, homogenous 

difference equations with constant coefficients: 

with {x(t)) the state vector representing the distribution - 
of the population over space and/or age, and G the growth - 
matrix. To transform (4.1) into a policy model, we add a 

control vector {u (t) : - 

The vector {u(t)) contains the instruments of population - 
distribution policy. It has been argued that a fundamental 

feature of population distribution policy is that it does 

not occur in a vacuum. It is subordinate to social and 

economic policies. The ultimate goals are non-demographic 

in nature, and the instruments are socio-economic. The 

policy models must, therefore, reflect this connection. 

The elements of {u(t)) are socio-economic variables repre- - 
senting the instruments. The relationship between {u(t)) - 
and the population distribution {x(t)) is assumed to be - 



linear and constant in time. The matrix multiplier B plays - 
a pivotal role in our discussion of policy models. The 

relation between the population distribution {x(t) ) and - 
the vector of socio-economic policy objectives {y(t)) is - 
assumed to be linear too: 

Equations (2.3a) and (2.3b) constitute the policy model 

we have devoted our attention to. It takes the form of a 

state-space model. Without loss of generality, we have 

assumed in several instances that C = I, which means that - - 
the objectives of the population distribution policy are 

expressed in terms of the multiregional distribution of 

people. The policy model becomes then (2.3a). 

The state-space model is a powerful tool for policy 

analysis, once the behavior of the system is known and the 

policy objectives and the range of instruments are 

identified. In most of the literature on quantitative 

policy, it has been assumed that these conditions are 

satisfied. We made similar assumptions in this study. 

The validity of those assumptions have been questioned 

in Willekens (1976a, Chapter 1). The usefulness of the 

state-space model for the analytical treatment of policy 

problems is maximal if it is time-invariant. Time invari- 

ance of the coefficients of the policy models has therefore 

been assumed. For an analytical treatment of the impact of 

changes in coefficients on the outcome of the modeling effort, 

see Willekens (1976b) . 



4.1. MIGRATION POLICY MODELS AND DEMOMETRICS 

The derivation of policy models from descriptive or 

explanatory models is based on the assumptions that the 

behavior of the system to be controlled has been described 

by a system of linear equations, denoted as a demometric 

model, and that the objectives and instruments of population 

distribution policy have been formulated in precise terms 

by the policy maker. The policy dimension is introduced 

into the demometric model, following the Tinbergen paradigm: 

the policy-relevant part of the system is isolated. It has 

been shown that any linear descriptive or explanatory model 

may be converted to a policy model if and only if all the 

target variables of the policy model belong to the set of 

endogenous variables of the descriptive or explanatory 

model, and if at least one of the exoaenous variables is 

controllable. 

The general formulation of a policy model is (Tinbergen, 

1963) : 

with {y} the vector of target variables, { z l }  the vector - .., 

of instrument variables and { z  the vector of uncontrollable - 2 

exogenous and lagged endogenous variables. An important role 

in policy analysis is played by the matrix multiplier R .  

Our discussion of policy models centers around this multiplier. 

This is consistent with the economic literature on policy 

models. However, we go beyond the traditional approach 

in economics and draw from recent findings of mathematical 



system theory and the theory of optimal control. To present 

an overview of policy models, a classification scheme has 

been set up that is based on the rank and the structure of 

R. This scheme enables us to relate seemingly unrelated - 
models to each other. For example, it has been shown that 

the linear-quadratic control problem may be derived from 

the Tinbergen and Theil model by assuming inter-temporal 

separability of the objectives and unidirectional causality 

of the population system. The state-space model of ( 2 . 3 )  

also may be derived from the Tinbergen model, and from the 

reduced form model in general. 

The fundamental questions of quantitative migration 

policy may be expressed in terms of existence and design. 

In Chapters 2 and 3, we have dealt with these two topics. 

The discussion revolves around the matrix multiplier. 

