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The Adaptive Dynamics Network at
IIASA fosters the development of new
mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term implica-
tions of adaptive processes in systems
of limited growth, the Adaptive Dy-
namics Network brings together scien-
tists and institutions from around the
world with IIASA acting as the central
node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability to
provide causal explanations for phenomena that are highly improbable in the physico-
chemical sense. Yet, until recently, many facts in biology could not be accounted for in
the light of evolution. Just as physicists for a long time ignored the presence of chaos,
these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Origin
of Species” sparked off the whole evolutionary revolution, oddly enough, the popula-
tion genetic framework underlying the modern synthesis holds no clues to speciation
events. A second illustration is the more recently appreciated issue of jump increases
in biological complexity that result from the aggregation of individuals into mutualistic
wholes.
These and many more problems possess a common source: the interactions of individ-
uals are bound to change the environments these individuals live in. By closing the
feedback loop in the evolutionary explanation, a new mathematical theory of the evolu-
tion of complex adaptive systems arises. It is this general theoretical option that lies at
the core of the emerging field of adaptive dynamics. In consequence a major promise
of adaptive dynamics studies is to elucidate the long-term effects of the interactions
between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary both
for validation and for management problems. For example, empirical evidence indi-
cates that to control pests and diseases or to achieve sustainable harvesting of renewable
resources evolutionary deliberation is already crucial on the time scale of two decades.
The Adaptive Dynamics Network has as its primary objective the development of mathe-
matical tools for the analysis of adaptive systems inside and outside the biological realm.
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No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van Heerwaarden JS:
Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly
Faithful Reproduction.
IIASA Working Paper WP-95-099.

In: van Strien SJ, Verduyn Lunel SM (eds.): Stochastic and Spatial Structures of Dynamical
Systems, Proceedings of the Royal Dutch Academy of Science (KNAW Verhandelingen),
North Holland, Amsterdam, pp. 183–231 (1996).

No. 2 Dieckmann U, Law R:
The Dynamical Theory of Coevolution: A Derivation from Stochastic
Ecological Processes.
IIASA Working Paper WP-96-001.

Journal of Mathematical Biology (1996) 34, 579–612.

No. 3 Dieckmann U, Marrow P, Law R:
Evolutionary Cycling of Predator-Prey Interactions: Population Dynamics
and the Red Queen.
IIASA Preprint (1995).

Journal of Theoretical Biology (1995) 176, 91–102.

No. 4 Marrow P, Dieckmann U, Law R:
Evolutionary Dynamics of Predator-Prey Systems: An Ecological
Perspective.
IIASA Working Paper WP-96-002.

Journal of Mathematical Biology (1996) 34, 556–578.

No. 5 Law R, Marrow P, Dieckmann U:
On Evolution under Asymmetric Competition.
IIASA Working Paper WP-96-003.

Evolutionary Ecology (1997) 11, 485–501.

No. 6 Metz JAJ, Mylius SD, Diekmann O:
When Does Evolution Optimise? On the Relation between Types of Density
Dependence and Evolutionarily Stable Life History Parameters.
IIASA Working Paper WP-96-004.

No. 7 Ferrière R, Gatto M:
Lyapunov Exponents and the Mathematics of Invasion in Oscillatory or Chaotic
Populations.
Theoretical Population Biology (1995) 48, 126–171.



No. 8 Ferrière R, Fox GA:
Chaos and Evolution.
IIASA Preprint (1996).

Trends in Ecology and Evolution (1995) 10, 480–485.

No. 9 Ferrière R, Michod RE:
The Evolution of Cooperation in Spatially Heterogeneous Populations.
IIASA Working Paper WP-96-029.

American Naturalist (1996) 147, 692–717.

No. 10 Van Dooren TJM, Metz JAJ:
Delayed Maturation in Temporally Structured Populations with Non-Equilibrium
Dynamics.
IIASA Working Paper WP-96-070.

Journal of Evolutionary Biology (1998) 11, 41–62.

No. 11 Geritz SAH, Metz JAJ, Kisdi É, Meszéna G:
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Abstract

The notion of a fitness landscape has permeated the analysis of evolutionary processes for
more than 60 years. Introduced by Sewall Wright for discussing biological evolution and
speciation, the concept has recently been transferred to the study of abstract genotypes
of various evolutionary algorithms. The features of high-dimensional fitness landscapes
can vary to a high degree, and the question by which means they can be described has
turned out to be a challenging problem. Even though some statistics have been suggested
for this purpose and are already well-analyzed, presently discussed statistics do not seem
appropriate for obtaining sufficiently accurate predictions of evolutionary dynamics at the
level of fitness.

In this study, an analysis of three different types of fitness landscapes is presented. I
introduce a new correlation measure, and show by comparing the actual evolutionary wait-
ing times to those predicted when only taking into account the correlation statistics, that
these statistics seem to capture salient information of the underlying fitness landscapes.

Based on one-dimensional correlation statistics, very accurate predictions of evolu-
tionary waiting times are achieved for the fitness landscape of the Travelling Salesman
Problem and NKp landscapes with low degree of neutrality. Both for NKp landscapes
with high neutrality and RSF landscapes, which in a similar way involve large-scale neu-
trality, higher-dimensional correlation statistics provide enough information to estimate
evolutionary waiting times. Finally I present an approach towards analytic descriptions
of evolutionary dynamics for the analyzed fitness landscapes of low neutrality.
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Chapter 1

Introduction

1.1 Simple evolutionary models

Since Darwin’s theory of evolution, mathematical models have become indis-
pensable for understanding evolutionary processes. Even though individuals
are recognized as the fundamental level of evolution, competition is also ob-
served among genes within a genome, groups of organisms and species, and
in that sense, evolution simultaneously takes place on various levels. In or-
der to study evolutionary phenomena, mathematical models often describe
dynamics directly at the level which is of immediate interest. Unfortunately,
evolutionary dynamics at a single level cannot be exhaustively understood
without accounting for the interactions with other levels. These interactions
can result in very complex dynamics which are impossible to be described by
straightforward models.

Nevertheless it is feasible to define evolutionary dynamics at some lower
level and to deduce the dynamics at a higher level of interest. In this thesis
I demonstrate applications of this methodology to some simple and artificial
evolutionary systems for which the dynamics are precisely defined at the level
of genotypes. Of interest for us, however, are only the resulting dynamics
at the level of fitness. The benefit of such an approach is that dynamics at
the level of interest do not have to be stipulated but are properly founded
on some lower level evolution.

In particular, abstract individuals are assumed to have fitness values
which are only determined by their genotypes. Most commonly, fitness is
identified with the probability for reproductive success an individual has.

3
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The assumption that genotypes alone determine fitness values is a rough
simplification of the complex process which actually determines the repro-
ductive success. Every individual, although it can to some extent be iden-
tified with its genotype, undergoes a complicated process of development,
involving interactions with other individuals and the environment, which is
in turn influenced by the individuals that live therein. As all these complica-
tions are not studied in this work, our models can be mainly compared with
specific evolutionary systems like experiments with bacteria or replicating
biomolecules. The dynamics observed in these systems are nonetheless very
elaborate and provide a basis for understanding more involved evolutionary
scenarios.

The evolutionary systems studied in this work are generally called evo-
lutionary algorithms and are simulated on computers. Genotypes are rep-
resented by vectors and a function maps each genotype to a certain fitness
value. Starting with a population of such individuals, they produce off-
spring having genotypes different from their parent individuals: mutation and
crossing-over operators transform genotypes according to specific stochastic
schemes. These offspring individuals therefore possibly also have fitness val-
ues different from those in the old population. A selection operator then
selects the next generation of individuals out of the offspring population,
with fitter individuals having a higher chance to be chosen. The individuals
of the new generation then reproduce again. As fitness is only depending
on the genotypes of individuals, this procedure amounts to a successive op-
timization of fitness values present in a population. It is therefore common
to take objective functions of optimization tasks as fitness functions. Apart
from functions of this type I also choose fitness maps which are specifically
designed to represent commonly observed properties of evolutionary systems,
like neutrality in the genotype-to-fitness map.

1.2 Evolutionary algorithms

An optimization task is the search for the solution of a problem of the form

max
x∈G

f(x) with f : X → Z, G ⊆ X

where X and Z are topological spaces with Z having a total order. The
function f is called the objective function and G is the feasible region. The
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elements x ∈ G are termed feasible points. All x̂ ∈ G with

f(x̂) ≥ f(x) ∀x ∈ G

are called optimal solution or solution of the problem. A feasible point x̄ is
called a local optimum if there exists a neighborhood U of x̄ in G such that

f(x̄) ≥ f(x) ∀x ∈ U

This definition is not restricted to problems of maximizing a given func-
tion, as for all problems of minimization there exists an equivalent optimiza-
tion task in the above sense. The complexity of optimization tasks is in
general very high. Most optimization problems except local optimization
tasks belong to the class of NP-hard problems for which no algorithm with
polynomial solution time exists.

However, for many problems of practical interest the focus is not on de-
tecting the optimal solution but on finding a feasible point sufficiently close
to it within short computation time. For this purpose it is convenient to
let candidate solutions simply evolve towards better ones. Such algorithms,
which make use of basic principles of evolution like mutation and selection
(sometimes crossover is also considered), are called evolutionary algorithms
and have been established as efficient tools for finding quasi-optimal solutions
of many optimization problems (Michalewicz 1992, Beasley 1997).

In these algorithms, feasible points of the optimization task are seen as
genotypes of abstract individuals. Most problems of optimization allow for
a binary or real number vector representation of these genotypes. Each in-
dividual has a certain fitness determined by the objective function at the
considered feasible point. Starting with a whole population of such individ-
uals, stochastic mutation and crossover operators are used to produce an
offspring population different from the parent generation: When a genotype
is mutated, random entries of the genotype vector are modified. At crossing-
over, parts of the genotypes of two individuals are interchanged. Both types
of operators produce new individuals, which can be regarded as offspring,
having genotypes and thus possibly also fitness values different from those of
their parent individuals. Out of the offspring population, a new generation
of individuals is selected according to a specific scheme biased towards fitter
individuals. Such a selection scheme can either be deterministic, e.g. the fit-
ter half of all individuals is taken over to the next generation, or stochastic,
when fitter individuals are assigned a greater probability to be taken over.
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Computation time to find individuals of certain fitness can be reduced a
lot when using clever mutation, crossing-over and selection operators specif-
ically designed for a problem. But regardless of the complexity of operators,
evolutionary algorithms succeed in finding fitter and fitter individuals and
thus points close to the optimal solutions.

The particular interest in evolutionary algorithms derives from the fact
that the principle of evolving genotypes can be applied to nearly any opti-
mization task. Problems of operations research like the Travelling Salesman
Problem (TSP), scheduling or transportation problems, as well as designing
neural networks (Pasemann et al. 1999), problems on graphs, prediction of
RNA molecule folding (Schuster et al. 1994, Schuster 1997, Fontana et al.
1993) and many other tasks have successfully been tackled.

In this study the following concept of an evolutionary algorithm is used:

1. Generate a population of P random genotypes.

2. Create offspring by mutating the genotypes of individuals.

3. Evaluate the fitness of all offspring and stop if one reaches a certain
final value.

4. Select according to a selection scheme a new generation of P individu-
als.

Go to step 2.

This algorithm does not include crossing-over as a second genetic oper-
ator besides mutation. Although crossing-over is in some cases decisive for
the evolutionary search, many studies of evolutionary algorithms have also
demonstrated that the qualitative features of the dynamics are not necessar-
ily influenced when only considering mutation.

Although most of the interest in evolutionary algorithms is focused on
their performance as methods for solving optimization tasks, they can also
be regarded as simple models for evolutionary dynamics. This is the way
evolutionary algorithms are studied in this work. An analysis of the resulting
dynamics will of course also lead to a better understanding of their property
as search algorithms for problems of optimization.

Since individuals of an evolutionary algorithm become more and more fit
over generations, we can imagine that they climb fitness peaks. For many
years the metaphor of a fitness landscape has served as a powerful concept
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for discussing biological evolution. In this thesis I investigate the highly
complicated structures of specific fitness landscapes for an improvement of
our understanding of evolutionary processes on the level of fitness.

1.3 Fitness landscapes

The notion of a fitness landscape has permeated the analysis of evolutionary
processes for more than 60 years (Gavrilets 1997). Introduced by Sewall
Wright (Wright 1932) for discussing biological evolution and speciation, the
concept has recently been transferred to the study of abstract genotypes of
various evolutionary algorithms. Arranging genotypes in a topological space
with each genotype situated next to those which can be reached by a single
mutation, the genotype’s mutants or neighbors, and adding one dimension
to include the fitness values of genotypes leads to the picture of a fitness
landscape. A fitness landscape is therefore determined by a finite but usually
very large set V of genotypes, a definition of neighborhood of genotypes, and
a fitness function f : V → R. The set V can be interpreted as the vertex
set of a graph, with its edge set given by the neighborhood relations. A
population of individuals can then be seen as a cloud of points on the fitness
landscape, with the combined effect of mutation and selection forcing the
population to perform a hill-climbing process towards fitness peaks.

According to this idea, every evolutionary algorithm can be regarded as
a dynamical process on a fitness landscape. Understanding the dynamics of
evolutionary algorithms, which is the aim of this work, therefore amounts
to understanding the structural features of the analyzed fitness landscapes.
Stating the properties of fitness landscapes which are crucial for the resulting
evolutionary dynamics is unfortunately not a straightforward process. The
discussion by which means they can be characterized is still ongoing.

For a long time, the notion of rugged fitness landscapes, involving many
local peaks separated by fitness valleys, has dominated the discussion of
adaptive processes (Kauffman and Levin 1987). However, for many evolu-
tionary processes the intuitive image of a three-dimensional landscape with
its emphasis on peaks and valleys (see Figure 1) may be inappropriate. Hill-
climbing on such a rugged fitness landscape, a population will soon end up at
a local peak: selective pressures will prevent it from crossing the surrounding
adaptive valleys to reach a higher fitness peak. Yet, biological evolution and
evolutionary algorithms do not appear to become entrapped in local fitness
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peaks as often as this intuitive picture suggests (Schuster 1996).
The reason why this picture of a three-dimensional landscape can be mis-

leading is that most genotypes differ in much more than two properties, and
the number of genotypes that can be reached by a single mutational step, i.e.
the number of neighbors, is very large. The resulting fitness landscapes are of
dimensions much higher than three. It turns out that the structural features
of these high-dimensional landscapes are very different from those of low-
dimensional ones. Every dimension offers a connection to neighbors possibly
having higher fitness. Consequently, for many high-dimensional landscapes
the problem of being stuck in a local adaptive peak far away from the global
optimum might even be non-existent (Gavrilets 1997). Ruggedness should
therefore not be related to the frequency of local optima in a landscape. I
refer of a fitness landscape to be rugged, if a substantial range of different
fitness values is found in the neighborhood of a typical genotype.

p2p1

f

p2

Figure 1 If genotypes only differ in two properties (p1, p2) and if an appro-
priate mutation operator is chosen, they can be arranged in a two-dimensional
space, with each individual next to those which can be reached by a single mu-
tation. Assigning a certain fitness value f to all genotypes leads to a fitness
landscape. Evolution in areas where the surface is rather smooth may result
in shorter waiting times, whereas in rugged regions a population can easily
end up in a local peak. The features of high-dimensional fitness landscapes,
however, are certainly very different from the properties we observe for three-
dimensional ones.

From investigating special types of fitness landscapes it is known that
their features can vary to a high degree. It is therefore natural to ask which
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structural properties of fitness landscapes determine the evolutionary dynam-
ics. Having identified the crucial features would allow for classifying fitness
landscapes in such a way that the performance of evolutionary processes can
be predicted. Even though some statistics have been suggested for this pur-
pose and are already well-analyzed (Weinberger 1990, Stadler 1992, Stadler
1996, Barnett 1997), presently discussed statistics do not seem to be appro-
priate for obtaining sufficiently accurate predictions of evolutionary waiting
times.

Most of the analysis of fitness landscape so far has been concentrated on
the feature of ruggedness, particularly measured by two types of correlation
functions.

1.4 Correlation functions

In order to describe complex and high-dimensional fitness landscapes, mainly
two types of correlation functions have been studied so far. Let a fitness
landscape be given by a set V of genotypes, a definition of neighborhood of
genotypes, and a fitness function f : V → R. If we define the mean and
variance of the fitness landscape,

f =
1

|V |
∑
x∈V

f(x) and σ2f =
1

|V |
∑
x∈V

(f(x)− f)2 = f2 − f
2
,

the (direct) correlation function ρ(d) introduced by Eigen et al. (1989) is
given by

ρ(d) =
〈f(x)f(y)〉d − f

2

σ2f
,

where 〈f(x)f(y)〉d denotes the mean value of the product of fitness values of
all pairs of genotypes x and y, which are at a distance of d mutational steps
from each other in genotype space.

