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Abstract

There are inherent difficulties in solving LBD (learn-by-doing) models. Basic to such

models is the idea that the accumulation of experience leads to a lowering of costs.

This paper is intended to explore some of the algorithmic issues in LBD modeling for

carbon dioxide abatement. When using a standard algorithm for nonlinear

programming, there is no guarantee that a local LBD optimum will also be a global

optimum. Fortunately, despite the absence of guarantees, there is a good chance that one

of the standard algorithms will produce a global optimum for models of this type,

particularly if there is an artful selection of the starting point or of the terminal

conditions. Moreover, there is a new procedure named BARON. In the case of small

models, a global optimum can be recognized and guaranteed through BARON.

Eventually, it should be possible for BARON or a similar approach to be extended to

large-scale LBD models for climate change. Meanwhile, in order to check for local

optima, the most practical course may be to employ several different starting points and

terminal conditions.
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Learn-by-doing and Carbon Dioxide Abatement
Alan S. Manne and Leonardo Barreto

1. Introduction

There are inherent difficulties in solving LBD (learn-by-doing models. Basic to such

models is the idea that the accumulation of experience leads to a lowering of costs. This

idea goes back to the model of Arrow (1962) – and even earlier to empirical estimates

of airframe production costs. Within the context of global climate change, it has been

applied by: Goulder and Mathai (2000), Gritsevskyi and Nakićenović (2000), Kydes

(1999), Kypreos et al. (2000), Kypreos (2000), Mattsson and Wene (1997), Messner

(1997), Seebregts et al. (2000), TEEM (1999) and Van der Zwaan et al. (1999).

This paper is intended to explore some of the algorithmic issues in LBD modeling for

carbon dioxide abatement. When using a standard algorithm for convex nonlinear

programming, there is no guarantee that a local LBD optimum will also be a global

optimum. Fortunately, despite the absence of guarantees, there is a good chance that one

of the standard procedures will produce a global optimum for models of this type –

particularly if there is an artful selection of the starting point or of the terminal

conditions. Moreover, there is a new algorithm named BARON. In the case of small-

size LBD models, a global optimum can be recognized and guaranteed through

BARON.

For a general idea of what is involved, see Figure 1. There are just two decision

variables, x1 and x2. The feasible set consists of a convex polygon: all points within the

shaded area ABCD. If the minimand is strictly concave, it can happen that point A is a

local optimum. That is, it has lower costs than the adjacent extreme point B, but it has

higher costs than the distant extreme point C. This is illustrated by the two-dashed iso-

cost lines. The curved line going through A indicates higher system costs than the

curved line going through C. In any case, the minimum system cost lies at one of the
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extreme points (the vertices) – not between them. (For a rigorous treatment of this

proposition, see Hirsch and Hoffman (1961).) Moreover, there may be only a small

difference in costs between the extreme points.
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Figure 1: Two-dimensional example of a local optimum.

In connection with the debate over global climate change, a small example of LBD will

be examined in this paper. We will show that occasionally one of the standard

algorithms fails, but that BARON is successful in producing a global optimum.

Simultaneously with this effort, we are applying some of these ideas to a larger, more

realistic model known as MERGE. Here the standard algorithms produce plausible

solutions, but we have to take any steps that we can to ensure that these represent a

global rather than a local optimum.

2. The BARON algorithm

For details on BARON, see Sahinidis (2000) and http://archimedes.scs.uiuc.edu .

According to: http://www.gamsworld:

BARON is a computational system for solving non-convex optimization

problems to global optimality. Purely continuous, purely integer, and

mixed-integer nonlinear problems can be solved with the software. The

Branch And Reduce Optimization Navigator derives its name from its
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combining interval analysis and duality in its reduce arsenal with

enhanced branch and bound concepts as it winds its way through the

hills and valleys of complex optimization problems in search of global

solutions.

BARON is a tool that allows for the identification of globally optimal solutions. It

combines range reduction techniques with an enhanced branch and bound (B&B)

algorithm. This combination gives the name to the algorithm: Branch and Reduce. The

Branch and Bound algorithm is applied to a (generally convex) relaxation of the original

non-convex problem. In each node, a relaxed version of the original problem is solved.

