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Abstract

Two control systems with disturbances are considered. The first one is two-dimensional,
and its target set is an arc. The second of the two conflict control systems is scalar. Its
target set consists of two points. In the first system, no program control or Carathéodory
strategy guarantees the evasion, but there exists a discontinuous feedback control that
does. In the second system, evasion can be guaranteed by continuous strategies but not
by program controls; the best possible distance for the evader is given by a discontinuous
strategy and also by a multivalued upper semicontinuous strategy. In particular, this
shows the difference between the case of nonconvex target set considered in this paper and
the linear-convex case.
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Continuous Feedback in Some Differential Games*

S. A. Brykalov (brykalov@imm.uran.ru)

1 Introduction

Positional differential games can be used to model controlled systems in which the desired
result should be guaranteed for all possible disturbances. The dynamics of these systems is
assumed to be given by ordinary differential equations. Publications of many authors are
devoted to the theory of positional differential games, cf., in particular, [1-3] and references
therein. The following fact is known [1, §55; 2, §3; 4]. In a differential game with a convex
target set, linear dynamics, and a fixed terminal moment, if the evasion cannot be ensured
with the help of program controls, then neither can it be ensured by continuous strategies.
This statement can also be formulated for a payoff functional, in which case the target set
is replaced by the corresponding level set of the functional. It was shown in [5] that here
the assumption of convexity of the target set (respectively, the level set) can be relaxed.

Two differential games with nonconvex (in one of the games, even disconnected) target
sets are considered below. The differential equations that describe the dynamics of the
games are linear in the open-loop case. The equations become nonlinear when the feedback
is introduced into the systems. The evasion cannot be ensured by program controls in
either of the games. Continuous strategies can guarantee the evasion in one of the games
but fail to do that in the other one.

In particular, these differential games demonstrate some properties of continuous feed-
back in the case of nonconvex target set. Continuous strategies may turn out to be not
more efficient than program controls in some games (which is typical for linear-convex
case) but in others can be essentially more efficient.

At the end of the paper, the second of the considered two conflict control systems
is used to show that a certain condition is essential in two statements, which deal with
continuous feedback.

The following notation is used: R is the set of all real numbers; C0 denotes the space
of continuous functions; L1 is the space of Lebesgue measurable integrable functions; AC

is the space of absolutely continuous functions. Program controls are assumed to be
Lebesgue measurable functions.

2 An Arc as a Target Set

This section deals with a planar problem of conflict control with an arc as the target set. It
will be shown that program controls do not ensure the evasion in this problem. A feedback
control will be constructed that guarantees the evasion and uses but one measurement of
the phase vector. On the basis of Schauder fixed point theorem, it will be proved that

*This research was partially financed by the Russian Foundation for Basic Research under grant
00-01-00367.
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in the considered problem, continuous in the phase vector strategies do not provide the
evasion.

Problem 1. A two-dimensional vector x = (x1, x2) is changing according to the system
of differential equations

ẋ1 = v, ẋ2 = 2(1− t)u (1)

on the time interval t ∈ [0, 1]. Here u, v are controls of two players and are chosen in
[0, 1]. The function x : [0, 1] → R2 is absolutely continuous and satisfies the differential
equations almost everywhere. The initial condition has the form

x(0) = 0. (2)

The target set M is given by

(x1 − 1)2 + (x2 − 1)2 = 1,

x1 ≤ 1, x2 ≤ 1.

Thus, M is a quarter of a circumference of unit radius. The function u(t) is Lebesgue
measurable. The problem consists in choosing the control v to ensure the evasion x(1) �∈M

whatever the disturbance u(t) might be.
To show nondegeneracy of the problem, one should, on the one hand, check that

program controls v = v(t) cannot guarantee the evasion, and on the other hand, should
construct a feedback control that ensures the evasion. In the case of Problem 1, this
feedback control will turn out to be described by a discontinuous mapping.

2.1 Program controls in Problem 1. One can show that program controls v = v(t) do
not guarantee the evasion even if u is chosen as a constant.