Another measure of correlation proposed by Weinberger (1990), the auto-
correlation function r(s), is based on time series {f(x0), f(x1), ...} of fitness
values along random walks on the fitness landscape:

r(s) =
〈f(xt)f(xt+s)〉 − 〈f(xt)〉〈f(xt+s)〉√

(〈f(xt)2〉 − 〈f(xt)〉2) (〈f(xt+s)2〉 − 〈f(xt+s)〉2)
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The mean values, denoted by 〈 〉, are taken over all initial conditions x0 and
all times t. If all genotypes have the same number of neighbors, i.e. the set
V interpreted as a graph is regular, the autocorrelation function simplifies to

r(s) =
〈f(xt)f(xt+s)〉 − f

2

σ2f

The direct correlation function describes how related the fitness values of
two genotypes at certain mutational distances are, whereas the autocorrela-
tion function relates the fitness values of genotypes which can be reached from
each other by making a certain number of mutational steps. Both measures
are closely related according to

r(s) =
n∑
d=0

Ps,d ρ(d),

where Ps,d is the probability that a random walk of s steps ends at distance d
from its starting point, and n is the maximal mutational distance between two
genotypes in V (Happel and Stadler 1996). These two correlation functions
thus carry equivalent information. In particular, for the correlation between
neighboring genotypes we get the following:

� = r(1) = ρ(1)

For a large class of landscapes, among them important landscapes of combi-
natorial optimization tasks like the Travelling Salesman Problem, the auto-
correlation function is exponential,

r(s) = �s.

Both types of correlation functions are used to specify the degree of rugged-
ness of a fitness landscape. In particular, the number of local optima can
be estimated using these correlation functions, but such estimations are dif-
ficult to verify if the set V of genotypes is large. Based on these two types of
correlation functions, only rough approximations of evolutionary dynamics
have been available. Moreover, it was shown by Barnett (1997), that the
autocorrelation function is invariant on NKp fitness landscapes with varying
degree of neutrality, see Section 2.2. As as measure intended to describe
ruggedness, the autocorrelation and the direct correlation function appear to



CHAPTER 1. INTRODUCTION 11

be inappropriate for characterizing fitness landscapes involving both features,
ruggedness and neutrality.

The correlation measures presented in this work are designed to cap-
ture the combined effect of ruggedness and neutrality. The new correlation
measures enhance and reduce the information provided by the two conven-
tional correlation functions: Whereas the focus is only on single mutational
steps, the initial fitness of a genotype is taken into account. The correlation
functions introduced here relate the fitness values of genotypes that can be
transformed into each other by a single mutation. For every fitness value, or
for a narrow range of fitness values, this information thus consists of a whole
probability distribution of neighboring fitness values. I call the correlation
measure one-dimensional, as it considers only one property of genotypes,
i.e. their fitness. For highly neutral fitness landscapes, more properties of
genotypes have to be respected, and one-dimensional correlation information
is extended to higher-dimensional correlations. Based on this new type of
correlation information, critical features of fitness landscapes are captured.

1.5 Structure of this work

In this study I focus on specific fitness landscapes of well-known problems and
investigate the durations (or waiting times) of evolutionary processes on these
landscapes. I introduce a new type of correlation statistics, different from
those used so far, and show, by comparing observed and predicted waiting
time distributions, that these statistics are very useful for understanding,
predicting, and classifying evolutionary processes on high-dimensional fitness
landscapes.

In Chapter 2 the focus is on one-dimensional correlation statistics, which
are used to predict waiting times on various specific fitness landscapes of
the Travelling Salesman Problem (TSP), on NKp fitness landscapes, and
on the landscape of the Royal Staircase Fitness (RSF) function. After some
general information on the Travelling Salesman Problem and the utilized evo-
lutionary algorithm, I show that a percolation approximation of the fitness
landscape, which neglects the correlation between the fitness of neighbor-
ing genotypes, is not successful in predicting the evolutionary dynamics at
the level of fitness values. In contrast, one-dimensional correlation infor-
mation, based on a sufficiently fine-grained classification of fitness values,
allows for very accurate predictions of evolutionary waiting times. In the
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following, similarly encouraging results are obtained for other mutation op-
erators for the TSP, resulting in differently structured fitness landscapes, and
for NKp landscapes with low neutrality. For NKp landscapes involving high
degrees of neutrality, and for the landscape of the Royal Staircase Fitness
function, which in a similar way decomposes into few but very extended neu-
tral clusters, only relatively rough estimates of evolutionary waiting times
are achieved.

Chapter 3 extends the analysis to higher-dimensional correlation statis-
tics, which capture the salient features even of landscapes with high degrees
of neutrality. Both for NKp landscapes with high neutrality and RSF land-
scapes, the inclusion of information about genotypes that goes beyond their
fitness values, is decisive for obtaining good approximations of the evolution-
ary algorithm. Based on three-dimensional correlation information, which
describes genotypes by three crucial properties, it is possible to predict the
process of neutral evolution of a population evolving on clusters of equal
fitness. The conceptual simplicity of a successful approximation of the dy-
namics on these highly neutral fitness landscapes is surprising.

An approach towards an analytic description of evolutionary processes
on fitness landscapes is presented in Chapter 4. The structure of one-
dimensional correlation information allows for an approximation based on
normal distributions. By applying a stochastic selection scheme based on an
exponential selection function, recursion equations for the change of mean
and variance of fitness in large populations evolving over generations are
derived. These yield good estimations of the actual dynamics.

A summary of my findings and a sketch of open questions resulting from
this study is provided in Chapter 5.



Chapter 2

One-dimensional correlation

In this chapter I study several specific evolutionary algorithms and show that
one-dimensional correlation statistics of the analyzed fitness landscapes allow
for a very accurate description of the dynamics on the level of fitness. This
is proved by comparing actual evolutionary waiting times to those predicted
by such statistics.

The dynamics of an evolutionary algorithm which are relevant for us,
are the dynamics on the level of fitness. The underlying highly complicated
dynamics on the genotype level are not of direct interest. Thinking of a
population on a fitness landscape we want to know how the next mutational
and selective step changes the fitness distribution in the population. When
the genotype of an individual is mutated, the new genotype is a neighbor of
the old one in genotype space. After mutating all genotypes, the selection
procedure, which is only dependent on the fitness values of individuals, is
a straightforward process. Consequently, the neighborhood structure of all
individuals plays the key role of evolutionary dynamics. For a condensed de-
scription of this structure, individuals having a similar fitness and a similar
neighborhood in terms of fitness values are thought to belong to the same
class of individuals. For each class we determine a mean fitness value and
a mean distribution of all the classes present in the neighborhood. If the
number of different classes is much lower than the number of genotypes, we
can approximate the complicated evolutionary process on the fitness land-
scape by a much simpler process based on transitions between the classes.
The power of such an approximation of an evolutionary algorithm depends
on the number of classes necessary to describe the neighborhood structure of
individuals with sufficient accuracy.

13
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In the simplest case, the neighborhood for individuals of certain fitness
ranges is very similar. The genotypes are then divided into several fitness
classes and a population evolving on the fitness landscape can be approx-
imated by means of the transition probabilities between fitness classes un-
der mutational steps. We call this correlation between fitness classes one-
dimensional correlation, as it concerns the correlation within one property
of genotypes.

In the most difficult case, each genotype has a very specific neighborhood
structure, and number of classes necessary to describe the possible neigh-
borhood structures is as big as the genotype space itself. Important is the
question of which case fitness landscapes of actual interest are. We therefore
turn our attention to fitness landscapes which have received much attention
during the last years.

In the following, the fitness landscape of a specific optimization task, the
Travelling Salesman Problem, will be analyzed. I demonstrate that a char-
acterization of the fitness landscape which neglects the correlation of neigh-
boring fitness values is not successful, and show that a sufficiently accurate
correlation-based description captures the salient features of the landscape.

2.1 TSP fitness landscapes

2.1.1 General information

A salesman who has to visit each city on a given list, knowing the distances
between all pairs of cities, will try to minimize the length of his tour. This
optimization task is called The Travelling Salesman Problem (TSP) and has
received attention for many decades. The TSP belongs to the class of NP-
hard optimization problems and the solution time therefore grows more than
exponentially with the number of cities.

In many cases of actual interest, however, the focus is not on detecting the
shortest possible tour, but on finding a tour that is sufficiently close to the
optimum within feasible computation time. For this purpose it is convenient
to implement an evolutionary algorithm and let candidate solutions evolve
towards better ones.

In this study the landscape of the TSP is chosen as a benchmark problem
because of its canonical genotype-to-fitness map and the attention that it has
received in recent studies of fitness landscapes (Stadler and Schnabl 1992,
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Figure 2.1: The 25 cities of a sample TSP.

Reidys and Stadler 2001).

2.1.2 An evolutionary algorithm using point mutation

In order to test correlation statistics for describing fitness landscapes, at first
a TSP with rather few cities and comparatively short evolutionary waiting
times is chosen. Later I test these statistics for a TSP with 40 cities and a
different evolutionary algorithm, see Section 2.1.4. For the following example
of the TSP, 25 cities have been distributed randomly according to a uniform
distribution over the square [0, 327]2, see Figure 2.1.

The biological terms describing an evolutionary algorithm for the TSP
are set to the following (later some different definitions are used):

• Genotypes
Each possible tour starting in City 1, visiting all other cities, and ending
again in City 1, corresponds to a genotype; its vector representation is
given by the sequence of cities. For every genotype, the length of the
respective tour is calculated according to a distance table involving all
pairs of cities. For 25 cities, the total number of different genotypes is
24!, which is of order 1023. Because of this extremely large number of
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possibilities a strategy of testing all tours in order to find the best one
is infeasible.

• Fitness
The fitness f of a specific genotype g is given by

f(g) :=
1

l(g)

where l(g) is the length of the tour corresponding to genotype g.

• Mutation
To mutate a genotype, every operator that changes the vector in a way
that the mutated genotype is still a possible tour can be considered.
Here, three frequently used mutation operators are chosen (Manderick
1997). For each of these mutation operators, two positions within the
tour, corresponding to two indices of the genotype vector, are chosen
at random, see Figure 2.2.

– point mutation: the cities at two indices of the vector are swapped.
If the fourth and the eight index are chosen, a mutant of the tour
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] is the vector
[1, 2, 3,8, 5, 6, 7,4, 9, 10, ...].

– reverse mutation: the order of cities between two indices is re-
versed. A mutant of the tour [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] is the
vector [1, 2, 3,8,7,6,5,4, 9, 10, ...].

– remove-and-reinsert: the city at the first index is taken out and
reinserted at the second index. A mutant of the tour
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] is either the vector
[1, 2, 3,5,6,7,8,4, 9, 10, ...] or [1, 2, 3,8,4,5,6,7, 9, 10, ...], depend-
ing on the order in which the two indices were chosen.

Two individuals that can be transformed into each other by a sin-
gle mutation are called neighbors. For the following we use point
mutation and show later that the results of a correlation-based
description are similar for other mutation operators.
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Figure 2.2: A comparison of different mutation operators for the Travelling
Salesman Problem. A part of the original tour (1) and the resulting tours
after a point mutation (2), reverse mutation (3) and the two possibilities for
remove-and-reinsert mutation (4 and 5), depending on the order the indices
are chosen.

• Selection
In every generation, each genotype produces two offspring individuals
which are both once mutated. The best third of the union of the old
population and the offspring is taken over to the next generation. This
process thus keeps the population size (chosen at 15 individuals below)
constant.

• Evolutionary waiting times
Evolutionary waiting times are stochastic variables defined as the num-
ber of generations necessary for a population to evolve between two
given fitness values. In this work we concentrate on waiting times as
these provide crucial statistics of an evolutionary process.

Before we focus on the evolutionary waiting times on our specific TSP
landscape, some basic information is given concerning the behavior of the
utilized evolutionary algorithm using point mutation.
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Figure 2.3: Length distribution of random TSP tours.

Randomly produced tours normally have a length between 3000 and 5000,
the distribution of length values is shown in Figure 2.3.

A population of P = 15 individuals, each producing two mutated offspring
per generation, rapidly tends to climb the fitness landscape, see Figure 2.4,
where the shortest tour length decreases from about 4000 to about 1700
in 500 generations. The best fitness in the population normally remains
constant for a number of generations and then suddenly jumps to a higher
level. This is a common property of evolutionary algorithms and is referred
to as epochal evolution.

The best tour found by all different mutation operators discussed in this
paper has a length of 1369 and typically is found within 200 generations, see
Figure 2.5. This solution is certainly very close to the global optimum of this
TSP.

To test the different reduced descriptions of fitness landscapes studied in
this paper, it is necessary to obtain statistics of evolutionary waiting times
for different fitness intervals. For this purpose, initial and final fitness values
are chosen from the interval 1/5000 to 1/2900; producing random tours with
fitness values in this range is relatively easy, and this is a prerequisite for
obtaining the correlation statistics investigated later. In particular, initial
fitness values are chosen 1/5000, 1/4300, and 1/3600, and final fitness values
1/4300, 1/3600 and 1/2900. To construct the distribution of evolutionary
waiting times from a certain initial fitness fi to a final value ff we proceed as
follows. In generation 0, the population is initialized with a random genotype
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Figure 2.4: The evolution of highest (thin line) and mean fitness (thick line)
in a population. Periods of constant fitness are interspersed with sporadic
jumps, a characteristic property of evolutionary algorithms.
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Figure 2.5: The shortest tour found for our sample TSP has a length of
1369.
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Figure 2.6: A matrix of waiting time distributions in generations for 3 initial
(I) and 3 final (F) fitness values, based on an evolutionary algorithm that
uses point mutation. This graph serves as a target for results derived from
different reduced descriptions of fitness landscapes, and allows to assess their
performance. As for three cases initial fitness is equal or higher than the final
fitness, waiting times are not relevant and the corresponding distributions are
replaced with filled circles.

that has a fitness of approximately fi. The number of generations necessary
until one individual of the population reaches fitness ff is stored as the
waiting time of a run. For a given pair of initial and final values, results of
2000 such runs are combined to obtain the distribution of waiting times; an
example is shown in Figure 2.6.

In the following subsections I consider landscape statistics of increasing
complexity and compare their suitability for predicting the actual distribu-
tions of evolutionary waiting times.



CHAPTER 2. ONE-DIMENSIONAL CORRELATION 21

Without correlation: Percolation

The basic concept of percolation theory is a grid in a multidimensional space,
with each lattice site being independently filled with probability p (Kesten
1982, Grimmett 1989). If p exceeds a certain critical value, a subset of
the filled sites forms a connected infinite cluster that percolates through
the entire grid. Cluster statistics have been used to study a wide variety of
problems (Sahimi 1994, Stauffer and Aharony 1995). Here I use a percolation
approximation to provide a reduced description of the TSP fitness landscape
presented in the last section. I demonstrate that this approximation, which
is ignoring the correlation between the fitness values, does not result in good
approximations of the evolutionary algorithm.

If the fitness values of neighboring genotypes are not correlated, the neigh-
borhood structure can be regarded as to be the same for all individuals. In
the absence of correlation therefore the distribution of waiting times for a
population to evolve from a certain initial to a final fitness value only de-
pends on the frequency of genotypes whose fitness values exceed the final
fitness threshold. As the neighborhood structure of an individual is assumed
to be independent of this individual’s fitness value, initial fitness is ignored
in this percolation approximation.

For each final fitness threshold all elements of the genotype space are
divided into two classes. Those genotypes with fitness beyond the threshold
are in class 1, all others in class 0. A percolation approximation of a fitness
landscape then amounts to (i) considering only the labels 0 or 1, while ignor-
ing actual fitness values and genotypes, and (ii) assuming that individuals
independently belong to either of these two clusters with probability p and
1 − p. The percolation probability p is estimated from a large number of
random TSP tours.

The evolutionary algorithm is then imitated as follows: The entire pop-
ulation is in class 0 initially. In each generation, and for every individual,
two offspring are chosen out of 300 neighbors of this individual (for 25 cities
each TSP genotype has 25 ∗ 24/2 = 300 neighbors under point mutation).
If at least one of these 30 offspring individuals (15 individuals produce two
offspring each) belongs to the higher fitness class (class 1), the process stops.
Otherwise it continues with the next generation.

In order to calculate the probability pstop(g) for the described process to
end in a certain generation g, first some variables have to be defined:

A ... total number of possible individuals
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P ... population size

N ... number of neighbors per individual

m ... number of offspring per generation and individual

p ... probability for an individual to be in the higher fitness class (class 1)

A1 ... number of all individuals in class 1 (≈ Ap)

The probability pk for an individual to have k neighbors in class 1 out of
N possible is then given by

pk =

(
A1
k

) (
A−A1
N−k

)(
A
N

)
=

A1! (A−A1)!N ! (A−N)!

k! (N − k)! (A1 − k)! (A− A1 −N + k)! A!

=

(
N

k

)
A1! (A− A1)! (A−N)!

(A1 − k)! (A− A1 −N + k)!A!
.

If N and k are relatively small compared to A (which is true for this TSP
landscape), this equation is well approximated by

pk ≈
(
N

k

)
pk(1− p)N−k.

Now, m offspring are chosen out of the N neighbors; these are not neces-
sarily different. The probability that none of m offspring of an individual

belongs to class 1 is
N−1∑
i=0

pi
(
N−i
N

)m
. As the events, that no offspring of all

different individuals belongs to class 1, are independent from each other, the
probability p∗ that at least one offspring of the whole population is of higher
fitness can now be calculated:

p∗ = 1−
(
N−1∑
i=0

pi

(
N − i

N

)m)P
.

The probability pstop(g) that after g generations one offspring finally belongs
to class 1, is then given by

pstop(g) = (1− p∗)g−1p∗.
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Figure 2.7: Waiting time distributions for reaching certain final fitness
thresholds as predicted by the percolation approximation. Initial fitness values
are ignored in this approximation. Compare the depicted distributions to
those in Figure 2.6.

For the analyzed TSP fitness landscape and the utilized evolutionary algo-
rithm the parameters are fixed to A = 24!, P = 15, N = 300, and m = 2.
The percolation probabilities p, denoting the probability for an arbitrary in-
dividual to be of fitness above a threshold, are, depending on the three final
fitness thresholds used before, approximately given by p(1/4300) = 0.86429,
p(1/3600) = 0.114685, and p(1/2900) = 0.000367.