Whether arbitrarily specified levels of target variables 

can be reached by the existing set of instruments, depends 

on the rank of R. The conditions that must be satisfied 
* 

for a population system to be controllable are formulated 

in a number of existence theorems. These theorems enable 

us to uncouple the controllable parts of a not-completely 

controllable system, and to compute the minimal number 

of instruments that assure the achievement of the targets. 

It has been shown, for example, that under well-defined 

circumstances represented by a specific transformation of 

the matrix multiplier, all the desired target-values can 

be reached with a single instrument. This result is 

intriguing and totally contrary to the thinking engendered 

by Tinbergen's T-. 



The design procedure of optimal policies is dictated 

by the structure and the rank of the matrix multiplier R. - 
~f R is nonsingular, then the unique solution to (1.3) for - 
Iz,} - is found by simply inverting R. - When R - is singular, 
there may be no instrument vector leading to the desired 

target values, or there may be an infinite number of them. 

To find a unique optimal solution, an objective function 

reflecting the policy maker's preferences is introduced, 

and mathematical programming techniques may be applied. 

There is a wide variety of algorithms available in the 

literature. The common characteristic of most of them 

is that they determine the optimal solution numerically. 

In this study, we have directed our attention to cases 

where solutions to policy problems can be found analytically. 

In this regard, there is the applicability of the 

notion of generalized inverse. We have shown how the 

minimizing properties of generalized inverses may be relevant 

in solutions of policy models with a singular multiplier 

matrix. For example, no matter what the rank of the N x K 

matrix d is, a unique solution to (1.3) is given by 

where RP is the Moore-Penrose inverse (Ben-Israel and - 
Greville, 1974; p. 7). If R - is nonsingular, then RP - 
is the ordinary inverse; if R is singular and of rank N, - 
i.e., the number of instruments exceeds the number of 

targets, then RP defines a minimum norm solution to (1 .3) ; ... 
and if R is singular and of rank K, i.e., the targets - 



exceed  t h e  i n s t r u m e n t s  i n  number, t h e n  R~ d e f i n e s  a  - 
s o l u t i o n  t o  (1 .3 )  t h a t  minimizes  t h e  squa red  d e v i a t i o n s  

between t h e  d e s i r e d  and t h e  r e a l i z e d  v a l u e s  o f  t h e  t a r g e t  

v a r i a b l e s .  No e x p l i c i t  o b j e c t i v e  f u n c t i o n  h a s  been s p e c i -  

f i e d ,  b u t  it i s  i m p l i c i t  i n  t h e  min imiz ing  p r o p e r t i e s  o f  

t h e  g e n e r a l i z e d  i n v e r s e s .  The i n t e r e s t i n g  f e a t u r e  o f  

g e n e r a l i z e d  i n v e r s e s  i s  t h a t  t h e y  p r o v i d e  a n  a n a l y t i c a l  

s o l u t i o n  t o  p o l i c y  models.  

Another  c a s e  f o r  which t h e  o p t i m a l  p o l i c y  may be 

found a n a l y t i c a l l y  i s  t h e  i n i t i a l  p e r i o d  c o n t r o l  problem,  

namely: t h e  c a s e  where t h e  t a r g e t  v e c t o r  i s  g i v e n  f o r  t h e  

p l a n n i n g  h o r i z o n  and t h e  c o n t r o l  v e c t o r  a t  e a c h  t i m e  p e r i o d  

i s  a  l i n e a r  combina t ion  of t h e  e l e m e n t s  of  t h e  c o n t r o l  

v e c t o r  o f  t h e  p r e v i o u s  t i m e  p e r i o d .  I t  t h e n  c a n  be shown 

t h a t  t h e  i n i t i a l  p e r i o d  c o n t r o l  problem r e d u c e s  t o  a  s i n g l e -  

p e r i o d  problem and t h e  c o n t r o l  o n l y  needs  t o  be  s p e c i f i e d  

a t  t h e  i n i t i a l  p e r i o d .  