If this is a minimization, its solution provides a lower bound for the original non-convex

problem. Using this solution as the starting point (or, if available, a better starting point

can be used), the original problem is solved and an upper bound for the global optimal

solution is found. If the gap between the upper and lower bounds is not small enough,

the feasible region is divided in parts. A new relaxed problem is solved for each

subdivision and new lower and upper bounds for the global optimum are computed.

The range reduction techniques help to restrict the search space and reduce the

relaxation gap. They are applied to every sub-problem of the branch-and-bound search

tree in pre- and post-processing steps, helping to improve the performance of the

bounding procedure at every node of the tree. Different types of reduction tests can be

applied according to the form of the problem. Optimality-based and feasibility-based

range reduction tests are possible. Optimality-based range reduction uses the optimal

(dual) solution of the relaxed problem to reduce the range of constraints and variables.

Feasibility-based range reduction uses heuristic procedures to generate constraints that

eliminate infeasible portions of the solution. These constraints approximate the solution

of optimization problems that generate improved bounds for the problem variables.

3. The LBD perspective

For an example of LBD, see Figure 2, copied from International Energy Agency,

(2000). This reports average unit costs (1990 ECU per kilowatt-hour) for a series of

alternative electricity producing technologies in the European Union, 1980-1995. The

vertical axis refers to unit costs; the horizontal axis refers to cumulative electricity
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production at successive dates. With greater “experience” (cumulative production) ,

there is a pronounced tendency for a decline in the unit costs of novel technologies such

as photovoltaics and wind power, but there is no obvious decline in the unit costs of

more conventional methods such as supercritical coal and NGCC (natural gas –

combined cycle). Significantly enough, nuclear power is not plotted on this diagram. If

it were plotted, it would almost surely illustrate an increase in unit costs with additional

experience – and with additional concerns about reactor safety.

0.01

0.1

1

10

0.01 0.1 1 10 100 1000

Cumulative Electricity Production (TWh)

C
o

st
o

f
E

le
ct

ri
ci

ty
(E

C
U

(1
99

0)
/k

W
h

)

Photovoltaics (~65%)

Electricity from
Biomass (~85%)

Supercritical Coal (97%)

NGCC (96%)

Wind Power - Average (82%)

Wind Power - Best
Performance (82%)

1985

1995

1980

1995

© OECD/IEA, 2001

Figure 2: Electric technologies in EU 1980-1995.

In Figure 2, note that the newer technologies tend to be higher in unit costs than the

conventional ones. If investors base all their decisions on immediate costs, there would

be little tendency to support the newer technologies that are currently more expensive.

Their cumulative experience is too small, and they could be “locked out” permanently.

This is the rationale for public intervention in the market. LBD entails the acceptance of

high near-term costs in return for an expected lowering of future costs. It is an

investment choice, and it depends critically upon the rate of discount.

Associated with each technology, Figure 2 shows a “progress ratio” entered in

parentheses. This measures the percentage decline in unit costs that is associated with a

doubling of experience. In the case of wind, for example, this parameter is shown as
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82%. That is, 2 lrn = 82%. Therefore, the exponent lrn = -.29. This exponent is one of the

essential parameters that is entered into an LBD model.

So far, so good. The next analytical issue is the measurement of cumulative experience.

Should this be limited to the European Union (as in Figure 2)? Or should it also take

account of efforts elsewhere - in Japan, the USA, etc? This is not an easy question to

answer. In a global economy, technological experience diffuses widely. It is quite

possible that there is a more rapid flow of information between the European and US

branches of a given company than between the European branches of different

companies.

The geographical range of diffusion is one issue. Another is the measurement of

cumulative experience associated with the leftmost point along each curve. If, for

example, there is no experience with wind power reported before 1980, how do we

measure the cumulative experience at this initial date? The initial cumulative experience

is an estimate that must be made thoughtfully, and there are no easy answers. Even in

the year 2000, the production of wind and solar electricity provides just a small

percentage of the total.