It is not surprising that this drastic simplification of the fitness landscape
is too coarse. The waiting time statistics in Figure 2.7 show that the actual
evolutionary process towards high fitness values is much faster than this re-
duced description suggests. In the actual process, the probability for choosing
a neighbor with fitness above the final value increases over the generations
as the population successively attains higher fitness values. The percolation
approximation cannot capture this critical effect.
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As a next step I thus incorporate a critical landscape feature: the neigh-
borhood of a genotype strongly depends on its own fitness. Thus, the fitness
values of neighboring genotypes are correlated.

Monomorphic correlation

The results obtained for the percolation approximation suggest dividing all
genotypes into more than just two fitness classes, with each class having a
different distribution of mutant fitness. The correlation cij between classes i
and j is the probability for a random neighbor, or mutant, of an individual
of class i to be in class j. As class frequencies vary, this correlation function
is not symmetric. The correlation matrix C = (cij) is then used to define the
transition matrix T of a Markov chain that approximates the evolutionary
algorithm (Rudolph 1997). In this approximation, the whole population is
still considered to reside in the same fitness class, and is thus assumed to
be monomorphic at this level of description. Given that the population is
in class i, a transition from class i to a higher fitness class j occurs, if at
least one offspring of all the individuals belongs to fitness class j, but no
offspring is in one of the classes higher than j. Transition to lower fitness
classes are not possible; the population will therefore remain in the same
class if no offspring possesses a higher fitness. To calculate the probability
tij for a transition from i to j we need the following variables, assuming that
i and j are fixed:

c+ ... union of all fitness classes higher than j

c0 ... class j

c− ... union of all fitness classes lower than j

pl ... probability for a random neighbor of an individual of class i to belong
to cl, l = +, 0,−

P ... population size

N ... number of neighbors per individual

m ... number of offspring per generation and individual
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The probability wlk for an individual of the population, which thus be-
longs to class i, to have k neighbors in cl is determined by a binomial dis-
tribution, wlk =

(
N
k

)
pkl (1 − pl)

N−k. For each individual, m offspring are
independently chosen out of N neighbors. The probability tij for a transi-
tion from class i to j is the probability, that no offspring of all individuals
is in c+, but at least one in c0. Let A be the event that no offspring is in
c+, and B the event that at least one offspring is in c0. Thus tij is given
by the probability P (A ∩ B) that both events A and B occur. If B is the
complement of B and thus the event that no offspring is in c0, we get

P (A ∩ B) = P (A)− P (A ∩ B)

= P (A)− P (C)

where C denotes the event that all offspring are in class c−. Thus,

tij =

(
N−1∑
n=0

w+n

(
N − n

N

)m)P
−
(
N∑
n=1

w−n

( n
N

)m)P
.

The resulting transition matrix T = (tij) defines a Markov chain and
allows to derive distributions of waiting times between the three pairs of
initial and final fitness values already used in the last sections. Moreover,
the mean number of generations needed for attaining the absorbing state
(final fitness) from different starting classes (initial fitness) can be computed
analytically (see Kemeny 1960). These results are presented below.

Coarse-grained correlation.
We begin by introducing four fitness classes, separated by the three final

fitness values used, e.g., in Figure 2.6. The correlation matrix C = (cij),
where cij is the probability for a random neighbor of an individual of class i
to belong to class j, is estimated by randomly mutating random genotypes of
class i, see Figure 2.8. The resulting 4×4 transition matrix defines a Markov
chain for which waiting time distributions are computed. These turn out to
be closer to the actual ones; yet, systematic differences of mean values and
variances illustrate the need for further refinement of this correlation-based
approach.

Figure 2.9 shows that even if the population already is in the class next
to the final one, producing an offspring the fitness of which exceeds the final
fitness threshold takes too much time. The many transitions within classes,
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Figure 2.8: The correlation matrix for 4 fitness classes. c(f1, f2) denotes
the probability for a random offspring of an individual of fitness class f1 to
belong to class f2. The classes range from 0 (lowest fitness) to 3 (highest
fitness). These statistics require refinement.
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Figure 2.9: Waiting time distributions for transitions between given initial
and final fitness values as predicted by monomorphic evolution based on a
coarse-grained correlation approximation. Comparison of depicted distribu-
tions to those in Figure 2.6 shows that waiting times are overestimated by
this approach.
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Figure 2.10: The correlation matrix for 31 fitness classes. c(f1, f2) denotes
the probability for a random offspring of an individual of fitness class f1 to
belong to class f2. The classes range from 0 (lowest fitness) to 31 (highest fit-
ness). For all classes neighboring genotypes tend to have the same or similar
fitness values.

leading from the lower bound of a class’ fitness range to the upper bound are
neglected by only allowing for a small number of classes. This observation
suggests to introduce a fine-grained classification of fitness values.

Fine-grained correlation. To improve the predictive accuracy of the
correlation approximation, we consider a 31 × 31 correlation matrix. 30
equally spaced fitness thresholds between tour lengths 2900 and 5000 serve
as the boundaries of a fine-grained classification. As before, the correlation
matrix is obtained by randomly generating neighbors of random genotypes,
see Figure 2.10. In this manner, small changes in fitness values, which can
be decisive for the dynamics of an evolutionary algorithm, are no longer
neglected.

The fact that most of the probability mass of the correlation matrix is
concentrated around its diagonal indicates that neighboring genotypes tend
to possess similar fitness values. Yet, it is possible that they belong to distant
fitness classes. Using the same principles for constructing a Markov chain as
described above, Figure 2.11 shows the resulting transition matrix T = (tij)
of the process.
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Figure 2.11: The transition matrix of the Markov chain that provides a
correlation-based approximation of the evolutionary algorithm. A population
at generation g jumps to higher fitness classes in the next generation with
probability t. Class 31 is called an absorbing state; if the population reaches
it, the process stops.

The fine-grained correlation matrix provides a detailed summary of the
adjacency relations between the different fitness classes; the neighborhood
structure for different TSP genotypes should therefore be described with
sufficient accuracy. We thus might expect that the waiting time distributions
derived from this simplified process are a close match to the actual ones. And,
indeed, the fine-grained monomorphic correlation approximation is the first
approach presented here that succeeds in capturing many of the qualitative
and quantitative features of the evolutionary algorithm as summarized in
Figure 2.6. The results presented in Figure 2.12 therefore underline that a
fine-grained correlation matrix as defined above carries salient information
about the fitness landscape’s structure.

Although correlation approximation of the fitness landscape results in
predictions that are not far away from observations on the actual evolutionary
algorithm, it is interesting to ask why the simplified process is always about
twice as fast as the evolutionary algorithm itself. An investigation of fitness
distributions for all generations of the evolving population reveals that in
each generation fitness values of genotypes in the population are spread over
a wide range of classes. For this reason, the assumption of monomorphism
(implying that all individuals of the population belong to a single fitness
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Figure 2.12: Waiting time distributions as predicted by monomorphic evo-
lution based on a fine-grained correlation approximation. Comparing these
distributions with those in Figure 2.6 shows that a relatively good approxima-
tion of the actual evolutionary algorithm has been achieved.

class) is inaccurate. Instead of assuming transitions of the whole population’s
fitness from one class to another, individuals in the population need to be
envisaged as belonging to different fitness classes.

Polymorphic correlation

In this subsection the approximation of the evolutionary algorithm of the
TSP is further improved. We use the same statistics as before, namely the
31×31 matrix of correlation probabilities for each pair of fitness classes. How-
ever, instead of considering only one class that represents the fitness of the
whole population, individuals of the population can now belong to different
fitness classes in each generation. The population’s state in one generation
is no longer a specific fitness class, but is given by a frequency distribution
over all 31 possible fitness classes. In other words, we allow the popula-
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Figure 2.13: Waiting time distributions as predicted by polymorphic evo-
lution based on a fine-grained correlation information. A comparison with
Figure 2.6 shows that this approach yields almost exact predictions of waiting
times. Although the full TSP is approximated by a 31×31 matrix, the match
with the actual process is remarkably good.

tion to be polymorphic. As before, offspring from a given fitness class are
produced according to the probabilities provided by the correlation matrix.
The transition matrix of this Markov process describes the probability for
a population with a certain frequency distribution of fitness values to jump
to another composition of fitness classes in the next generation. As there
are

(
45
15

)
such population states, the transition matrix was not calculated.

Instead, I have directly implemented the stochastic process based on the cor-
relation matrix and have combined the outcome of 2000 trials to construct
the distribution of waiting times, shown in Figure 2.13. This stochastic pro-
cess is a simplification of the actual evolutionary algorithm: individuals are
reduced to only their fitness classes, and the fitness classes of their offspring
are determined according to the correlation matrix. Selection is based on
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fitness only and thus works in the simplified process in the same way as in
the actual evolutionary algorithm. The complicated process of evolution on
the high-dimensional TSP fitness landscape is therefore described by means
of the correlation matrix.

Comparison of mean waiting times from different initial to final fitness
values from the outcome of 2000 runs of the actual evolutionary algorithm
(first number) and 2000 runs of the stochastic approximation algorithm based
on polymorphic correlation (second number), corresponding to the waiting
times distributions depicted in Figure 2.6 and 2.13:

initial / final fitness 1:4300 1:3600 1: 2900
1:5000 1.8 / 1.9 4.8 / 5 10.7 / 11.3
1:4300 * 2.9 / 2.9 9.3 / 9.1
1:3600 * * 5.8 / 5.6

It turns out that, at least for this special fitness landscape, the polymor-
phic correlation approximation is an excellent way to predict the time scales
of evolution. Comparing these results with those derived by applying the
monomorphic correlation approximation shows that allowing for the specific
composition of fitness values within a population is crucial for obtaining accu-
rate predictions. These findings raise the question whether this approach will
also perform for other fitness landscapes in a similarly accurate and equally
successful way. A first test is to investigate other fitness landscapes of this
TSP which result from considering new mutation operators.

2.1.3 Other mutation operators

Reverse mutation

In this section, we use the same configuration of 25 cities and maintain all
other parameters, only the mutation operator is changed. For producing
an individual’s offspring by reverse mutation, we choose two indices. The
cities between the smaller and the larger index are now rearranged in reverse
order. As two genotypes can be neighbors under reverse mutation while
being separated by a large distance in genotype space under other mutation
operators, resulting fitness landscapes may have very different features. The
importance of the mutation operator for determining the structural features
of fitness landscapes is underscored by the fact that under reverse mutation
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Figure 2.14: The correlation matrix for reverse mutation. Producing an
offspring with significantly higher fitness appears to be easier under point
mutation, at least in the depicted range of fitness values.

the evolutionary algorithm needs many more generations for reaching the
three final fitness classes, than were required under point mutation. On the
other hand, tours with length under 1400 are hardly ever found within 100
generations under point mutation, whereas this task seems to be achieved
much more rapidly under reverse mutation. Even the tour of length 1369,
see Figure 2.5, was found within this time limit.

As the polymorphic correlation approach provided the best approxima-
tion of the actual waiting times under point mutation, here we focus on an
evaluation of this way of imitating the evolutionary process under reverse
mutation. Like in the case of point mutation, the correlation matrix is esti-
mated by generating random neighbors of random genotypes. The structure
of neighborhoods is similar to the one obtained for point mutation and yet
possesses some different properties, see Figure 2.14 .

The waiting time distributions obtained from 2000 simulation runs of
the correlation-based stochastic process exhibit a very close match with the
waiting times of the actual evolutionary algorithm, see Figure 2.15. Again,
the polymorphic correlation approximation is successful in describing the
evolutionary algorithm. This implicates that the correlation matrix provides
all the information necessary to predict evolutionary waiting times on TSP
fitness landscapes.
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Figure 2.15: Waiting times of the evolutionary algorithm with reverse muta-
tion (top) and distributions predicted by the polymorphic correlation approx-
imation (bottom). The predictive accuracy is remarkable.
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Corresponding to the distributions presented in 2.15, the following table
shows a comparison of mean waiting times of the actual evolutionary algo-
rithm (first number) using reverse mutation and the predictions based on
polymorphic correlation:

initial / final fitness 1:4300 1:3600 1: 2900
1:5000 3.0 / 3.1 7.4 / 7.6 14.2 / 14.4
1:4300 * 4.1 / 4.1 11.1 / 11
1:3600 * * 6.3 / 6.2

We extend our investigations of the TSP by investigating a third mutation
operator, resulting in yet another fitness landscape.

Remove-and-reinsert mutation

To apply the remove-and-reinsert mutation operator, we choose two indices
of the genotype vector successively. The city at the first index will now be
taken out and inserted at the second index. The cities in between move back-
wards or forwards by one index. Notice that for such remove-and-reinsert
mutations the order of the two indices is important, whereas point mutations
and reverse mutations are symmetric in this respect. Using the same config-
uration of the TSP, each genotype now has 600 neighbors. Nonetheless, the
correlation matrix has the same basic features as before, characterized by a
strong emphasis of correlations along the diagonal, see Figure 2.17. Again
we construct a stochastic process based on the correlation matrix only and
combine the outcome of 2000 runs to the predicted waiting time distribution.
A comparison of actual and predicted waiting times for remove-and-reinsert
mutation, see Figure 2.16, demonstrates again that the correlation matrix
captures all the information necessary to describe the complex behavior of
the evolutionary algorithm. Comparison of actual and predicted mean wait-
ing times for remove-and-reinsert mutation:

initial / final fitness 1:4300 1:3600 1: 2900
1:5000 2.5 / 2.5 6.3 / 6.3 13.1 / 12.8
1:4300 * 3.6 / 3.5 10.7 / 10.0
1:3600 * * 6.3 / 5.9
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Figure 2.16: Actual (top) and predicted (bottom) waiting times for remove-
and-reinsert mutation.
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Figure 2.17: The correlation matrix for remove-and-reinsert mutation.

In the next section we test the correlation-based description for another
Travelling Salesman Problem and a different evolutionary algorithm, and
show that the one-dimensional correlation matrix again captures the crucial
features of a fitness landscape that determine evolutionary waiting times.

2.1.4 A second TSP and a variant evolutionary algo-
rithm

In the last chapter we have seen that an evolutionary process on a specific
TSP fitness landscape was very well approximated by a polymorphic de-
scription based on one-dimensional correlation statistics. Now we test this
stochastic approximation for another Travelling Salesman Problem. For this
purpose, 40 cities are distributed randomly according to a uniform distribu-
tion over the square [0, 1]2 and the distance table is calculated.

We choose a new definition of fitness and construct an evolutionary algo-
rithm with stochastic selection:

• Genotypes
Same definition as for the first TSP: each possible tour starting in City
1, visiting all remaining 39 cities of the TSP, and ending again in City
1, corresponds to a genotype. The number of different genotypes is 39!
and thus of order 1046.
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Figure 2.18: The 40 cities of the new sample TSP.

• Fitness
According to the central limit theorem, lengths of TSP tours are ap-
proximately normally distributed, as they are sums of random distances
between pairs of cities. In order to make the corresponding fitness val-
ues follow a normal distribution as well, a linear transformation of
the length is chosen. As selection will be no longer ranking-based but
stochastic, it is moreover convenient to make fitness values belong to
the interval [0, 1]. For calculating the fitness therefore an upper bound
Lsup = 30 for the length of all possible TSP tours and a lower bound
Linf = 5 is chosen. The fitness f(g) of genotype g is then defined as
follows:

f(g) :=
Lsup − l(g)

Lsup − Linf
∈ [0, 1]

where l(g) is the length of the tour represented by genotype g.

• Mutation
For this TSP we choose reverse mutation: a genotype is mutated by
reversing the order of cities between two randomly chosen indices.
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• Selection
In every generation, each genotype produces one offspring individual
which undergoes a single reverse mutation. From the whole population
of P offspring we select P times independently an individual accord-
ing to a stochastic selection scheme with selection coefficient S ≥ 0.
Individual i having fitness f(i) is chosen with probability

p(i) =
eSf(i)

P∑
j=1

eSf(j)

The higher the selection coefficient, the lower is the probability for indi-
viduals of smaller fitness values to be taken over to the next generation.

• Evolutionary waiting times
Again we focus on the number of generations necessary for a population
to evolve between to given fitness thresholds for a comparison of the
actual evolutionary algorithm and the correlation-based description.
In generation 0 the whole population of P individuals is initialized
with a random genotype with a fitness value lying in the interval [fi −
0.01, fi], if fi is the initial fitness. Over generations, individuals undergo
mutation and selection until one genotype’s fitness exceeds the final
fitness threshold. The number of generations necessary is then stored,
and the outcome of 1000 such runs of the evolutionary algorithm is
combined to the distribution of waiting times.

The definition of fitness we use for this TSP implies that not only the
lengths of TSP tours, but also fitness values of corresponding genotypes follow
a normal distribution, see Figure 2.19. Figure 2.20 shows the evolution of
maximal and mean fitness in single run of the evolutionary algorithm with a
population of P = 100 individuals and the selection coefficient set to S = 250.
The best tour ever found by this evolutionary algorithm is presented in Figure
2.21 and was detected within 100 generations for a parameter setting of
P = 100 and S = 250.