A f i n a l  p o l i c y  problem f o r  which a  s o l u t i o n  may be  

e x p r e s s e d  a n a l y t i c a l l y ,  i s  t h e  l i n e a r - q u a d r a t i c  c o n t r o l  

problem. I n  t h i s  t r a j e c t o r y - o p t i m i z a t i o n  problem,  t h e  

p o l i c y  maker wan t s  t o  minimize a  q u a d r a t i c  f u n c t i o n  o f  

t a r g e t  v a r i a b l e s  and i n s t r u m e n t  v a r i a b l e s ,  s u b j e c t  t o  

l i n e a r  c o n s t r a i n t s  imposed by t h e  b e h a v i o r  of  t h e  sys tem 

and by t h e  i n i t i a l  c o n d i t i o n .  



4.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

We have based our treatment of population distribution 

policy models on three fundamental assumptions: 

i) The dynamic behavior of the population system 

and its interaction with socio-economic condi- 

tions can be modeled adequately. 

ii) This model takes the form of a system of 

simultaneous linear equations with constant 

coefficients. 

iii) There exists a policy maker who expresses the 

goals-means relationship of population distribu- 

tion policy in specific terms of a target vector 

or in terms of a social welfare function, 

who sets up a range of instruments, and who 

is willing and able to implement the policy. 

The validity of those assumptions may be questioned. 

More research is needed in this regard. The prerequisite 

for good population distribution models is a well developed 

migration theory. There is no consensus yet on the deter- 

minants of migration and on the way the population system 

interacts with the socio-economic system. As long as the 

dynamics of the population system are not fully understood, 

government intervention cannot have a sound basis. 

Apart from the problem of identifying the determinants 

of population growth and distribution, there is the problem 

of modeling the population system once the determinants 

are known. Specification and estimation of population 

models is the subject of demometrics. This new science, 



i n i t i a t e d  by  Roge r s ,  u l t i m a t e l y  s h o u l d  p r o v i d e  t h e  n e c e s s a r y  

i n p u t  i n f o r m a t i o n  f o r  p o l i c y  a n a l y s i s .  

The t h i r d  a s sumpt ion  on which  o u r  d i s c u s s i o n  o f  

p o l i c y  mode l s  h a s  been  b a s e d  c o n c e r n s  t h e  goa l s -means  

r e l a t i o n s h i p  o f  p o p u l a t i o n  p o l i c y .  Not much r e s e a r c h  h a s  

been  done  t o  p r o v i d e  a  t h e o r e t i c a l  u n d e r p i n n i n g  f o r  t h i s  

r e l a t i o n s h i p .  The app roach  h a s  i n s t e a d  been  p r a g m a t i c .  

The emerg ing  t h e o r i e s  o f  e x t e r n a l i t i e s  and o f  government  

i n t e r v e n t i o n  may be i m p o r t a n t  b u i l d i n g  b l o c k s  f o r  a t h e o r y  

o f  p o p u l a t i o n  d i s t r i b u t i o n  p o l i c y  ( W i l l e k e n s ,  1976a ,  

C h a p t e r  1 ) .  W e  a r e  conv inced  t h a t  t h i s  t h e o r y  i s  a  

l i m i t i n g  f a c t o r  f o r  a  sound a n a l y s i s  o f  p o p u l a t i o n  d i s t r i -  

b u t i o n  p o l i c y .  



APPENDIX 

THE LINEAR-QUADRATIC CONTROL MODEL: 