4. A small-scale model of electricity choices

In order to develop a small-scale model of electricity choices, consider the options that

are available to the world as a whole. It will be supposed that the world plans to meet

the total electricity demands implied by the “reference case” of MERGE. This is a

multi-region, multi-technology model for estimating the costs of regional and global

greenhouse gas reductions. It is based upon a bottom-up view of energy supplies and a

top-down view of energy demands. For details on MERGE, see the website:

http://www.stanford.edu/group/MERGE

To meet the reference case demands, suppose that there are just three technologies

available:

1. Defender: this is the average type of unit on line in the year 2000; a

predominantly fossil mix of technologies, but also includes hydroelectric and

nuclear; it is not subject to LBD;
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2. Challenger: the initial challenger – the average type of carbon-free technology

available in 2000; this is high-cost and subject to learning along the lines of the

LBD model; and

3. Advanced: an advanced challenger – the average type of carbon-free technology

that might become available in 2050; this is lower-cost and also subject to the

endogenous type of learning.

Let the decision variables Xj,t denote the quantity of electric energy (trillion kilowatt-

hours) produced by technology j in period t (where the time periods refer to successive

decades during the 21st century). Together, the three technologies must meet the

projected electricity demands. If one is not concerned about carbon accumulation, one

could meet these demands solely through technology 1 (the low-cost, predominantly

fossil-based option). If one is concerned about reducing carbon, there will be a role for

the higher-cost carbon-free technologies. The earlier one has the advantage of being

available immediately, but the later one has the advantage of being potentially lower in

costs. It might, for example, represent nuclear or fusion. Or it might represent advanced

developments of wind or of photovoltaic solar – or fossil fuel plants with carbon capture

and sequestration.

To express the condition that total demands must be met by a combination of these three

technologies, there is first the supply-demand balance constraint:

(1) tttt EXXX ≥++ ,3,2,1

Where E t denotes the demands in decade t.

Next, there are the constraints that none of these technologies may expand too rapidly.

To illustrate this idea concretely, suppose that a new technology cannot supply more

than 1 % of the market during the first decade in which it is introduced, and that it

cannot expand much more rapidly than a factor of four during subsequent decades. We

then have:

(2) tjttj XEX ,1, *4*01.0 +≤+ (for all j,t)



7

Similarly, to ensure that technologies are not replaced too rapidly, we impose a

maximum annual decline rate of 3% per year. For intervals of a decade, this works out

as follows:

(3) tjtj XX ,

10

1, *
03.1

1






≥+ (for all j, t)

In order to keep track of cumulative carbon emissions from the electric power sector,

we take the average of emissions at the beginning and the end of each decade.

Cumulative emissions through decade t are represented by the decision variable

CARB t. They are proportional to the output of technology 1 (the predominantly fossil

fuel defender):

(4) )(**5 1,1,11 ++ ++= tttt XXcecCARBCARB

Where cec represents the average carbon emission coefficient during the year 2000.

Under a “business-as-usual” scenario, the cumulative emissions would be roughly 700

billion tons during the 21st century. To illustrate a low-carbon scenario – but one in

which there is no immediate need for abatement - we impose an upper bound of 400

billion tons on CARBT.

It is assumed that learning costs depend upon the cumulative production experience for

each of the technologies. Let the decision variables Yj,t represent this experience. Basing

these variables upon an average of the production at the beginning and end of each

decade, we have:

(5) )(*5 1,,,1, ++ ++= tjtjtjtj XXYY (for all j, t)

The objective function is expressed as one of minimizing the present value of costs –

subject to meeting the supply-demand constraints (1), the expansion and decline

constraints (2) and (3), the cumulative carbon constraints (4), the cumulative production

experience (5), and both upper and lower bounds on individual variables. In order to

employ a market-oriented criterion, we let pvt (the present value factor for period t) be

based upon a 5% real rate of return on capital. This is intended to be net of inflation, and

represents a before-tax rate of return. Let the decision variable PVC denote the present

value of costs throughout the 21st century. For each time period and each technology,
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we then have two cost components. The first may be termed “static” and the second

“dynamic”.