For a test of one-dimensional correlation statistics describing this TSP
fitness landscapes, we proceed as we did in the last chapter and construct a
matrix of 6 actual waiting time distributions between several initial and final
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Figure 2.19: The fitness distribution of TSP genotypes is very similar to a
normal distribution.
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Figure 2.20: The evolution of the highest and mean fitness in a population
with 100 individuals and a selection coefficient of 250, derived from a sin-
gle run. Due to the high selection coefficient, highest and mean fitness are
practically identical.
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Figure 2.21: The shortest tour found for our sample TSP has length 5.2 and
fitness 0.99.

fitness values, which then serves as a target for correlation-based predictions.
As in the case of the first TSP, it is not possible to obtain correlation statis-
tics for very high and very low fitness, because the probability for random
genotypes to be of these fitness values is practically zero. The focus is there-
fore at first on waiting times between fitness values for which it is possible
to obtain correlation statistics. Subsequently I present a way to extend cor-
relation statistics to the whole fitness range, and show by comparing actual
and predicted waiting times that this method is successful.

At first, however, the focus is on waiting times within relatively small
fitness intervals. For this purpose the initial fitness thresholds are set to 0.2,
0.3, and 0.4 and the final thresholds to 0.4, 0.5, and 0.6. The short waiting
times between 0.3 and 0.4, 0.4 and 0.4, and 0.4 and 0.5 are neglected. The
population size is set to P = 10 and as selection coefficient S = 20 is chosen.
The resulting 6 waiting times distributions are derived from 2000 runs of the
evolutionary algorithm for each pair of initial and final fitness.

In order to test if predictions based on correlation statistics are suffi-
ciently accurate for this TSP as well, we divide the interval [0, 1] of possible
fitness values into 100 classes with boundaries 0.01, 0.02, ..., 0.99. By ran-
domly mutating random genotypes, the correlation matrix is estimated, see
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Figure 2.22: The correlation matrix for the TSP landscape with 40 cities.
The fitness classes range from class 20 to 60 which corresponds to fitness
values 0.2 - 0.6. For lower and higher fitness it is difficult to obtain valid
statistics.

Figure 2.22. Valid correlation statistics are only obtained for the range of
fitness classes for which random genotypes have a reasonable probability to
belong to. Nevertheless, the structure of the correlation matrix shows, that
mutant fitness is approximately normal distributed, and thus the correlation
statistics allow for a continuous extension towards very low and very high fit-
ness classes. Some results of this approach are presented later in this section
and in Chapter 4. The reason for normal mutant fitness distribution is that
under reverse mutation, two random distances of a TSP tour are replaced
by random others. According to the central limit theorem mutant fitness is
approximately normally distributed.

As a first examination of the correlation-based predictions, we use the
actually obtained matrix of correlation statistics and construct a simplified
stochastic process in which the matrix, the only information about the fitness
landscapes, provides the information for mutating individuals. The outcome
of 1000 runs of this process is used to predict waiting time distributions, see
Figure 2.23 for a comparison with the actual waiting times of the evolutionary
algorithm.

A comparison of actual (first number) and predicted (second number)
mean waiting times, corresponding to the distributions in Figure 2.23, for
evolution from certain initial to final fitness thresholds, shows that the one-
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Figure 2.23: Actual (top) and predicted (bottom) waiting times for the TSP
with 40 cities. The one-dimensional correlation matrix basically provides all
the information necessary to predict the evolution of fitness in these ranges.
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Figure 2.24: Distribution of mutant fitness for parent fitness 0.2, 0.3, 0.4,
0.5, and 0.6, seen from the left, can be well approximated by normal distri-
butions.

dimensional correlation matrix essentially provides all the information nec-
essary to specify the hill-climbing process of individuals on the TSP fitness
landscape.

initial / final fitness 0.4 0.5 0.6
0.2 11.6 / 11.9 22.0 / 21.9 44.1 / 45.7
0.3 * 17.3 / 16.5 40.7 / 40.5
0.4 * * 34.5 / 32.6

A detailed investigation of the correlation statistics shows that mutant
fitness is approximately normal distributed with the mean value and variance
depending linearly on the parent fitness values in a very good approximation,
see Figure 2.24 and 2.25. We therefore extended the correlation matrix for
the fitness classes for which no statistics were obtained, due to very low class
frequencies, by normal distributions with parameters defined by two linear
functions. In order to verify if this approximation of correlation statistics is
valid, a new evolutionary algorithm is constructed, with population size P =
100 and the selection coefficient set to S = 250 in order to enable evolution to
very high fitness values within a reasonable number of generations. Whereas
initial fitness values are kept, new final fitness thresholds are chosen: 0.7,
0.8, and 0.9. Figure 2.26 shows a comparison of actual and predicted waiting
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Figure 2.25: The functions fm(x) and fv(x) for mean and variance of neigh-
bor fitness depending on parent fitness x. In the first picture the identity
function is depicted in gray. Genotypes of lower fitness tend to have higher
mean value of mutant fitness whereas it is the opposite case for genotypes of
higher fitness. For parent fitness lower than 0.2 and higher than 0.6 no valid
statistics were obtained. Both functions are linear in a good approximation.

times distributions, both derived from 1000 runs per pair of initial and final
fitness.

Actual (first number) and predicted mean values of waiting times for the
distributions shown in Figure 2.26:

initial / final fitness 0.7 0.8 0.9
0.2 14.1 / 14.3 20.4 / 21.3 34.3 / 35.1
0.3 * 18.7 / 19.1 32.6 / 32.8
0.4 * * 30.8 / 30.3

The accuracy of these results indicates that TSP fitness landscapes can be
described successfully by two functions which determine the mean and vari-
ance of mutant fitness for individuals of certain fitness. The one-dimensional
correlation statistics are then approximated by normal distributions with
parameters determined by these two functions. The simplicity of such a de-
scription of TSP landscapes is surprising, and certainly a remarkable result
in the study of fitness landscapes.

Statistics describing the structure of neighborhoods for genotypes of dif-
ferent fitness have proved to carry the appropriate information for predicting
evolutionary waiting times on TSP landscapes. We now leave the realm
of TSP landscapes and demonstrate successful applications of this method
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Figure 2.26: Actual (top) and predicted (bottom) waiting times for evolution
to higher fitness. For fitness classes for which no correlation statistics are
obtained, mutant fitness is assumed to be normally distributed with mean and
variance linearly depending on parent fitness. The accuracy of the predictions
shows that estimating correlation information is possible.
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to other landscapes with widely different structural features. In certain re-
spects, the TSP fitness landscape is exceptional; in particular, neighbors that
have exactly the same fitness, so-called neutral neighbors, are occurring very
rarely. The impact of neutral networks on TSP landscapes is thus negligible
(Huynen et al. 1996). In the next section we therefore turn our attention to
fitness landscapes that allow for tuning the degree of neutrality.

2.2 NKp fitness landscapes

The family of NK landscapes was first introduced by Kauffman (1993) and
later extended to the family of NKp landscapes (Weinberger 1990, Fontana
et al. 1993). The original idea was to envisage a bit string of length N as a
genotype. All loci (positions on the genotype vector) therefore carry one of
the alleles (entries) 0 or 1. For each locus i of the genotype, K different other
loci are chosen at random, which are then called epistatically linked to locus
i. The fitness contribution of locus i thus depends on the entries of K other
loci and on the locus i itself. To each of the resulting 2K+1 combinations
a random number is assigned from the interval [0, 1], which determines the
contribution to fitness by locus i. Once the fitness table for each locus and
for each combination of linked loci is fixed, the fitness contribution of every
locus of a genotype can be determined. The final fitness value of the genotype
is the sum of the fitness contributions of all its loci, divided by N .

Mutating a genotype of the NK (or NKp) model is changing a random
vector entry from 1 to 0 and vice versa. A mutation is called neutral if it
does not change the genotype’s fitness, the corresponding two neighbors in
genotype space are called neutral neighbors. Accordingly a fitness landscape
is called neutral, if a substantial fraction of all possible mutations is neu-
tral. From the construction of NK landscapes it is clear that practically no
mutation is neutral, which is true for TSP landscapes as well.

Adding the parameter p ∈ [0, 1] is a proximate way of incorporating
neutrality into the model: The contribution of a specific combination of loci
is 0 with probability p, and is assigned randomly from the range [0, 1] with
probability 1 − p. This NKp model is even easier to justify biologically
than the original NK model. Many combinations of alleles do not influence
a genotype’s fitness. The probability for neutral neighbors on the resulting
NKp fitness landscape can now be adjusted by simply changing the parameter
p. For p = 0, the landscape corresponds to a normal NK landscape. With
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increasing p, neighboring genotypes are more likely to have the same fitness
and thus to belong to a whole network of neutral genotypes. For very high
p the landscape consists of only few but very extended neutral networks and
for p = 1 we get a completely flat landscape.

Averaged over all NKp landscapes with fixed N , K, and p, the fitness
contribution of Np loci per genotype is zero. As for the remaining N(1− p)
loci the contribution is a random number following a uniform distribution
over the interval [0, 1], the mean fitness over all NKp landscapes with fixed
parameters N,K and p is given by:

fmean =
1

N

N(1− p)

2
=
1− p

2

The probability for a neutral mutation pneutr, which is the probability
that two neighbors in genotype space belong to the same neutral network is
calculated as follows: We assume that a genotype is mutated at locus i. This
mutation is neutral if the fitness contributions of all loci remain the same.
The probability that two of the randomly generated fitness contributions �= 0
are equal is assumed to be zero. Otherwise the following equations only hold
almost surely. The fitness contribution of locus j �= i does not change if
either j is not epistatically linked to locus i, which has probability

p1 = 1−
K

N − 1
or if it is linked to locus i, but the contributions of the combinations before
and after mutation are 0. This happens with probability

p2 =
K

N − 1 p
2.

The contribution of locus i itself stays the same if the contributions of the
combinations before and after mutation are 0, which has probability p3 = p2.
The probability for a mutation to be neutral is now given by

pneutr = (p1 + p2)
N−1 p3

=

(
1 +

K (p2 − 1)
N − 1

)N−1
p2.
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Figure 2.27: Probability pneutr for neutral mutation in NKp landscapes for
N = 40 and different K and p.

The expected number of neutral mutants per genotype is Npneutr , but
the actual number depends on the fitness of the genotype. If n(g) is the
number of neutral mutations for genotype g with fitness f(g), and z(g) is
the number of loci on g which make zero contribution to the fitness of g we
get that f(g) ≤ 1 − z(g)

N
. For a mutation of g at locus i to be neutral it is

necessary that the fitness contribution of i is zero. Thus we get

n(g) ≤ z(g) ≤ N(1− f(g)),

which implies that genotypes with higher fitness have fewer neutral neighbors.
For high p, a mutant of a genotype with high fitness is likely to have more
zeros in its fitness table and therefore much lower fitness. In this sense NKp
fitness landscapes become more rugged with increasing p and at the same
time more neutral. The autocorrelation function (see Section 1.4), which is a
measure of a landscape’s ruggedness, is not capable of describing these com-
bined effects: It is apparently nearly invariant with respect to the parameter
p (Barnett 1997). In contrast to that, the correlation function presented
here is in principle able to capture the interplay between ruggedness and
neutrality. In the following we will observe that for low degrees of neutral-
ity, one-dimensional correlation statistics succeed in predicting waiting times.
For fitness landscapes involving higher neutrality, one-dimensional correla-
tion statistics do not result in sufficiently accurate predictions. In Chapter 3,
however, higher-dimensional correlation statistics prove to provide the essen-



CHAPTER 2. ONE-DIMENSIONAL CORRELATION 49

0.2 0.4 0.6
Fitness

Probability

Figure 2.28: The fitness distribution in an NKp landscape of low neutrality
with N=40, K=3, and p=0.3 is approximately normal, and has a mean of
about 0.35.

tial information for approximating evolutionary algorithms even on highly
neutral landscapes.

In the subsections below, we present two types of NKp landscapes with
different degree of neutrality. As in the case of the TSP, I compare evolution-
ary waiting times of the actual algorithm with those predicted by a simple
stochastic process based on one-dimensional correlation statistics.

2.2.1 Low neutrality

To examine an NKp landscape with very low probability of neutral neighbors,
we choose the following parameters: N = 15, K = 3, and p = 0.3. For
the parameters chosen, fmean = 0.35, and as the fitness of a genotype is
on average a sum of N(1 − p) = 28 random numbers, fitness in this NKp
landscape is approximately normally distributed according to the central
limit theorem, similar to fitness distribution in TSP landscapes, see Figure
2.28.

In order to compare actual waiting times on this NKp landscape with pre-
dictions based on one-dimensional correlation statistics, the following setting
of an evolutionary algorithm is chosen. As selection operator, the stochas-
tic scheme already applied for the second TSP (see last section) is chosen.
An individual is therefore taken over to the next generation with probability
proportional to its fitness. The selection coefficient is set to S = 10, and
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Figure 2.29: The one-dimensional correlation matrix of NKp genotypes
(N=40, K=3, p=0.3) for fitness classes 20 - 60. This range corresponds to
the fitness interval 0.2 - 0.6. The matrix shows the same property of emphasis
on the diagonal as did the various TSP landscapes.

the population size is chosen at P = 5. The matrix of actual waiting time
distributions between 6 pairs of initial (0.2, 0.3, and 0.4) and final fitness
values (0.3, 0.4, and 0.45) is presented in Figure 2.31. Each waiting time
distribution is derived from 1000 runs of the evolutionary algorithm.

As it was done for the various TSP landscapes in the previous sections,
the one-dimensional correlation matrix of this NKp landscape is estimated,
see Figure 2.29, by producing random genotypes and their neighbors. The
qualitative features of the one-dimensional correlation information are similar
to those observed for the TSP landscapes. If a genotype is mutated, e.g. at
locus i, the probability that the fitness contribution of locus j �= i changes
is K
N−1(1 − p2): i is linked to j with probability K

N−1 , and locus j changes
its contribution, if it is not zero before and after the mutation, happening
with probability 1−p2. The probability that the contribution of locus i itself
changes under mutation is 1 − p2. For the current parameter setting due
to mutation therefore on average (K + 1)(1− p2) = 3.64 bits of a genotype
change their fitness contribution. Accordingly, mutant fitness is normally
distributed in a good approximation, see Figure 2.30.

As a polymorphic correlation approximation provided nearly accurate
predictions of the evolutionary dynamics on TSP landscapes, I use the same
approach for this NKp landscape, in order to test the quality of a landscape
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Figure 2.30: Distribution of mutant fitness for parent fitness 0.2, 0.3, 0.4,
and 0.5 shows that the fitness of mutants follows normal distributions in a
good approximation. See Figure 2.29 for the matrix of correlation statistics
from which these distributions are taken out.

description based on one-dimensional correlation statistics. Individuals are
therefore reduced to their fitness values only, and a stochastic process is
constructed, where individuals are mutated to individuals with new fitness
values, according to the probabilities provided by one-dimensional correlation
information. As the selection scheme is based on fitness values of individuals
only, it is applied in the same way the evolutionary algorithm does. Com-
paring the actual waiting time distributions with those predicted by this
stochastic process, shows encouraging results. For low degrees of neutral-
ity the one-dimensional correlation matrix again seems to provide enough
information to characterize evolution on NKp fitness landscapes, see Figure
2.31.

Actual (first number) and predicted mean values of waiting times for the
distributions shown in Figure 2.31:

initial / final fitness 0.3 0.4 0.45
0.2 3.3 / 3.3 7.9 / 7.4 12 / 10.7
0.3 * 5.1 / 4.7 9.1 / 7.8
0.4 * * 4.2 / 3.7
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Figure 2.31: Actual (top) and predicted (bottom) waiting times for evolution
on a NKp landscape with low degree of neutrality (p = 0.3). The similarity
of both results is again very satisfactory.
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2.2.2 High neutrality

In this section, a one-dimensional correlation-based description is tested for
an NKp fitness landscape with high neutrality. The parameters are set to
N = 30, K = 5, and p = 0.99, resulting in a landscape with pneutr = 0.89.
The fraction of individuals having zero fitness is very high. pN = 74% of all
genotypes belong to this class, fitness in this landscape is thus far away from
being normally distributed. The mean fitness over all NKp landscapes with
this parameter setting is given by 1−p

2
= 0.005. As in the sections before,

the one-dimensional correlation matrix is estimated by mutating random
genotypes of different fitness classes. The matrix shows that this highly
neutral landscape has very different properties from those observed for the
landscapes analyzed so far. The probability for a neutral mutation with
mean 0.89 varies according to class frequencies. As fitness class 0 is much
bigger than all the others, the neighbors of individuals of all fitness classes
have a disproportionate high chance to belong to this class. On average, a
mutation changes the fitness contributions of only (K + 1)(1 − p2) = 0.12
bits per genotype vector. The distribution of mutant fitness therefore does
not resemble a normal distribution as it was the case for TSP and the NKp
landscapes with low neutrality.

Despite these differences we construct a stochastic process in which in-
dividuals are reduced to their fitness only and where the correlation matrix
serves as the basis for the mutation operator. The outcome of 2000 runs of
this stochastic process is used to predict the distribution of waiting times.
A comparison to the actual distribution of the evolutionary algorithm shows
that one-dimensional correlation information is insufficient to provide accu-
rate predictions of the observed dynamics. Even though the scale of waiting
times is captured, an error of predictions of about 50% indicates the need for
augmenting the correlation information used so far.