SOLUTION OF THE TWO-POINT 

BOUNDARY-VALUE PROBLEM 

The a p p l i c a t i o n  o f  t h e  d i s c r e t e  minimum p r i n c i p l e  t o  

t h e  Lo c o n t r o l  p rob lem y i e l d s  a  sy s t em o f  f i r s t - o r d e r  

d i f f e r e n c e  e q u a t i o n s ,  t o g e t h e r  w i t h  a  s y s t e m  o f  e q u a t i o n s  

r e p r e s e n t i n g  t h e  boundary  c o n d i t i o n s  a t  t h e  i n i t i a l  and  

a t  t h e  t e r m i n a l  t i m e  p e r i o d s ,  r e s p e c t i v e l y .  The o p t i m a l  

c o n t r o l  o f  t h e  LQ model i s  g i v e n  by t h e  s o l u t i o n  o f  t h i s  

two-po in t  bounda ry -va lue  problem.  The sy s t em h a s  been 

d e r i v e d  i n  C h a ~ t e r  3 ,  a n d  i s  g i v e n  hy ( 3 . 6 4 ) ,  ( 3 . 7 0 ) ,  ( 3 . 68 )  

and (3 .65 )  : 

{ ~ ( t  - + i  = G { x ( ~ ) I  - - + B R - ' B V A ( ~  + 1 ) )  
* -  -.. - (A .  2 )  

( ~ ( 0 )  - 1 = { x 0 )  - (A.  3 )  

where  { x ( t ) )  and  { A ( t ) )  are t h e  s t a t e  v e c t o r  and t h e  co-  - - 
s t a t e  v e c t o r ,  r e s p e c t i v e l y .  

The s o l u t i o n  t o  t h e  two-po in t  boundary-va lue  p rob l em 

starts  o u t  w i t h  t h e  a s s u m p t i o n  t h a t  t h e r e  e x i s t s  a  l i n e a r  

r e l a t i o n  between t h e  c o - s t a t e  v e c t o r  a n d  t h e  s t a t e - v e c t o r  

a t  t h e  optimum: 



{ h * ( t ) )  - = K ( t )  - { x * ( t ) }  - ( A .  5)  

where t h e  feedback  m a t r i x  K ( t )  i s  t h e  s o l u t i o n  o f  t h e  d i s c r e t e  

R i c c a t i  e q u a t i o n .  S i n c e  by (3.69) 

w e  may w r i t e  t h e  feedback  c o n t r o l  law a s  

The c losed - loop  sys tem t h e n  i s  

The m a t r i x  

i s  n o n s i n g u l a r ,  a s  w i l l  be  shown l a t e r .  T h e r e f o r e  

{ x * ( t  - + 1 ) )  = [I + B R - ' B I K ( ~  -- - - + I ) ] - '  G { x * ( ~ ) I  - - . 
(A. 9) 

The s o l u t i o n  t o  t h i s  system of  homogenous d i f f e r e n c e  

e q u a t i o n s  i s  

(A. 1 0 )  



where $ ( t , O )  i s  t h e  d i s c r e t e  s t a t e  t r a n s i t i o n ' n a t r i x .  The - 
m a t r i x  

i s  f u n c t i o n  o f  t i m e .  T h e r e f o r e ,  t h e  s o l u t i o n  o f  t i m e  

i n v a r i a n t  sy s t ems  

i s  i n c o r r e c t .  

M e  must  f i n d  a  sequence  K ( t )  such  t h a t  (A.  9 )  and - 
(A.10) h o l d  f o r  any v a l u e  of  ( ~ ( 0 ) ) .  S u b s t i t u t i n g  (A.5) - 
i n t o  (A.  1 )  g i v e s  

where  { x * ( t  + 1 ) )  i s  g i v e n  by ( ~ . 9 ) .  W e  f i n d  t h e n  - 

where V ( t )  i s  g i v e n  by (A .11 ) ,  whence - 

K ( t )  - { x * ( t ) l  - = [Q - + G I K ( t  + 1 )  ~ - ' ( t )  G I  { x t ( t ) )  . - - - - - 
( A .  12)  

T h i s  e q u a t i o n  i s  a  r e s u l t  o f  t h e  n e c e s s a r y  c o n d i t i o n s  f o r  a n  

optimum. T h e r e f o r e ,  it must h o l d  f o r  any i n i t i a l  c o n d i t i o n  