(6)























+= ∑∑∑

j

lrn

j

tj
tjj

j
tjj

t
t

j

acc

Y
XinlcXCostpvPVC ,

,,

That is, the static terms are proportional to the cost j factors. These provide a lower

bound on the average cost of each technology. The dynamic terms depend upon the

cumulative learning experience. This in turn depends upon the Yj,t decision variables –

and also upon three parameters: the initial learning cost coefficient inlcj, the initial

experience accj, and the learning exponent lrnj. Table 1 shows illustrative values of

these individual parameters. In this case, the costs of the fossil fuel defender remain

constant over time – at $40 per thousand kWh. The learning exponent is n.a. (not

applicable) in this case. Initially, the first challenger’s costs are twice this level: 30 + 50

= $80 per thousand kWh. These costs decline over time with cumulative experience.

The advanced challenger has lower initial costs, but does not become available until

2050.

Table 1: Illustrative values of the cost parameters

1 2 3Technology j

Defender Challenger Advanced

Static cost coefficients, cost j

$ per thousand kWh
40 30 30

Initial learning cost coefficients,
inlc j, $ per thousand kWh

0 50 10

Initial accumulated experience,
acc j, trillion kWh

1 1 1

Learning exponent, lrn j n.a. -.2 -.2

Note that the initial accumulated experience parameters acc j must be chosen with care.

Over time – with cumulative experience – the costs of all three technologies will decline

toward the limits imposed by the static cost factors. The parameters accj must be

checked for their comparability with the values of the cumulative production variables

Y j, t during the initial decades of the 21st century.
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For further details, see the GAMS code attached as an appendix. This will enable the

reader to experiment with other parameters. From earlier work, for example, we know

that the optimal solution is highly sensitive to the learning exponent, lrnj.

Just as in the two-dimensional example (Figure 1), the constraint set of this problem is a

convex polyhedron. The minimand is concave. A solution must therefore lie at one or

another of the extreme points of the polyhedral constraint set. But it is not sufficient to

check adjacent extreme points. One must somehow be able to verify that distant

extreme points are also handled. This is the role played by BARON.

5. Numerical results from the small-scale model

Figure 3 shows the percentages supplied by each of the three technologies in the global,

minimum-cost solution to this problem. Each technology follows a unimodal path. That

is, there is at most one maximum point for its deployment. There are distinct phases in

which one or another expansion/decline constraint is active. The first challenger is not

introduced immediately in 2010. With a cumulative carbon constraint of 400 billion

tons, there is enough slack in the system so that the challenger does not need to enter

until 2020. Thereafter, it expands at a maximum rate until 2050. The fossil defender

begins to decline after 2040. In 2050, the advanced challenger begins to enter at its

maximum rate, and after 2070, the earlier challenger begins its decline.
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Along with these introduction patterns, there is a distinct pattern of learning costs. To

see how the average unit learning costs change with cumulative experience, see

Figure 4. There, results are reported for two alternative values of the accumulated initial

learning experience parameter. When accj = 1.0, we obtain the upper experience curve.

In this case, it is optimal to wait until 2020 before introducing the challenger.

Alternatively, if accj = 0.1, this provides a more attractive initial point for the

challenger. The same unit costs are attained with less experience. In turn, this creates an

incentive for more rapid deployment of the challenger – and an earlier date at which

costs begin to be lowered.
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Figure 4: Experience curves for challenger – alternative values of initial experience, acc.

Each of the experience curves is determined by the three dynamic LBD parameters

listed in Table 1. The vertical distance of the 2000 value is the initial learning cost

coefficient, inlcj. The horizontal distance of the 2000 value is the initial accumulated

experience, accj. And the slope of the experience curves (on a log-log scale) is given by

the learning exponent, lrnj. The rate at which we progress down the experience curve is

determined by the endogenous learning process. The less expensive the challenger, the

more rapidly it is deployed.

To put things into perspective, it is useful to examine Figure 5. This presents the total of

the static plus the dynamic learning costs for the challenger. Both cost curves begin at
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the same point in 2000 – at twice the level of the defender technology - but they diverge

thereafter. Throughout the 21st century, there is no date at which the upper curve lies

below the costs of the defender ($40 per thousand kWh). Without a carbon constraint,

there would be no rationale to introduce the challenger. With the lower curve, however,

the challenger’s costs lie below those of the defender from 2050 onward. Under these

circumstances, the challenger is introduced at the maximum rate from the earliest date

that it becomes available, and the 400 billion ton carbon constraint becomes inactive.
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Figure 5: Static and learning costs for challenger.