A comparison of actual (first number) and predicted mean values of wait-
ing times for the distributions shown in Figure 2.34 shows that waiting times
are underestimated by predictions based on one-dimensional correlation:

initial / final fitness 0.02 0.03 0.04
0.01 5.5 / 3.5 9.2 / 5.2 14.7 / 7.2
0.02 * 4.2 / 2.4 10.1 / 4.6
0.03 * * 8.0 / 3.7



CHAPTER 2. ONE-DIMENSIONAL CORRELATION 54

0.02 0.04 0.06
Fitness

0.03

0.02

0.01

Probability

Figure 2.32: In an NKp landscape with high degree of neutrality (N=30,
K=5, and p=0.99) the fraction of genotypes with zero fitness is very high
(≈ 75%) and genotypes hardly ever have fitness greater than 0.06. In this
graph, all different fitness values (less than 100), except fitness 0, that were
found when testing 100000 random genotypes are depicted. The landscape
thus composes into few but very extended neutral sets. The features of this
landscape are completely different from the properties of NKp landscapes with
low neutrality.
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Figure 2.33: The correlation matrix for an NKp landscape with p=0.99
shows the high probability for neutral neighbors, and also the relatively high
chance for individuals of all different fitness classes to have mutants belonging
to class 0, which corresponds to fitness 0.



CHAPTER 2. ONE-DIMENSIONAL CORRELATION 55

0.03

5 20 35

0.3

0.6

0.02

5 20

0.4

0.8

5 20 35

0.3

0.6

0.01

3 15

0.3

0.6

5 20

0.3

0.6

5 20 35

0.2

0.4

I F 0.02 0.03 0.04

0.03

5 20 35

0.3

0.6

0.02

5 20

0.4

0.8

5 20 35

0.3

0.6

0.01

3 15

0.3

0.6

5 20

0.3

0.6

5 20 35

0.2

0.4

I F 0.02 0.03 0.04

Figure 2.34: Actual (top) and predicted (bottom) waiting times for evolution
on an NKp landscape with a very high degree of neutrality (p = 0.99). The
comparison shows that actual evolution takes many more generations (about
twice as many) to attain a final fitness class; the many steps within one
fitness class that probably result from diffusion along neutral networks are
not considered by the one-dimensional correlation approximation.
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A refinement of the correlation matrix achieved by introducing smaller
fitness classes did not result in more accurately predicted waiting times.

For landscapes with a very high degree of neutrality, a one-dimensional
correlation approximation may be insufficient. The number of different fit-
ness values is much smaller than the number of possible genotypes. Due to the
high-dimensionality of genotype space, sets of genotypes with approximately
equal fitness tend to form networks that are connected by single mutational
steps. In contrast to the rugged landscapes of combinatorial optimization,
these fitness landscapes decompose into sets of neutral networks that are
entangled in a very complicated and unstructured way. On those neutral
networks selection is completely disabled and neutral evolution dominates.

The consequences of neutral evolution are difficult to understand and one-
dimensional correlation statistics cannot specify these dynamics in detail.
Neutral networks are too big and too inhomogeneous to be described by the
mean neighborhood structure of individuals. A one-dimensional correlation
description neglects differences of neighborhood structures within one fitness
class. Such differences are expected to occur as a population drifts from the
entrance point of a neutral network to an exit, from where it can reach a
higher fitness class. Even if the probability for finding a better neighbor is
very high at a neutral network’s exit, the population probably still needs
to evolve for several generations to reach such ’portals’. A one-dimensional
correlation approximation does not account for this subtlety and can thus
provide only mediocre estimates of evolutionary waiting times.

An improvement of the predictions requires incorporation of new statis-
tics of the landscape, allowing to describe a population’s drift along neutral
networks.

2.3 The Royal Staircase Fitness function

The fitness function studied in the last sections are quite complicated. Spe-
cial properties of these functions are difficult to identify without a detailed
investigation of the fitness landscapes.

Designing a fitness function in such a way that all its features are evident
and analytically available has many consequences. In particular, there is no
longer a need to run an evolutionary algorithm, because the optimal solu-
tion is known from the beginning. In order to improve our understanding
of evolutionary algorithms, it might nonetheless be beneficial to study fit-
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ness functions of this type. Even on such well-structured fitness landscapes,
the evolutionary dynamics itself are often quite elaborate. Moreover, a de-
tailed knowledge of the structure of the fitness function enables us to make
predictions, which are based on analytically derived and therefore accurate
correlation statistics.

The class of Royal Staircase Fitness (RSF) functions (van Nimwegen et
al. 1999, van Nimwegen and Crutchfield 1999, 2000) allow a specific design of
fitness landscape architecture. RSF functions make it possible to define fit-
ness landscapes which decompose into sets of few but very extended clusters
of genotypes having the same fitness, i.e. neutral genotypes. RSF landscapes
therefore permit the study of neutral evolution, which is observed in several
natural evolutionary systems as well. Experiments with bacteria colonies and
the study of RNA molecule folding have shown that neutrality among geno-
types is a frequent phenomenon. Evolutionary dynamics on highly neutral
fitness landscapes are difficult to conceive. This process of evolution involv-
ing neutrality is often referred to as epochal evolution, as long periods of
stasis are interrupted by sudden innovations when the population discovers
genotypes of higher fitness (van Nimwegen 1999).

In the following I demonstrate how the dynamics of neutral evolution on
RSF landscapes can be approximated by using correlation measures.

2.3.1 The fitness function

The Royal Staircase Fitness (RSF) function involves large-scale neutrality,
and is designed in such a way that one has a detailed knowledge about the
neutral sets. The definition of the Royal Staircase Fitness function and the
utilized evolutionary algorithm (van Nimwegen 1999) are presented in the
following:

• Genotypes
A binary string of length L = NK is seen as a genotype. Starting
from the left we call the first K bits the first block, the next K bits
the second block and so on. The genotype thus consists of N blocks
having K bits each. A block is called aligned if all K bits are ones.

• Fitness
To calculate the fitness of genotype g, the number I(g) of ones, starting
from the left, until the first zero appears are counted. The fitness f is
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then given by

f(g) = 1 + �I(g)
K
�.

The fitness values are thus integer numbers ranging from 1 to N + 1.
A genotype having the first block unaligned has fitness 1, a genotype
with the first block aligned but the second unaligned has fitness 2.

K︷ ︸︸ ︷
1111...1111

K︷ ︸︸ ︷
1001...0111 01001.............01101001110110︸ ︷︷ ︸

NK

This genotype has fitness 2. The single optimal genotype is the bit
string consisting of only ones. It is easy to see that the dynamics of
the evolutionary algorithm are invariant under permutations of the bit
string representation of genotypes, if the fitness function is appropri-
ately modified.

• Mutation
To mutate a genotype, each bit is independently changed from 0 to 1
or vice versa with probability q. Under mutation, an individual has
a certain chance to stay the same or to change, even to the optimal
genotype.

• Selection
To keep the population size P constant, we choose P times from the set
of all individuals, such that each genotype is selected with probability
proportional to its fitness. Individuals with higher fitness therefore have
a greater chance to be taken over to the next generation than those
of low fitness. Individual i ∈ {1, ...P} with fitness fi is chosen with

probability cfi. The constant c can be easily determined as c
P∑
j=1

fj = 1.

• Evolutionary waiting times
We produce a random string with a certain initial fitness and copy it P
times. Evolution starts with a population of P individuals all having
the same genotype. In every generation we mutate each genotype,
evaluate the new fitness and then select P individuals from the mutated
population. Over generations, genotypes get higher fitness and have
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more blocks aligned. The process stops if one individuals has reached
a certain final fitness. The number of generations necessary to reach
this fitness threshold is the waiting time of this single run. Several
runs then give the distribution of waiting times between an initial and
a final fitness value.

The definition of Royal Staircase Fitness function has several implications
for the structure of the fitness landscape. The number of different neutral
sets is N + 1, having fitness 1, ..., N + 1. The proportion of genotypes with
fitness n is 2−K(n−1) − 2−Kn, which implicates that the networks of higher
fitness are smaller than those of lower fitness.

Genotypes with fitness n are more likely to attain fitness n + 1 under
mutation than strings with fitness n − 1. The probability that mutation
increases a genotype’s fitness by more than one is very low. The landscape
architecture thus forces the population to take practically all of the neutral
networks, which can therefore be regarded as the royal stairs, before the
optimal genotype is found.

Mutation can also destroy the blocks of an individual. Genotypes may
eventually even fall back to fitness 1 if mutation changes a bit of the first
block. To fall off a neutral network to a lower one happens quite often to
individuals evolving on an RSF fitness landscape, whereas to find the portal
to a higher network is much more difficult.

2.3.2 The evolutionary algorithm

To observe population dynamics on the landscape of the Royal Staircase
Fitness function, we choose a particular parameter setting: N = 8, K =
8, P = 200, and q = 0.006.

On average, a population of 200 individuals needs about 2500 generations
until the optimal genotype is found. Long periods of stasis are followed
by sudden innovations when one individuals discovers a network of higher
fitness, see Figure 2.35. If this individual is not lost due to the stochastic
selection scheme, it may spread and finally drag a great proportion of other
individuals onto this network. Then again the best fitness stays the same
for many generations, until the next portal that leads to a network of higher
fitness is discovered. The higher individuals climb on the fitness landscape,
the more difficult it becomes to find such exits from the current cluster of
isofitness.
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Figure 2.35: Best and mean fitness in a population of an RSF evolution-
ary algorithm with N = 8, K = 8, P = 200, and q = 0.006, evolving over
generations. Periods of stasis are followed by sudden innovations when an
individual discovers a network of higher fitness. Due to the stochastic selec-
tion scheme, individuals with highest fitness in the population may also be
lost.

In order to provide target statistics for predictions based on reduced land-
scape descriptions, we construct the actual waiting time distributions of the
evolutionary algorithm between several initial and final fitness thresholds. In
particular, we choose 1, 5, and 7 as initial and 5, 7, and 9 as final values and
only consider waiting times to higher fitness. For each of the resulting 6 pairs
of initial and final fitness, the distribution of waiting times is derived from
1000 runs of the actual evolutionary algorithm, see Figure 2.37.

The neighborhood structure of individuals will be the basis for a reduced
description of the RSF landscape, as such an approximation has proved to
be successful for TSP and NKp landscapes, see last sections. The evolu-
tionary algorithm I use for the Royal Staircase Fitness function involves
stochastic mutation, depending on the per bit mutation probability q. For
this reason, difficulties with the simple notion ’neighbor’ arise: Under the
mutation operators studied so far, every genotype has the same fixed num-
ber of neighbors, and every link between neighboring genotypes is weighted
with the same probability, simply depending on the number of neighbors per
genotype. Under a mutation operator depending on a per bit mutation prob-
ability, all genotypes in the RSF landscape are neighbors, as mutation can
in principle convert one bit string into any other. Every such link between
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neighbors is weighted with a certain probability. It is therefore no longer
possible to define the correlation between two fitness values f and f ′ as the
probability for a random genotype of fitness f to have a neighbor with fitness
f ′. An overall definition is: Correlation between fitness values f and f ′ is the
probability for a random genotype of fitness f to end up as a (neighboring)
individual with fitness f ′ after mutation.

A division of fitness values into classes is not necessary in the case of the
RSF function, as there are by definition only N + 1 different fitness values.
The correlation matrix C = (cf,f ′), f, f ′ ∈ {1, ..., N + 1}, where cf,f ′ is the
probability that a random string with fitness f is changed to a string of
fitness f ′ under mutation, can now be calculated analytically.

• If f ′ is smaller than f , the first (f ′−1)K bits have to remain unchanged,
whereas in block f ′ at least one bit has to be mutated in order to get
this block unaligned. Thus:

cf,f ′ = (1− q)(f
′−1)K (1− (1− q)K) for f ′ < f

The probability for decreased fitness after mutation is high compared
to the probability for increased fitness. The first case simply means
changing any bit of the aligned blocks, whereas the second case requires
full alignment of at least one more block of K bits.

• If f and f ′ equal N +1, cf,f ′ is the probability that no bit of the whole
string is mutated:

cf,f ′ = (1− q)NK for f = f ′ = N + 1

The probability pa that a random string gets an unaligned block aligned
under a single mutation process is the probability that at least one bit
is changed, and that the resulting string is then aligned:

pa =
1− (1− q)K

2K − 1

• If f equals f ′, but f ′ is smaller than the highest possible fitness, all f−1
blocks have to remain unchanged and the fth block is not aligned:

cf,f ′ = (1− q)(f−1)K (1− pa) for f = f ′ < N + 1
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Figure 2.36: The correlation matrix for the RSF landscape with N = 8 and
K = 8 shows the high probability for neutral mutation.

• If f is smaller than f ′ = N+1, f−1 blocks should stay unchanged, the
fth block, which has been unaligned, has to become aligned, and the
remaining N −f blocks, which are each in any of the 2K configurations
have to be in the only aligned one:

cf,f ′ = (1− q)(f−1)K pa

(
1

2K

)N−f
for f < f ′ = N + 1

• Finally, for an increase in fitness from f to f ′ �= N + 1, the fth block
has to change from unaligned to aligned, f ′ − f − 1 blocks have to be
in the aligned configuration, and the f ′th block has to be of unaligned
form. This happens with probability:

cf,f ′ = (1− q)(f−1)K pa

(
1

2K

)f ′−f−1
(1− 2−K) for f < f ′ < N + 1

Using this (N +1, N +1) correlation matrix, see Figure 2.36 we can define a
simplified evolutionary process where individuals are described only by their
fitness. According to the probabilities given by the matrix, individuals are
mutated and possibly get another fitness value. Selection works in the same
way as for the actual evolutionary algorithm. The outcome of 1000 runs of
this stochastic process is combined to the predicted distribution of waiting
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times and compared to the actual distribution, see Figure 2.37. Actual and
predicted mean values of waiting times for the distributions shown in Figure
2.37:

initial / final fitness 5 7 9
1 618 / 248 1304 / 635 2595 / 1513
5 * 545 / 283 1873 / 1130
7 * * 960 / 592

The results are encouraging, the scale of evolutionary waiting times is
predicted in the right way. The actual process is always about twice as slow
as one-dimensional correlation statistics predict, but the main features of the
dynamics are approximated very well.

Like in the case of NKp landscapes with high neutrality, it is question-
able what assumption underlying this pair-correlation-based description is
violated and thus is responsible for the discrepancies. For the evolutionary
algorithm on the RSF landscape, it was assumed that all individuals of a
certain fitness have the same probability of getting the next blocks aligned.
This is not true for those which have evolved over several generations. We
have seen that individuals may easily fall back to very low fitness after mu-
tation. These individuals have a lot of bits set correctly, the assumption
that they have the bits set randomly results in inaccurate predictions. The
number of correctly set bits influences the probabilities for coming back to a
higher fitness level.

To give a more precise description of the process we have to incorporate
the fact that different genotypes of the same fitness have a different number
of bits set correctly in their unaligned blocks. This idea is the equivalent to
the idea I will use for NKp landscapes with high neutrality, where I try to
incorporate that individuals of the same fitness have different neighborhood
structures. Those studies are presented in the following chapter.
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Figure 2.37: Actual (top) and predicted (bottom) waiting time distributions
of an evolutionary algorithm on an RSF landscape, for six pairs of initial
and final fitness values. Predictions are based on one-dimensional correlation
information. Actual waiting times are underestimated by about 50%.



Chapter 3

Higher-dimensional correlation

In the last chapter we observed that waiting time predictions based on one-
dimensional (or pair) correlations alone are not sufficiently accurate under
conditions of high neutrality. Pair-correlation-based theory assumes that
all individuals of a given fitness class have identical fitness distributions of
mutants. This assumption is likely to be inaccurate when extended neutral
clusters exist. ’Interior nodes’ of a given cluster have a very low probability
for links to clusters of higher fitness, whereas for ’boundary nodes’ such links
are more probable, see Figure 3.1. Consequently, the different neighborhood
structures, and therefore the different distributions of mutant fitness within a
given fitness class need to be accounted for in order to describe the dynamics
on a neutral network.

3.1 NKp fitness landscapes

3.1.1 Two-dimensional correlation

In Chapter 2 we have seen that for NKp landscapes with very high degree
of neutrality a description of the fitness landscape based on one-dimensional
correlation statistics is not sufficiently accurate. A comparison of actual
and predicted evolutionary waiting times has shown that the time scale of
evolution is underestimated by predictions based on this type of correlation
information. This shows that it is not as easy for individuals to discover net-
works of higher fitness as the correlation matrix suggests. Individuals have
to evolve from the entrance of a neutral network towards the exit to a cluster

65
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Figure 3.1: Four different runs of the evolutionary algorithm on the NKp
landscape with high neutrality. The left pictures show the actual distribution
of fitness of all neighbors the individuals in a population have, and the current
best fitness (black line), evolving over 60 generations. The right pictures show
the corresponding fitness distribution of the individuals in the population,
together with the best fitness. This is an confirmation of the hypothesis that
a population evolving on a landscape with a high degree of neutrality searches
the neutral cluster until the neighborhood structure changes, thus allowing
jumps to a network of higher fitness (e.g. first run: generation 8, 10, and
40). Notice that the changes in neighborhood structure occur before the actual
jump to the new cluster takes place. Possible connections to networks of
higher fitness can also be lost (e.g. second run: generation 12, third run:
generation 21, last run: generation 17) and found again later.
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Figure 3.2: Distribution of number of better neighbors b for genotypes with
fitness f . The number of better neighbors gets gradually smaller for individ-
uals of higher fitness.

of higher fitness, see Figure 3.1. The number of generations necessary to
discover higher fitness levels varies a lot from run to run of the evolutionary
algorithm. Accordingly, individuals of a certain fitness may have very differ-
ent neighborhood structures. In order to find sets of individuals for which
this structure is sufficiently similar, a single fitness class has to be divided into
several new classes. Only then a description of the fitness landscape based
on neighborhood structures can be successful. For a division of individuals
belonging to a certain fitness class into a set of new classes, crucial statistics
about individuals additional to their fitness have to be introduced. Some
candidate statistics are the average mutant fitness, the variance of mutant
fitness, or the fraction of better neighbors (mutants that have higher fitness
than the individual itself). I found that the number of better neighbors (see
Figure 3.2) is the attribute best suited for this purpose and devised a re-
fined approximation of the evolutionary algorithm, based on characterizing
individuals in terms of the pair (fitness, number of better neighbors).