{ x ~ ) .  S i n c e  o n l y  { x * ( t ) )  depends on  t h e  i n i t i a l  c o n d i t i o n ,  - 
(A .  1 2 )  must  h o l d  f o r  any {x* - ( t)  1 , and w e  must have 



K (t) = Q + G'K (t + 1) V-' (t) G , - - - - for all t 

= Q + - G * K ( ~  - + 1) [I - + BR-'B'K(~ + I)]-'G . - -  - - - 
(A. 13) 

Equation (A. 13) is the discrete Riccati equation. The 

Riccati equation may be solved backwards, starting with the 

boundary condition 

(A. 14) 

That this boundary condition holds follows from substituting 

(A.5) into (A.4) 

1f {x(T))' - F{x(T)) - - = 0, i.e., F - = 0, - then 

{A(T)) = (0) - and K(T) - = - 0 . 

~t is easy to show that K(t) is positive semi-definite for - 
all t. Since F was assumed to be positive semi-definite, - 
K (T) is positive semi-definite. The matrix K(T - 1) may - - 
be found by the relation 

Ic(T - I )  = Q + G'K(T) [I + BR-'BIK(T)I G - - - - - -  - - - 
(A. 15) 



Since Q is positive semi-definite and R-l - is positive 

definite, K(T - 1) must be positive semi-definite, and so - 
all K(t). Now since all of the K(t) are positive semi- - - 
definite, the matrix 

is nonsingular, and ( A . 9 )  has a unique solution. It is 

also clear from (A.15) that K(t) is symmetric if Q, F and - - - 
R are symmetric. Since R is nonsingular K(t) is also unique. - - - 

The solution of the Riccati equation requires the 

inversion of V(t) at each time period. V(t) is an N x N 
.., - 

matrix, N being the number of elements in the state vector 

(x(t)), i.e., the number of targets. Eowever, it is possible - 
to reduce the dimension of the matrix to be inverted. It is 

known from matrix algebra that 

where W and Z '  are N x K and K x N respectively, with - - 
K 2 N. Let 

then 

(A. 16) 



(A. 17) 

where the matrix to be inverted 

is K x K .  I< is the number of instruments, and is generally 

much smaller than N. 

Once K(t) is known for all t, the sequence of the state - 
vector is computed from (A. 3) and (A. 18) : 

(A.18) 

and the sequence of the control vector follows from (A.19) 

The co-state variables are computed by (A.20) 

(A. 19) 

(A. 20) 

The optimal cost functional is 



S u b s t i t u t i n g  f o r  {u* - ( t )  1 y i e l d s  

S u b s t i t u t i n g  ~ { x *  ( t )  u s i n g  ( A .  1 2 )  y i e l d s  - - 

- { x * ( t )  - 1 '  G I K ( t  - - + 1 )  V-' - ( t )  G{x* - - (t)  ] 

+ { x * ( t + i l  - r : ( t + i ) l  - R R - I B I K ( ~ + I )  { x * ( t +  1 ) )  . - -  - - - 

But by (A.9) 

I 
V-' ( t )  G{x* ( t )  1 = { x *  ( t  + 1 ) )  - - - - 

and ,  t h e r e f o r e ,  

1  
J = 7 C ~ * ( T ) } '  - F { x * ( T ) ~  - - + ( t)  1 '  ~ ( t )  - {x* - (t)} 

i = O  

(A .  22) 



And 

The o b j e c t i v e  f u n c t i o n  (A.22) becomes 

But s i n c e  K ( T )  = F ,  w e  have - - 

The o p t i m a l  v a l u e  o f  t h e  o b j e c t i v e  f u n c t i o n a l  depends on t h e  

i n i t i a l  c o n d i t i o n  I x ( 0 ) )  and on K ( 0 ) .  The m a t r i x  K(0) depends - - -2 

on t h e  m a t r i c e s  G I  F, 0, R and B and on t h e  feedback  m a t r i c e s  - w - - - 
K ( t ) ,  t = 1 ,..., T. - 
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