These projections should not be taken literally, but they do indicate that this type of

LBD model has a tendency toward “bang-bang” behavior. That is, a technology may not

be introduced immediately when it becomes available. When it is introduced, however,

it tends to enter at a maximum growth rate, and eventually to be phased out at a

maximum decline rate.

When accj = 1.0, the results of BARON are duplicated by two standard convex

nonlinear programming algorithms: CONOPT2 and MINOS5. There is a coincidence

between the local and the global optimum. How often does this occur? Not always. For

example, when we take the same model but eliminate the carbon constraint, we obtain

two different solutions. CONOPT2 generates the same global optimum as BARON, but

MINOS5 generates a very different local optimum.
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Without a carbon constraint, the global optimum is one in which the defender supplies

all of the demands through 2040. From 2050 onward, the advanced low-cost challenger

then expands at the maximum rate. The locally optimal solution is one in which the

defender supplies the world’s demands throughout the entire horizon. The other two

technologies are both locked out. With a different starting point, MINOS5 produces still

a different solution, but again one that is not a global optimum. In all the sensitivity

analyses that we have conducted, CONOPT2 has duplicated the same globally optimal

solution as BARON, but MINOS5 has produced a number of local optima.

Caveat: these experiments are not conclusive. To our knowledge, there is no theoretical

reason for the superiority of one or another of these standard methods when the

minimand is concave. Eventually, it should be possible for BARON or a similar

approach to be extended to large-scale LBD models. Meanwhile, in order to check for

local optima, the most practical course is to apply several different nonlinear

programming algorithms – and several different starting solutions with each of them.

6. An alternative approach – terminal conditions

Another possibility is to experiment with alternative terminal conditions. This is the

approach that has been applied at a large scale in connection with the MERGE model.

To see how this works, consider Figure 6. This is based on the small scale numerical

model described in this paper, but the inlc parameter for the advanced technology has

been increased to $20 $/MWh to provide a clearer example.

For the initial challenger, the cumulative experience through 2100 is shown on the

vertical axis, Y(chl, 2100). The cumulative experience for the advanced challenger is

shown on the horizontal axis, Y(adv, 2100). Both of these variables are expressed in

trillion kilowatt-hours. The feasible combinations of these two variables are shown

within the shaded polygon. The lower edge of this area is the 45° line determined by

the cumulative carbon emissions constraint. The upper edge is implied by equalities in

the supply-demand balances, constraints (1). Again this is a 45° line. The leftmost
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edge is governed by the lower bound constraint on Y(adv,2100), and the rightmost edge

by the combined effect of the expansion and decline constraints.
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Figure 6: Feasible combinations of the two cumulative experience variables.

Now turn to Figure 7. This shows how the minimum present value of costs varies when

we alter the terminal value of the cumulative experience with the advanced technology.

It looks as though there is no local minimum. This appears to be a monotone decreasing

function, and the global minimum occurs when the advanced technology is brought in at

a maximum level.

However, when we take a closer look at the left-hand portion of this diagram (the

stacked column graph shown in Figure 8), there is a second local minimum. This

occurs at the lowest admissible value of Y(adv,2100). To avoid this local minimum, all

that we need to do is to introduce an arbitrary lower bound on this decision variable.

E.g., with a lower bound of 20, we rule out the local solution at 1, and the nonlinear
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solver CONOPT3 proceeds directly to the global optimum at the maximum value of

1912. (Again see Figure 7.)
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A similar procedure has been applied to MERGE, and it seems to work well. Caveat:

in MERGE, there is only one LBD technology for the electric sector and one for the

nonelectric sector. With several LBD technologies, these arbitrary bounds would have

to be selected with greater care. There would then be considerable value in developing

an algorithm such as BARON – one which is guaranteed to find a global optimum.