For the NKp landscape with high neutrality, N = 30, K = 5, and
p = 0.99, a (15× 10) × (15× 10) correlation matrix is estimated (15 fitness
classes, and 10 classes for the number of better neighbors; class 1: no bet-
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ter neighbors, class 10: more than 8 better neighbors) by mutating random
genotypes. The matrix entry at position ((f, b), (f ′, b′)) describes the prob-
ability that an individual of fitness class f having b better neighbors results
in an individual of fitness class f ′ and b′ better neighbors after mutation.

In order to test this description of the NKp landscape we try to predict
the waiting times of the actual evolutionary algorithm in a way similar to the
method we applied in the previous sections: By reducing genotypes to the
pair (fitness, number of better neighbors) we construct a simplified stochas-
tic process, using the two-dimensional correlation information for mutating
individuals, and employing the actual selection scheme, as this is only based
on fitness values. Compared to the one-dimensional correlation description,
the refined dynamics based on this two-dimensional correlation information
give significantly more accurate predictions of waiting times.

Actual (first number) and predicted mean values of waiting times, based
on two-dimensional correlation:

initial / final fitness 0.02 0.03 0.04
0.01 5.5 / 3.2 9.2 / 5.1 14.7 / 8.6
0.02 * 4.2 / 3.5 10.1 / 7.0
0.03 * * 8.0 / 7.0

These results show that a more detailed description of neighborhood
structures captures additional important information which determines the
waiting times of evolution. But not only the mean value of waiting times is
predicted more accurately, also their variances are increased towards the ob-
served values. In some runs, the population happens to find exits to clusters
of higher fitness much more quickly than in others, an observation which is
true for the actual evolutionary algorithm as well as for the simplified process
with two-dimensional correlation.

3.1.2 Three-dimensional correlation

Taking into account more and more features of individuals which influence
their neighborhood structure, is expected to result in still more precise pre-
dictions. A bit surprising though is that the number of worse neighbors
individuals have also plays an important role for the outcome of the evolu-
tionary process.
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Figure 3.3: Distribution of number of worse neighbors w for individuals with
fitness f . The structure of this graph results from varying class frequencies.
Larger classes have an increased probability for neutral mutation and thus a
lower probability for worse neighbors.

To describe the possible neighborhood structures of individuals in an even
more accurate way, we now focus on the number of better and worse neighbors
an individual of certain fitness has. While the probability for a random
mutant to be of higher fitness is steadily decreasing for individuals of higher
fitness classes, the probability for a mutant to be worse strongly depends
on the probability for neutral mutation, pneutr. The actual probability for
neutral mutation in a certain fitness class depends on the fitness value and
on the number of individuals that belong to this class. Lower fitness and
greater number of individuals belonging to a fitness class results in higher
probability for neutral mutation. In NKp landscapes with high neutrality the
fraction of individuals which have fitness 0 is very large: pN = 0.74 for our
NKp landscape. For this reason the actual probability for a neutral mutation
is higher than pneutr for fitness 0. It falls below pneutr with increasing fitness,
but varies according to class frequencies. A higher probability for neutral
mutation implies a smaller number of worse neighbors.

To predict the within-cluster dynamics in an even more precise way, NKp
individuals in highly neutral landscapes are now described by the triple (fit-
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ness, number of better neighbors, number of worse neighbors). For the cur-
rent NKp landscape, this description results in a three-dimensional corre-
lation information, i.e. a (15× 10× 15) × (15× 10× 15) matrix: 15 classes
for fitness, 10 classes for the number of better neighbors and 15 classes for the
number of worse neighbors. The matrix entry at position ((f, b, w), (f ′, b′, w′))
is the probability that an arbitrary individual with fitness f , b better and w
worse neighbors will end up as an individual of fitness f ′, having b′ better
and w′ worse neighbors after a single mutation. This refinement of correla-
tion description should be able to predict a population’s drift along a neutral
network towards its exit to a cluster of higher fitness in a still more accurate
way than it is possible with two-dimensional correlation.

And indeed, the mean waiting times to reach a fitness threshold, predicted
by a stochastic process based on the three-dimensional correlation matrix
only, are closer to the actual mean values of waiting times, see Figure 3.4,
than those predicted by two-dimensional correlation.

Actual (first number) and predicted mean values of waiting times for the
distributions shown in Figure 3.4:

initial / final fitness 0.02 0.03 0.04
0.01 5.5 / 4.8 9.2 / 7.5 14.7 / 10.7
0.02 * 4.2 / 3.6 10.1 / 7.4
0.03 * * 8.0 / 6.8

The number of worse neighbors thus gives additional important informa-
tion of the evolutionary process. The conclusion drawn from these results is
very encouraging: A population’s drift along a neutral network can be un-
derstood very well, when more and more information is available about the
neighborhood structure of individuals. Correlation statistics are not only
appropriate for landscapes with low neutrality, but also for highly neutral
landscapes. The only difference is that a simple description by means of
fitness is not sufficient anymore. Clusters of equal fitness too large and too
inhomogeneous for a reduction to fitness only. If we account for the varying
neighborhood structure of individuals belonging to the same fitness class,
we succeed in describing the drift from the entrance of a neutral network
towards an exit that leads to a cluster of higher fitness. The correlation
statistics introduced in this work seem to capture the salient features of a
fitness landscape, like the degrees of ruggedness and neutrality, simultane-
ously.
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Figure 3.4: Actual (top) and predicted (bottom) waiting times for evolution
on a NKp landscape with a very high degree of neutrality (p = 0.99). Pre-
dictions are based on three-dimensional correlation statistics and give a very
good approximation of evolution along the neutral networks. Compared to
one-dimensional correlation statistics the number of better and worse neigh-
bors of a genotype provides crucial additional information.



CHAPTER 3. HIGHER-DIMENSIONAL CORRELATION 73

3.2 The Royal Staircase Fitness function

3.2.1 Two-dimensional correlation

For highly neutral NKp landscapes the fact was incorporated, that geno-
types of equal fitness may have different neighborhood structure, and a two-
dimensional correlation matrix was constructed. The equivalent of this ap-
proach for RSF landscapes is to account for the fact that individuals of the
same fitness have, according to the number of bits set correctly in their un-
aligned blocks, different probabilities to attain another fitness level under
mutation.

As a first step I thus incorporate the number of bits set incorrectly in the
first unaligned block, seen from the left. Genotypes are now described by the
pair (f, b) where f is the fitness and b is the number of incorrect set bits, i.e.
the number of zeros, in the first unaligned block, i.e. the fth block. b ranges
from 1 to K, as genotypes of fitness f have at least one bit set incorrectly in
their fth block.

A four-dimensional matrix representing this two-dimensional correlation
information can now be constructed. The matrix entry at position
((f, b), (f ′, b′)) describes the probability, that mutation of a random individ-
ual having fitness f with b bits set incorrectly in the fth block results in an
individual of fitness f ′ and b′ bits set incorrectly in the f ′th block. In the
case of the RSF landscape already analyzed in the last chapter (N = 8 and
K = 8) this results in a (9× 8)× (9× 8) matrix whose entries are calculated
analytically. The mutation operator for the evolutionary algorithm on this
RSF landscape is also kept: every bit is independently changed from 0 to 1
and vice versa with probability q.

For an easier representation we introduce the following 3 functions. P0(b)
denotes the probability that in a K-bit block the number of incorrectly set
bits before and after mutation is b. I assume that this can either happen
if none of the K bits is mutated or if an arbitrary 1 mutates to 0 and an
arbitrary 0 mutates to 1, i.e. by a two-bits swap. I do not account for the
possibility that more bits swap as for any reasonable mutation rate q the
probability for such an event is practically zero. Thus:

P0(b) = (1− q)K + b (K − b) q2 (1− q)K−2

The function P+(b, n) gives the probability that the number b of incor-
rectly set bits in a block increases by n under mutation. This either occurs
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if n out of K − b bits are mutated to 0 and the rest remains unchanged or
if a swap of two bits is involved, i.e. one of b bits mutates to 1, n+ 1 out of
K − b mutate to 0, and K − n− 2 bits are unchanged:

P+(b, n) =

(
K − b

n

)
qn(1− q)K−n + b

(
K − b

n+ 1

)
qn+2(1− q)K−n−2

Similarly, the function P−(b, n) denotes the probability that the number b of
incorrectly set bits in a block decreases by n under mutation, which happens
if either n out of b bits mutate to 1 and the remaining bits are unchanged,
or if one out of K − b mutates to 0 and n+ 1 out of b bits mutate to 1, and
K − n− 2 bits are not mutated. Thus:

P−(b, n) =

(
b

n

)
qn(1− q)K−n + (K − b)

(
b

n+ 1

)
qn+2(1− q)K−n−2

The matrix entry c(f,b),(f ′,b′) at position ((f, b), (f
′, b′)) can now be determined

as follows:

• If f ′ < f , the first f ′−1 blocks have to remain aligned, in the next block
K − b′ arbitrary ones have to remain unchanged and the remaining b′

bits have to be mutated to zeros:

c(f,b),(f ′,b′) = (1− q)(f
′−1)K (1− q)K−b

′
qb
′
(
K

b′

)
for f ′ < f

• If f ′ = f and b′ = b, f ′ − 1 blocks remain unchanged and in the f ′th
block the number of incorrectly set bits before and after mutation is
equal:

c(f,b),(f ′,b′) = (1− q)(f
′−1)K P0(b

′) for f ′ = f and b′ = b

• If f ′ = f and b′ = b + n where n ∈ {1, .., K − b}, f ′ − 1 blocks
remain unchanged. In the f ′th block the number of incorrectly set bits
increases from b to b′ by n. Thus:

c(f,b),(f ′,b′) = (1− q)(f
′−1)K P+(b, n) for f ′ = f and b′ = b+ n

• Similarly, if f ′ = f and b′ = b − n for n ∈ {1, .., b − 1}, c(f,b),(f ′,b′) is
given by:

c(f,b),(f ′,b′) = (1− q)(f
′−1)K P−(b, n) for f ′ = f and b′ = b− n



CHAPTER 3. HIGHER-DIMENSIONAL CORRELATION 75

• Finally, if f ′ > f , f − 1 blocks are unchanged, in the first unaligned
the b incorrect bits are mutated whereas the others are not changed,
the next f ′ − f − 1 blocks have to be of the aligned form, and in the
f ′th block b′ bits are set to 0. Therefore:

c(f,b),(f ′,b′) = (1− q)(f−1)K qb (1− q)K−b
(
1

2K

)f ′−f−1 (
K

b′

)
1

2K

for f ′ > f

As selection operator, the stochastic scheme described in Chapter 2.3 is
still applied: If P is the population size, we choose P times from the set of
all individuals, where individual i ∈ {1, ..., P} is independently chosen with
probability proportional to its fitness fi, i.e. with probability

pi =
fi
P∑
j=1

fj

.

Refining the process by using this two-dimensional matrix results in a very
good prediction of the behavior of the actual evolutionary algorithm. The
following table compares actual (first number) and predicted mean values of
waiting times:

initial / final fitness 5 7 9
1 618 / 587 1304 / 1230 2595 / 2398
5 * 545 / 508 1873 / 1680
7 * * 960 / 886

Mean waiting times are predicted with an error of less than 7%. This
shows that the assumption that genotypes have their unaligned blocks set
randomly is not only incorrect, but also responsible for systematically in-
accurate estimates of evolutionary waiting times. The number of bits set
correctly strongly influences the outcome of mutation. To give even better
results, the idea of correctly set bits is now tested by focusing on the first
two unaligned blocks.
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3.2.2 Three-dimensional correlation

In the following individuals are described by the triple (f, b1, b2). f is the
fitness of the genotype, b1 is the number of bits set incorrectly in the first
unaligned block, the fth block, and b2 is the number of bits set incorrectly in
the block after the first unaligned, the f +1st block. b1 ranges from 1 to K,
b2 can range from 0 to K, as block f + 1 can be aligned without influencing
the fitness of the genotype.

This three-dimensional distribution is calculated analytically in a similar
way to the calculations of two-dimensional correlation above. The resulting
(9×8×9)×(9×8×9) correlation matrix has at entry ((f, b1, b2), (f ′, b1′, b2′))
the probability c(f,b1,b2),(f ′,b1′,b2′) that an individual of fitness f having b1 bits
set incorrectly in the first unaligned block and b2 in the second changes to
an individual of fitness f ′ with b1′ and b2′ bits set incorrectly in its f ′th and
f ′ + 1st block under a mutational step.

• If f ′ < f − 1, f ′ − 1 blocks remain unchanged under mutation, in
the f ′th block b1′ out of K bits are mutated to 0 and K − b1′ are not
mutated, and in the f ′+1st block the same happens for b2′ bits. Thus:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K+(K−b2′)+(K−b1′)

(
K

b1′

)
qb1

′+b2′
(
K

b2′

)
for f ′ < f − 1

• If f ′ = f − 1 and b2′ = b1, f ′ − 1 blocks are unchanged. In the f ′th
block b1′ out of K ones are mutated to zeros, and in the following block
b1 bits are set incorrectly after mutation:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K+(K−b1′)

(
K

b1′

)
qb1

′
P0(b1)

for f ′ = f − 1 and b2′ = b1

• If f ′ = f − 1 and b2′ = b1 + n for n ∈ {1, .., K − b1}, f ′ − 1 blocks are
not mutated, in the f ′ block b1′ bits are changed to zero, and in the
f ′ + 1st block the number of incorrectly set bits b1 is increased by n
under mutation. Thus:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K+(K−b1′)

(
K

b1′

)
qb1

′
P+(b1, n)

for f ′ = f − 1 and b2′ = b1 + n



CHAPTER 3. HIGHER-DIMENSIONAL CORRELATION 77

• Similarly, if f ′ = f − 1 and b2′ = b1− n where n ∈ {1, .., b1}:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K+(K−b1′)

(
K

b1′

)
qb1

′
P−(b1, n)

for f ′ = f − 1 and b2′ = b1− n

• For the case that f ′ = f and b1′ = b1, f ′ − 1 blocks are not mutated
and in the f ′th block the number of incorrect bits stays the same under
mutation. For the outcome of mutation in block f ′ + 1 we have three
possibilities:

– If b2′ = b2, the number of zeros in the f ′+1st block is unchanged:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K P0(b1

′) P0(b2
′)

for f ′ = f , b1′ = b1 and b2′ = b2

– If b2′ = b2 + n, n ∈ {1, .., K − b2}, the number of zeros in block
f ′ + 1 increases by n:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K P0(b1

′) P+(b2, n)

for f ′ = f , b1′ = b1 and b2′ = b2 + n

– If b2′ = b2− n, n ∈ {1, .., b2}, the number of zeros in block f ′ + 1
decreases by n:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K P0(b1

′) P−(b2, n)

for f ′ = f , b1′ = b1 and b2′ = b2− n

• For the case that f ′ = f and b1′ = b1 + n for n ∈ {1, .., b1}, f ′ − 1
blocks are unchanged, and in the first unaligned block the number of
incorrect bits increases by n. According to the outcome of mutation in
block f ′ + 1, again three cases are possible:

– If f ′ = f , b1′ = b1 + n, and b2′ = b2:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K P+(b1, n) P0(b2)

– If f ′ = f , b1′ = b1 + n, and b2′ = b2 +m,m ∈ {1, .., K − b2}:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K P+(b1, n) P+(b2,m)
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– If f ′ = f , b1′ = b1 + n, and b2′ = b2−m,m ∈ {1, .., b2}:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K P+(b1, n) P−(b2,m)

• For the case that f ′ = f and b1′ = b1 − n, n ∈ {1, .., b1 − 1}, we
distinguish between the following three cases:

– If f ′ = f , b1′ = b1− n, and b2′ = b2:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K P−(b1, n) P0(b2

′)

– If f ′ = f , b1′ = b1− n, and b2′ = b2 +m,m ∈ {1, .., K − b2}:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K P−(b1, n) P+(b2,m)

– If f ′ = f , b1′ = b1− n, and b2′ = b2−m,m ∈ {1, .., b2}:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f
′−1)K P−(b1, n) P−(b2,m)

• If f ′ = f + 1, f − 1 blocks stay aligned, and in the fth block only
the b1 incorrect bits have to be mutated. In the f ′ + 1st block, about
which nothing in known, b2′ out of K possible bits have to be set to
zero and the remaining K − b2′ to one. According to the change due
to mutation in the f ′th block, which has b2 zeros before and b1′ after
mutation, three cases are possible:

– If b1′ = b2, the number of incorrectly set bits in block f ′ before
and after mutation is equal. Thus:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f−1)K+(K−b1) qb1 P0(b2)

(
K

b2′

)
1

2K

for f ′ = f + 1 , b1′ = b2

– If b1′ = b2 + n, n ∈ {1, .., K− b2} the number of zeros in block f ′
increases by n:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f−1)K+(K−b1) qb1 P+(b2, n)

(
K

b2′

)
1

2K

for f ′ = f + 1 , b1′ = b2 + n
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– Finally, if b1′ = b2− n, n ∈ {1, .., b2},

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f−1)K+(K−b1) qb1 P−(b2, n)

(
K

b2′

)
1

2K

for f ′ = f + 1 , b1′ = b2− n.

• At last, if f ′ > f + 1, f − 1 blocks are not mutated and in the fth
and f +1st block only the b1, respectively b2 zeros have to be mutated
to ones. After the f + 1st block, f ′ − f − 2 blocks have to be in the
aligned form, in the f ′th and f ′ +1st block exactly b1′ respectively b2′

bits out of K possible are zeros. Thus:

c(f,b1,b2),(f ′,b1′,b2′) = (1− q)(f−1)K+(K−b1)+(K−b2) qb1+b2(
1

2K

)f ′−f−2 (
K

b1′

)
1

2K

(
K

b2′

)
1

2K

for f ′ > f + 1.

Based on the three-dimensional correlation information, a simplified stochas-
tic process, approximating the actual evolutionary algorithm, can be con-
structed. The waiting times predicted by this process are practically exact,
see Figure 3.5.

The following table compares actual (first number) and predicted mean
values of waiting times for the distributions shown in Figure 3.5:

initial / final fitness 5 7 9
1 618 / 619 1304 / 1260 2595 / 2531
5 * 545 / 528 1873 / 1793
7 * * 960 / 946

The difference between predicted and actual mean values of waiting times
is of less than 3%. This shows that incorporating more and more correlation
information about the individuals and their mutants can capture all neces-
sary features of the evolutionary process.
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Figure 3.5: Actual (top) and predicted (bottom) waiting time distributions
derived from 1000 runs each, based on three-dimensional correlation. Includ-
ing more information about the individuals evolving on an RSF landscape
allows for still better predictions of evolutionary waiting times than it was
possible with two-dimensional correlation.
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In the last two chapters I have demonstrated that correlation information
provides the information necessary to predict evolutionary waiting times on
fitness landscapes with great accuracy. As the analyzed evolutionary algo-
rithms involve mutation and selection, I tried to find a way of predicting the
outcome of a mutational step. The selection scheme is based on the fitness
values of individuals only and therefore is relatively easy to describe. Once
the current fitness distribution in the population is known, the fitness distri-
bution of the selected new generation can be determined. By contrast, the
working of the mutation operator is much more difficult to understand, and
depends on the structure and topology of the fitness landscape. As a mutant
of an individual is always a neighbor of this individual in genotype space, the
outcome of mutation depends on the neighborhood structure of individuals.

I described a fitness landscape by the correlation under single mutational
steps between classes of individuals which have a similar neighborhood struc-
ture. This new type of correlation information proved to be successful in pre-
dicting the performance of an evolutionary algorithm at the level of fitness.
For fitness landscapes involving low degrees of neutrality, a one-dimensional
correlation description, based on characterizing individuals by their fitness
only, succeeded in predicting the distribution of waiting times between two
fitness levels. This method was applied successfully to TSP and NKp land-
scapes with low neutrality. In fitness landscapes with high neutrality, ex-
tended neutral networks of individuals with the same or very similar fitness
values were encountered. Those networks are too inhomogeneous to be de-
scribed by one-dimensional correlation information, and I thus extended this
description to two- and three-dimensional correlation. Based on this type of
information, almost accurate predictions of waiting times on NKp landscapes
with high neutrality as well as on RSF landscapes were derived. I conclude
that correlation information has the potential for capturing all the features of
fitness landscapes that determine the fitness-level dynamics of evolutionary
processes.



Chapter 4

Towards analytic descriptions

In the last chapters we have studied a stochastic process for predicting evo-
lutionary waiting times on several specific fitness landscapes. This process
describes the state of an evolving population in terms of the distribution
over classes of individuals. These classes of individuals are determined by
stating crucial properties of genotypes, which influence the fitness of their
neighbors, i.e. their mutants. The neighborhood structure is then assumed
to be the same for all individuals belonging to the same class. In particular,
the correlation between all pairs of classes is estimated, which is defined as
the probability, that a random mutant of an individual belonging to the first
class is in the second class. With this correlation information, the outcome
of mutating a genotype concerning the fitness is approximated. As selection
depends on fitness values only, it can relatively easily be described. By re-
ducing genotypes to the class they belong, and by applying the simplified
mutation and the actual selection operator, the evolutionary algorithm is
approximated by a simpler stochastic process based on correlation statistics
only.

Given that S is the current distribution of individuals over the classes, the
dynamics are in principle determined by the transition probabilities P (S′|S)
where S ′ is the distribution over classes of the next generation. Unfortu-
nately, for any reasonable population size and for a fine-grained classification
of genotypes, the number of possible distributions of a population over classes
is enormous. This makes it almost impossible to construct the transition
matrix of a Markov-chain for an analytic prediction of mean and variance of
waiting times.

The outcome of many realizations of the stochastic process itself was

82
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therefore used to predict the distribution of waiting times. Computation time
is much shorter for such a simplified process than for the actual evolution-
ary algorithms, which require large numbers of fitness function evaluations.
An analytic description of evolutionary dynamics would not only allow still
quicker predictions, but also more insight into how mutation and selection
operators influence the scale of evolutionary waiting times. For the case of
fitness landscapes with low neutrality and one-dimensional correlation statis-
tics showing normally distributed mutant fitness, an analytic description of
the average evolutionary dynamics on the level of fitness in large populations
is feasible.

As shown in Chapter 2, fitness landscapes of low neutrality can be de-
scribed very well by one-dimensional correlation statistics. Moreover we have
observed, that in the case of the analyzed TSP landscapes and the NKp land-
scape of low neutrality, these one-dimensional correlation statistics, and thus
the distribution of mutant fitness, can be well approximated by normal distri-
butions. Accordingly, when starting with a population in generation 0 with
all individuals having the same genotype, one step of mutation alone leads
to a normal distribution of fitness in infinite populations. A stochastic selec-
tion scheme based on an exponential selection function is expected to shift
the mean of this normal distribution. Fitness in generation 1 will therefore
still be normally distributed. Based on these ideas I now try to develop a
deterministic description for the evolution of the normally distributed fitness
in large populations. As a normal distribution is determined by the two pa-
rameters mean and variance, formulas for their change under mutation and
selection are aspired.

This analysis is unfortunately not as straightforward as it might seem
at first sight. Once the population has passed generation 0 and is normally
distributed with respect to fitness, the mutation process amounts to a com-
bination of two normal distributions whose parameters are interdependent.
First, the fitness in the population is normally distributed. Secondly, ev-
ery individual of the population has mutants whose fitness values are again
normally distributed, but the mean and variance of this distribution depend
on the fitness of the parent individual. In the case of the TSP and NKp
landscapes with low neutrality, one-dimensional correlation statistics can be
approximated by normal distributions, whose mean value depend linearly on
the parent fitness. When further assuming that the variance of mutant fitness
is the same for all individuals in a certain generation, this combination of two
normal distributions results again in a normal distribution after mutation.
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Under these conditions, formulas for the evolution of normally distributed
fitness under mutation and selection can be derived.

4.1 TSP fitness landscapes

The analytic approximation of an evolutionary algorithm on a fitness land-
scape presented in the following is based on several assumptions. First, it
is required that a one-dimensional correlation description of the landscape
captures all the essential information for predicting evolutionary change on
the level of fitness. Secondly, the distribution of mutant fitness for fixed par-
ent fitness, as provided by this correlation information, needs to be normal
in a good approximation. Thirdly, the mean and variance of the normally
distributed mutant fitness must depend linearly on the parent fitness, and
the function for variance has to be nearly constant. Moreover, the selec-
tion scheme must be based on an exponential selection function, and the
population has to be large enough so that its fitness distribution can be
approximated by normal distributions.

In the following, these prerequisites for the analytic description will be
clarified, and I will show that the assumptions that have to be made are jus-
tified for the TSP landscape already studied in the last chapters. Thereafter,
these assumptions are used to develop recursion equations for the change
of the normal distribution of fitness under mutation and selection, and a
consequential approximation of the best fitness in only finite populations is
presented. Finally, the analytic predictions are compared with the dynamics
of an actual evolutionary algorithm. In Section 4.2 I show that these deter-
ministic approximations of evolutionary dynamics are also successful for the
NKp landscape of low neutrality already studied in the last chapters.

4.1.1 Prerequisites

The coordinates of the cities in our Travelling Salesman Problems have been
chosen randomly. Consequently, the distances between pairs of cities are
random numbers. The length of a tour visiting all cities is the sum of N
of these random distances, if N is the number of cities. According to the
central limit theorem, tour lengths are approximately normally distributed.
If genotypes, i.e. tours of the TSP, are mutated, n distances between cities
are replaced by other random values. Under point mutation, n = 4, for
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remove-and-reinsert mutation n = 3, and for reverse mutation, n = 2 (see
Section 2.1.2). Even for reverse mutation, the tour lengths of the mutants of
an individual can therefore be approximated by a normal distribution. The
fitness function of the TSP studied in Section 2.1.4 is a linear function of
the length. The corresponding distributions for fitness instead of length can
thus also be approximated by normal distributions, with different mean and
variance.

The one-dimensional correlation matrix not only confirms that the neigh-
bors of individuals belonging to a certain fitness class are normally distributed
with respect to fitness, see Figure 2.24. We also observed that the mean value
and the variance of this distribution depend linearly on the parent fitness
value in a very good approximation, see Figure 2.25. Let fm(x) be the func-
tion for the mean value of mutant fitness for parent fitness x, and let fv(x)
be the corresponding function for the variance of fitness. As both functions
are linear functions of parent fitness in a close fit, they are well approximated
by:

fm(x) = kmx+ dm

fv(x) = kvx+ dv

Together with the assumption of normal distribution, the one-dimensional
correlation matrix is approximated by specifying these two functions. This
representation of correlation statistics was successfully tested as substitute
for the correlation matrix, see Figure 2.26. Consequently, the assumption of
normal distribution of mutant fitness, and linear dependence of the parame-
ters on parent fitness is justified.

4.1.2 Approximation of fitness distribution dynamics

Let pg(x) be the probability density of fitness of the population on the TSP
landscape in generation g, and let c(x, y) be the conditional density of mu-
tant fitness y given that the parent fitness is x. The function c(x, y) is the
continuous equivalent to the one-dimensional correlation matrix. According
to the total probability theorem, the joint density function of mutant fit-
ness and parent fitness, F (x, y), is given by F (x, y) = c(x, y)pg(x). In the
following it will be shown how the density of fitness after mutation, p′g(y),
and the density after selection, p′′g(y), can be approximated. By combining
both processes, recursion relations are derived for the change of mean and
variance of normally distributed fitness over generations.
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Mutation

At first, it will be demonstrated how to calculate the probability density
of fitness after all individuals have been mutated, p′g(y). This density is
determined by

p′g(y) =

∞∫
−∞

F (x, y) dx =

∞∫
−∞

c(x, y) pg(x) dx.

Let Nm,v(x) be the density function of a normal distribution with meanm
and variance v. Using the functions fm(x) and fv(x) for mean and variance of
mutant fitness depending on parent fitness x, as stated above, the conditional
density c(x, y) can be written as

c(x, y) = Nfm(x),fv(x)(y).

As pg(x) is assumed to be the density function of a normal distribution
with mean mg and variance vg, the joint density F (x, y) can now be written
as

F (x, y) = Nfm(x),fv(x)(y) Nmg ,vg(x).

Without any additional simplification, p′g(y) is given by

p′g(y) =

∞∫
−∞

F (x, y) dx

=

∞∫
−∞

1√
2πfv(x)

e−
(y−fm(x))2
2fv(x)

1√
2πvg

e
− (x−mg )

2

2vg dx

=
1

2π
√
vg

∞∫
−∞

1√
kvx+ dv

e
− (y−kmx−dm)

2

2(kvx+dv)
− (x−mg )

2

2vg dx.

For this integral no analytic solution was found.
However, when assuming that the function fv(x) is not depending on x

but constant in each generation, the function p′g(y) can be calculated analyt-
ically. If kv is close to zero and therefore fv(x) is almost constant, which is
true for this TSP landscape, we can approximate the function fv(x) in every
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generation by its value at the current mean fitness in the population fv(mg)
and get

F (x, y) = Nfm(x),fv(mg)(y) Nmg,vg(x)

=
1√

2πfv(mg)
e
− (y−fm(x))

2

2fv(mg)
1√
2πvg

e
− (x−mg )

2

2vg

=
1

2π
√
fv(mg)vg

e
− 1
2fv(mg)vg

[vg(y−(kmx+dm))2+fv(mg)(x−mg)2]

=
1

2π
√
fv(mg)vg

e−A e−B

with A =
1

2fv(mg)vg
[ x2

(
fv(mg) + k2mvg

)
+ 2x (dmkmvg − fv(mg)mg)

− 2xy(kmvg)− 2y(dmvg) + y2(vg) ]

and B =
1

2fv(mg)vg

(
vgd

2
m + fv(mg)m

2
g

)
.

If we introduce the 5 variables

n1 = mg

n2 = kmn1 + dm

s1 =
√
vg

s2 =
√
fv(mg) + vgk2m

r =
kms1
s2

we obtain

A =
1

2fv(mg)vg

(
x2s22 + 2x(n2rs1s2 − n1s

2
2) −

− 2xy(rs1s2)− 2y(n2s21 − n1rs1s2) + y2(s21)
)

=
1

2(1− r2)

[
(x− n1)2

s21
− 2r(x− n1)(y − n2)

s1s2
+
(y − n2)2

s22

]
− C

with C =
1

2(1− r2)

[
n21
s21
− 2rn1n2

s1s2
+
n22
s22

]
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=
s22

2(s22 − k2ms
2
1)

[
n21s

2
2 − 2kmn1n2s21 + n22s

2
1

s21s
2
2

]

=
fv(mg)m2g + d2mvg

2fv(mg)vg
.

Since C = B, F (x, y) can be written in the form

F (x, y) =
1

2π
√
fv(mg)vg

e
− 1
2(1−r2)

[
(x−n1)

2

s2
1
−2r(x−n1)(y−n2)

s1s2
+
(y−n2)

2

s2
2

]
.

The marginal density pgmut(x) is now given by:

p′g(y) =

∞∫
−∞

F (x, y) dx

=
1

2π
√
fv(mg)vg

∞∫
−∞

e
− 1
2(1−r2) [

(x−n1)
2

s21
−2r(x−n1)(y−n2)

s1s2
+
(y−n2)

2

s22
]
dx .

Since

(x− n1)2

s21
− 2r(x − n1)(y − n2)

s1s2
+
(y − n2)2

s22
=[

x− n1

s1
− r(y − n2)

s2

]2
+
(1− r2)(y − n2)2

s22

we obtain

p′g(y) =
1

2π
√
fv(mg)vg

e
−1
2

(
y−n2
s2

)2 ∞∫
−∞

e
− 1
2(1−r2)

[
x−n1
s1
− r(y−n2)

s2

]2
dx .

With

1√
1− r2

(
x− n1

s1
− r(y − n2)

s2

)
= z
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it is easy to see that

p′g(y) =
1

2π
√
fv(mg)vg

e
−1
2

(
y−n2
s2

)2
s1
√
1− r2

∞∫
−∞

e
z2

2 dz

=

√
1− r2

2πfv(mg)
e
−1
2

(
y−n2
s2

)2

=
1

s2
√
2π

e
−1
2

(
y−n2
s2

)2
.

Thus p′g(y) is normal with mean n2 = kmn1 + dm = fm(mg) and variance
s2
2 = fv(mg) + vgk

2
m.

In summary, the mutation operator changes the mean and variance of the
current fitness in the following way:

mg −→ fm(mg)

vg −→ fv(mg) + vg k
2
m.

Selection

In Section 2.1.4 we have chosen a stochastic selection scheme which selects
individual j with probability proportional to the exponential function eSf(j),
where f(j) is the fitness of j and S is a positive selection coefficient. If p(x) =
Nm,v(x) is the normal density function for the current fitness with mean m
and variance v, the probability density after selection p′′g(x) is proportional
to the product of the two functions. Thus:

p′′g(x) =
1

c
p(x) eSx with c =

∞∫
−∞

p(x) eSx dx

=
1

c

1√
2πv

e−
(x−m)2
2v eSx

=
1

c

1√
2πv

e−
1
2v ((x−m)2−2vSx) =

1

c

1√
2πv

e−
1
2v
(x2−2x(m+vS)+m2)

=
1

c

1√
2πv

e−
1
2v ((x−(m+vS))

2−2mvS−v2S2)
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=
1

c

1√
2πv

e−
(x−(m+vS))2

2v e−
2mS+vS2

2 .

Since

c =

∞∫
−∞

p(x) eSx dx =
1√
2πv

∞∫
−∞

e−
(x−m)2+2vSx

2v dx

=
1√
2πv

∞∫
−∞

e−
(x−(m+vS))2

2v e−
2mvS+v2S2

2v dx = e−
2mS+vS2

2 ,

we obtain

p′′g(x) =
1√
2πv

e−
(x−(m+vS))2

2v = Nm+vS,v(x),

Starting with normally distributed fitness in a very large population, the
exponential selection function leads again to a normal distribution of fitness
after selection with the mean value shifted towards better fitness. The vari-
ance stays the same. If m′g is the current mean fitness and v

′
g the variance of

fitness, the selection scheme changes those parameters in the following way:

m′g −→ m′g + v′gS

v′g −→ v′g

Recursion relations

Starting with a normal distribution of fitness in generation g with mean mg
and variance vg, the processes of mutation and selection ensure that the
fitness distribution in generation g + 1 is still normal. For the change of
mean and variance under mutation and selection of fitness, we now have the
following expressions:

mg −→ fm(mg)

Mutation:

vg −→ fv(mg) + vg k
2
m
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fm(mg) −→ fm(mg) + S(fv(mg) + vg k
2
m)

Selection:

fv(mg) + vg k
2
m −→ fv(mg) + vg k

2
m

The development of mean and variance of fitness over generations is now
given by the recursion relations

mg+1 = fm(mg) + S
[
fv(mg) + vg k

2
m

]
vg+1 = fv(mg) + vg k

2
m.