Until such a procedure is developed, it will be useful to employ the terminal conditions

heuristic.
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APPENDIX

A Small-Scale LBD Model for the Electricity Sector

Title: Learn-by-doing

option limrow = 100;
option limcol = 100;
option nlp = conopt2;

SETS

t time periods

/2000, 2010, 2020, 2030, 2040,
2050, 2060, 2070, 2080, 2090, 2100/

j technologies
/def, chl, adv/

PARAMETER elecdem(t) World electricity demand - tkwh - reference
case

* Based on M4-3dist.zip, 06-02-01.

/2000 12.735
2010 18.523
2020 24.420
2030 30.729
2040 41.698
2050 52.802
2060 65.155
2070 81.675
2080 98.667
2090 115.501
2100 133.561 /

PARAMETER tax(t) Global carbon tax - dollars per ton;

tax(t) = 0;

PARAMETER cost(j) Asymptotic unit cost - $ per thousand kwh

/ def 40
chl 30
adv 30 /

PARAMETER inlc(j) Initial learning cost - $ per thousand kwh

/ def 0
chl 50
adv 10 /

PARAMETER acc(j) Initial cumulative production - tkwh
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* Following parameter must be chosen thoughtfully. Compare with Y(t)
results.

/ def 1
chl 1
adv 1 /

PARAMETER lrn(j) Learning parameter

/ def -.2
chl -.2
adv -.2 /

SCALAR
cec carbon emissions coefficient in 2000;
cec = 2.166/12.735;

PARAMETERS
decf maximum decline factor - defender
pv(t) present value factor;

decf = (1/1.03)**10;
pv(t) = (1/1.05)**(10*(ord(t) - 1));

display decf, pv;

POSITIVE VARIABLES
X(j,t) electricity supplied by technology - tkwh
Y(j,t) accumulated electricity supplied by technology - tkwh
CARB(t) accumulated carbon supplied by fossil fuel defender -

billion tons

VARIABLES
PVC present value of costs - billion dollars

EQUATIONS
DEM(t) supply-demand balances - tkwh

DEC(j,t) decline constraints - tkwh

EXP(j,t) expansion constraints - tkwh

YDF(j,t) definition of accumulated electricity supplies - tkwh
CARBDF(t) definition of accumulated carbon emissions - billion

tons
PVCDF definition of present value of costs - billion

dollars;

* Supply-demand balances.
DEM(t).. sum(j, X(j,t)) =g= elecdem(t);

* Decline constraints.
DEC(j,t+1).. X(j,t+1) =g= decf * X(j,t);

* Expansion constraints.
EXP(j,t+1).. X(j,t+1) =l= .01 * elecdem(t+1)

+ 4 * X(j,t);

* Accumulated electricity supplies.
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YDF(j,t+1).. Y(j,t+1) =e= Y(j,t) + 5 * (X(j,t) +
X(j,t+1));

* Accumulated carbon emissions.
CARBDF(t+1).. CARB(t+1) =e= CARB(t)

+ 5 * cec * (X("def",t) + X("def",t+1));

* Present value of costs..

PVCDF.. PVC =e= sum (t, pv(t)* (

* Static costs
sum(j, cost(j) * X(j,t))

* Dynamic costs

+ sum(j, inlc(j) * X(j,t) * ( Y(j,t) /acc(j)
)**lrn(j) )

* Carbon taxes
+ tax(t) * cec * X("def",t)/elecdem("2000")

));

* Avoid nasty program calls.
Y.LO(j, t+1) = acc(j);

* Limit on accumulated carbon.
CARB.UP("2100") = 400;

* Initial conditions
X.FX("def","2000") = elecdem("2000");
Y.FX(j ,"2000") = acc(j);

CARB.FX("2000") = 0;

* Limits on advanced challenger
X.UP("adv", "2010") = 0;
X.UP("adv", "2020") = 0;
X.UP("adv", "2030") = 0;
X.UP("adv", "2040") = 0;

MODEL LBD /all/;

LBD.OPTFILE = 1;

SOLVE LBD minimizing PVC using nlp;

PARAMETERS
lrng(j,t) learning costs - mills per kwh
crtx(t) carbon taxes - dollars per ton;

lrng(j,t) = inlc(j) * (Y.L(j,t)/acc(j))**lrn(j);
crtx(t+1) = carbdf.m(t+1)/pv(t+1);

display lrng, crtx;
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