4.1.3 Approximation of maximal fitness

For a comparison of actual waiting times of the evolutionary algorithm on
the TSP landscape and predictions based on these equations, we have to
approximate the maximal fitness fmax in a finite population of individuals
whose fitness values are approximately normally distributed with mean m
and variance v. Then we can predict the number of generations necessary,
until one individual’s fitness exceeds the final fitness threshold. In a popula-
tion of N individuals, N − 1 individuals have fitness lower or equal to fmax.
We therefore determine fmax from the equation

1√
2πv

fmax∫
−∞

e−
(x−m)2
2v dx = erfm,v(fmax) =

N − 1
N

and obtain

fmax = erf−1m,v(1−
1

N
).

4.1.4 Testing the predictions

Predictions are expected to be most accurate for a very large population size
and a rather small selection coefficient. If the population size is too small,
the actual fitness distribution cannot be approximated by a normal distribu-
tion. Similarly, a big selection coefficient in a finite population leads to an
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Figure 4.1: Actual (thin line) and predicted (thick line) fitness distribution
in a population of 5000 individuals in generation 0, 10, 20, 30 in the upper
row and generation 40, 50, 100 and 200 in the lower row. The actual fitness
distributions are derived from a single run of the evolutionary algorithm.

actual distribution of fitness after selection which is qualitatively different
from a normal distribution, because in a finite population, the probability
for an individual to have fitness above a certain threshold is 0. In an ap-
proximation based on normal distributions, however, all fitness values have a
positive probability to occur. The outcome of selection in a finite population,
therefore, is not simply a shift of the mean of the fitness distribution, but
depends on the actually occurring fitness values.

In order to test the analytic predictions, the parameters of the evolution-
ary algorithm are set as follows: The population size is chosen at P = 5000
and the selection coefficient at S = 5. The predictions are based on the
two recursion relations for mean and variance of fitness and thus only on the
functions fm(x) and fv(x) for mean and variance of mutant fitness for parent
fitness x. Actually, the best predictions are obtained when using not only
one linear function for fm(x) and fv(x) but instead for each a set of 10 linear
functions for different fitness ranges. These functions are derived from the
correlation matrix by linear interpolation between the points of mean and
variance of mutant fitness for all different classes. The 10 linear functions per
parameter are nearly equal to each other, but nevertheless slight differences
are important for the accuracy of predictions.

Figure 4.1 shows a comparison of the development of actual and predicted
fitness distribution over generations. Actual and predicted mean and best
fitness in the population evolving over 200 generations are depicted in Figure
4.2. The statistics of actual behavior of the evolutionary algorithm are de-
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Figure 4.2: Actual (thin line) and predicted (thick line) mean and best fit-
ness in a population of individuals evolving on a TSP fitness landscape. The
predictions are based on an analytic description of the evolutionary dynam-
ics.

rived from a single run. For high population size, different runs of the actual
process do not show important differences.

The accuracy of the predictions is remarkable. This shows not only that
the TSP fitness landscape can be described by one-dimensional correlation
statistics. It also demonstrates that the correlation matrix itself can be ap-
proximated in a very simple way. We reduced the high-dimensional fitness
landscape to two sets of linear functions, which allow for an analytic predic-
tion of the evolutionary process. In the next section this method of analytic
description is applied to the NKp fitness landscapes of low neutrality.

4.2 NKp fitness landscapes

In an NKp fitness landscape, the fitness of a genotype is on average a sum
of N(1 − p) random numbers. For not very high values of p, the fitness
distribution therefore tends to be normal. Under mutation, on average (K+
1)(1− p2) bits of the genotype vector change their contribution and mutant
fitness is likewise approximately normally distributed, if p is not very high.
In the NKp landscape of low neutrality (N = 40, K = 3, and p = 0.3)
that was investigated in Section 2.2, N(1 − p) = 28 and (K + 1)(1 − p2) =
3.64. Consequently, the fitness distribution, as well as mutant fitness for
most fitness classes, are approximated quite well by normal distributions
(see Section 2.2 and Figure 2.30).
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Figure 4.3: The functions fm(x) and fv(x) for mean and variance of neighbor
fitness depending on parent fitness x in the NKp landscape of low neutrality
are linear in a good approximation. In the first picture the identity function
is depicted in gray.

The analytic predictions for the evolution of fitness distribution that we
have developed for TSP landscapes can therefore, in principle, also be ap-
plied to the NKp landscape of low neutrality investigated in Section 2.2, as
for this landscape a one-dimensional correlation description has been suc-
cessful. The population size is set to P = 5000 and we apply the stochastic
selection scheme already used for the evolutionary algorithm of the TSP, see
last section. The selection coefficient is chosen at S = 10.

4.2.1 Testing the predictions

For each of the functions of mean and variance of mutant fitness for parent
fitness x, fm(x) and fv(x), not only one linear function is taken. Like in the
case of the TSP of the last section predictive accuracy is improved, when
for both fm(x) and fv(x), 10 linear functions for different fitness ranges are
taken. They are derived from the correlation matrix by linear interpolation
between mean values and variances of mutant fitness for different classes,
see Figure 4.3. With the assumption of normally distributed mutant fitness,
the correlation matrix now has a continuous representation by means of the
functions fm(x) and fv(x).

A comparison of actual and predicted evolution of fitness distribution is
presented in Figure 4.4. The actual distribution is derived from a single
run. For a population size of P = 5000, different runs of the evolutionary
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Figure 4.4: Actual (thin line) and predicted (thick line) fitness distribution
in a population of 5000 individuals in generation 0, 20, 40 in the upper row
and generation 60, 80 and 100 in the lower row.
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Figure 4.5: Actual (thin line) and predicted (thick line) mean and best fitness
for evolution in an NKp landscape. The actual statistics are derived from a
single run, whereas the predictions are based on an analytic approximation
of the average dynamics on the level of fitness.
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algorithm do not show important differences. A comparison of best and mean
fitness per generation in one run of the actual algorithm and the analytic
predictions is presented in Figure 4.5.

The predictions, which are only based on the two sets of linear functions
for the mean and variance of mutant fitness, are very close to the actual
dynamics. An analytic approximation of evolutionary dynamics based on
normal distributions was successful for the TSP landscape and the NKp
landscape of low neutrality. In the next subsection, however, some ideas
for improving predictive accuracy and for more general approximations are
presented.

4.2.2 Possible improvements and extensions

When we calculated the probability density function of fitness after all indi-
viduals have been mutated, p′g , the linear function fv(x) for the variance of
neighbor fitness was approximated by its value at the current mean fitness
in the population fv(mg):

p′g(y) =

∞∫
−∞

F (x, y) dx

=

∞∫
−∞

Nfm(x),fv(x)(y) Nmg ,vg(x) dx

≈
∞∫

−∞

Nfm(x),fv(mg)(y) Nmg,vg(x) dx.

Without this simplification, p′g could not be calculated analytically. Numer-
ical evaluations show that this density function is in general not normal, but
can be approximated very well by the density function of a normal distri-
bution, if the slope of the function fv(x) is not too high. In the case of
the analyzed TSP and NKp landscape of low neutrality, the slope of fv(x)
is very small. For that reason, the predictions derived when making this
simplification are very close to the actual dynamics.

An substitution of F (x, y) by its Taylor-polynomial of first and second
order yields exactly the same mean and variance of the so approximated
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density function p′g , as is achieved when using the above simplification. Con-
sequently, the mean and variance of the actual distribution of fitness after
mutation is certainly very close to the moments we could calculate analyti-
cally when allowing for this simplification. However, predictive accuracy of
the analytic description could possibly be improved when accounting for the
more accurate distribution of fitness after mutation.

In principle, it should be feasible to base predictions on the moments of
distributions different from normal distributions. Such a description would no
longer be restricted to fitness landscapes for which mutant fitness is normally
distributed. Predictions for the fitness distribution evolving over generations
in landscapes with large degree of neutrality, like NKp landscapes for very
high p or RSF landscapes, would then be possible. To develop this approach
systematically is an interesting option for future research.

Nevertheless, the analytic description of the evolutionary algorithm on
a TSP landscape and an NKp landscape with low neutrality, based on nor-
mally distributed fitness, provided surprisingly good estimates of the actual
process. One-dimensional correlation statistics have proved to be capable of
describing TSP and NKp landscapes of low neutrality. Moreover, the cor-
relation statistics for these landscapes have themselves shown such a simple
structure, that they can be reduced to a set of normal distributions. This
simplicity of the correlation structure of these high-dimensional fitness land-
scapes was unexpected and allows for considerably reducing the complexity
of such fitness landscapes.



Chapter 5

Summary

The structure of fitness landscapes

Although the metaphor of a fitness landscape on which a population is evolv-
ing towards adaptive peaks has served as an important basis for understand-
ing evolutionary processes in different areas of science, the question which
landscape statistics are critical for predicting evolutionary change on these
landscapes so far has not been resolved. In this study, we have suggested
a potential answer to this question, based on correlation approximations of
evolutionary algorithms.

Evolutionary algorithms, most commonly used for solving problems of
optimization, can be regarded as evolutionary systems in which the dynam-
ics at the level of fitness are resulting from the dynamics at a genotype level.
Whereas the specification of evolutionary algorithms is generally straightfor-
ward, their actual dynamics are often difficult to understand. The picture
of a fitness landscape in which individuals of an evolutionary algorithm are
engaged in hill-climbing can, in principle, help to improve this understand-
ing. Actual fitness landscapes of specific evolutionary algorithms, however,
are mostly high-dimensional, and identifying features which are critical for
the evolutionary outcome has turned out to be a challenging problem.

Until now, mainly two different correlation functions have been used to
describe fitness landscapes; the direct correlation function and the auto-
correlation function, see Section 1.4. Based on these functions rough approxi-
mations of the behavior of the evolutionary process are possible (Stadler 1995,
Manderick 1997). The direct correlation function is based on considering the
correlation of fitness values between pairs of genotypes at varying mutational

98



CHAPTER 5. SUMMARY 99

distances. The auto-correlation function is based on time series of fitness val-
ues that result from random walks on a fitness landscape. The dynamics of
such random walks are only determined by mutation, selective pressures are
not considered. Auto-correlations are then averaged over all possible initial
conditions for the random walk. It can be shown that these two types of
correlation functions carry equivalent information (Stadler 1995).

Fitness landscapes without neutrality

In this study I presented a new correlation measure which, relative to the
previous approaches, at the same time reduces and enhances the statistical
information provided: the focus of this new measure is on single mutational
steps (reduced information) but the initial fitness of considered individuals
is maintained in the measure (enhanced information). Unless the fitness
function is degenerate, it is very probable that an individual’s fitness is to
some degree correlated with the fitness values of its mutants or neighbors.
The underlying idea of this correlation approximation is to describe a fitness
landscape by means of its neighborhood structure.

In Chapter 2, I therefore investigated one-dimensional correlation mea-
sures, which are based on the assumption that the neighborhood structure in
terms of fitness values is similar for individuals of the same fitness range. The
description of a fitness landscape then amounts to stating the distributions
of mutant fitness for different fitness classes.

One of the essential features of the dynamics of an evolutionary algorithm
concerns the probability for a population of a certain initial fitness to reach
a fitness threshold within g generations. This information is summarized in
the distribution of waiting times. Comparing the actual waiting times of
evolutionary algorithms for several specific problems to predictions based on
various candidate statistics allowed for assessing the relative merits of these
simplified landscape descriptions.

In Section 2.2 the focus was on the Travelling Salesman Problem and
on its solution by an evolutionary algorithm that utilizes a point-mutation
operator. Within this setting, the complexity of landscape statistics has
been increased in a sequence of several steps. I have shown that a land-
scape description neglecting the correlation between neighboring fitness val-
ues (percolation) is not successful in predicting the evolutionary dynamics;
subsequently, I investigated one-dimensional correlation statistics:

1. Percolation. All individuals on the landscape are considered to have
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fitness values above or below a given threshold with probability p and 1− p,
respectively (Gavrilets and Gravner 1997). The results of an approximate
evolutionary process based on this simplification showed that introducing
more fitness classes and accounting for their specific distribution of neighbor-
ing fitness values are vital steps for overcoming the poor predictive accuracy
of the percolation approximation.

2. Coarse correlation with monomorphic population. In a next step we
have used correlation statistics of the landscape. This has enabled us to take
into account that genotypes in different fitness classes are surrounded by
different neighborhood structures. Although based on a coarse classification
of fitness values into just a small number of fitness classes, while treating
the population as being monomorphic, predictions improved relative to the
percolation approximation. Yet, the simplified processes still resulted in too
long waiting times.

3. Fine correlation with monomorphic population. A fined-grained cor-
relation matrix served as the basis for the next step and was supposed to
better represent the possibility of small changes in fitness values, which can
be critical for describing the evolutionary process. Predicted time scales of
evolution lay quite close to those of the actual evolutionary algorithm. How-
ever, the fact that the waiting times were systematically underestimated led
us to conjecture that the simultaneous presence of different fitness values
within a population is important for predicting evolutionary change.

4. Fine correlation with polymorphic population. Allowing the popula-
tion to be polymorphic, so that individuals in one generation can belong
to different fitness classes, resulted in remarkably accurate predictions of
evolutionary waiting times. All the information needed for this very close
approximation of the evolutionary algorithm is provided by a fine-grained
correlation matrix.

In the following subsections I have then shown that descriptions based
on one-dimensional correlation are equally successful for different mutation
operators, and also for another Travelling Salesman Problem with increased
number of cities and an evolutionary algorithm using a stochastic selection
scheme.

Fitness landscapes with neutrality

On TSP landscapes, neighboring genotypes hardly ever have the same fit-
ness, i.e. are neutral. Therefore, we turned our attention to fitness land-
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scapes which allow for tuning the degree of neutrality in order to test if
one-dimensional correlation approximations are equally successful under such
different conditions.

In Section 2.2 we observed that for NKp fitness landscapes with low neu-
trality predictions based on one-dimensional correlation statistics are very
close to actual evolutionary waiting times. By contrast, investigating an
NKp landscape with high degree of neutrality has demonstrated that the
fitness landscape decomposes into a set of large and extended networks of
neutral genotypes that are too inhomogeneous for being described by mean
neighborhood structures at different fitness levels. For the class of Royal
Staircase Functions, which allow to construct fitness landscapes of high neu-
trality with well-structured networks of equal fitness, we also observed that
one-dimensional correlation can only provide rough predictions of evolution-
ary waiting times.

In order to describe classes of individuals with similar mutant fitness, ad-
ditional properties of individuals have to be introduced. In Chapter 3, I inves-
tigated highly neutral fitness landscapes and showed that higher-dimensional
correlation statistics are appropriate for predicting a population’s drift along
neutral networks. For NKp landscapes with large-scale neutrality, I ac-
counted not only for the fitness of individuals but also for their number
of better, and, finally, also for the number of worse neighbors. Genotypes
that are similar with respect to those three parameters also show a similar
neighborhood structure. In the case of RSF landscapes I tried an equivalent
approach and characterized individuals by their fitness and by the number of
incorrectly set bits on the genotype vector for attaining higher fitness. For
both types of landscapes with high degree of neutrality, an approximation
of the evolutionary process based on three-dimensional correlation statis-
tics proved to be successful and nearly accurate in predicting evolutionary
waiting times. Describing fitness landscapes by these correlation statistics is
conceptually very simple, and allows to considerably reduce the complexity
of even highly neutral fitness landscapes.

Analytic descriptions

All predictions of evolutionary waiting times described so far were based
on many realizations of stochastic processes using correlation information. I
therefore developed an analytic description of the fitness dynamics on TSP
and NKp landscapes with low neutrality, presented in Chapter 4. The one-
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dimensional correlation matrices have, in both cases, shown that mutant fit-
ness, as a very good approximation, follows a normal distribution. Moreover,
mean and variance of mutant fitness depend linearly on parent fitness in a
very close fit. On this basis, the correlation matrices were represented by two
linear functions describing the mean and variance of mutant fitness. Due to
this special structure of the correlation matrices, the fitness distributions in
large populations can be approximated by normal distributions. By choosing
an exponential selection function, I derived formulas for the change of mean
and variance of normally distributed fitness values present in a large evolving
population. These analytic predictions yielded very good approximation of
the actual evolution of fitness distributions. By approximating the maximal
fitness in a finite population whose fitness distribution is represented by a
normal distribution, it was also possible to predicted the evolution of the
best fitness in a population.

Directions for future research

For landscapes of higher neutrality and landscapes with mutant fitness dis-
tributions that are not normal, I have, so far, not been able to derive analytic
descriptions. As the correlation statistics provided nearly accurate predic-
tions of waiting times for all different landscapes, it should in principle be
feasible to analytically derive predictions for evolving fitness distributions,
based on their moments. This requires an investigation of the structure of
higher-dimensional correlation information of fitness landscapes with high
degree of neutrality, and thus additional study.

I conclude that the crucial features of a fitness landscape are captured in
a surprisingly accurate way by correlation statistics that describe the neigh-
borhood structures of individuals. The success of these landscape statistics,
allowing for almost perfect prediction of evolutionary waiting times, shows
that this approach offers a new pathway for improving our understanding of
complex fitness landscapes.
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