Proposition 1. For any measurable function v : [0, 1]→ [0, 1], there exists a constant
u ∈ [0, 1] such that the corresponding solution x of the initial value problem (1),(2) satisfies
the condition x(1) ∈M .

Really, it suffices to take

u ≡ 1−

√√√√√√1−


1−

1∫
0

v(τ)dτ



2

.

Then u ∈ [0, 1], and for the solution of problem (1),(2) one has x1(1) =
1∫
0
v(τ)dτ , x2(1) = u.

Thus, (x1(1)− 1)2 + (x2(1)− 1)2 = 1, x1(1) ≤ 1, x2(1) ≤ 1, and consequently x(1) ∈ M .
Proposition 1 is proved.

2.2 A method of evasion. In Problem 1, the control v can be formed with the help of a
simple feedback rule that ensures the evasion and uses only one measurement of the phase
vector x at the moment t = 1/2.

Proposition 2. Let v be chosen in the form

v =




0, 0 ≤ t < 1/2,
0, 1/2 ≤ t ≤ 1, x2(1/2) ≤ 1/4,
1, 1/2 ≤ t ≤ 1, x2(1/2) > 1/4.

(3)

Then, for any measurable u : [0, 1]→ [0, 1], the corresponding solution of the initial value
problem (1),(2) satisfies the inequality∣∣∣∣1−

√
(1− x1(1))2 + (1− x2(1))2

∣∣∣∣ > 9

100
. (4)
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Actually, it will be shown that the control method described in Proposition 2 ensures
the distance to the target set somewhat larger than 9/100.

Proof of Proposition 2. If x2(1/2) ≤ 1/4, then, according to (3), v = 0 for all t ∈ [0, 1],
and so x1(1) = 0. Further,

x2(1) = x2(1/2) + 2

1∫
1/2

(1− τ)u(τ)dτ ≤

≤ 1/4 + 2

1∫
1/2

(1− τ)dτ = 1/2.

Thus, √
(1− x1(1))2 + (1− x2(1))2 ≥

√
5/2 > 1.09,

and inequality (4) is valid. In case x2(1/2) > 1/4, formula (3) implies v = 0 for t ∈ [0, 1/2)
and v = 1 for t ∈ [1/2, 1]. So, x1(1) = 1/2. As u is nonnegative, one has x2(1) ≥ x2(1/2) >
1/4. Consequently, √

(1− x1(1))2 + (1− x2(1))2 <
√
13/4 < 0.91.

Inequality (4) holds again. Proposition 2 is proved.
The simple feedback control method described by (3) is not optimal. For instance, by

optimizing the constant 1/4 in (3), the guaranteed result can be somewhat improved.
A control law that provides the evasion can be realised in the form of positional strategy

in accordance with [1] by employing stepwise schemes with mesh refinement. Indeed, the
feedback control method given by (3) is compatible with any positional strategy of the
player u, which excludes the guaranteed reaching of the target set. Due to the theorem
on alternative [1, §17], there exists a positional strategy of the player v that ensures the
evasion. These considerations are similar to those in [2, p.23; 1, p.243].

2.3 Carathéodory strategies. One can show that in Problem 1 it is impossible to
ensure the evasion by means of strategies v = v(t, x1, x2) that satisfy the Carathéodory
conditions, i.e., such strategies that v(t, x1, x2) is continuous in x1, x2 for almost any fixed
t and is Lebesgue measurable in t for any fixed x1, x2. In particular, this class contains
strategies described by continuous functions. In the case of Carathéodory strategies, one
can employ absolutely continuous solutions, which satisfy the differential equations almost
everywhere. A solution for a fixed pair of functions v(t, x1, x2), u(t) is not necessarily
unique. It is natural to say that a strategy v(t, x1, x2) ensures the evasion if for any
measurable disturbance u(t) ∈ [0, 1] and any absolutely continuous solution x(t) of the
initial value problem (1),(2) where v = v(t, x1, x2), u = u(t), one has x(1) �∈M1.

Similarly to Proposition 1, the required property here can be established even in case
of constant u.

Proposition 3. Let a function v : [0, 1]×R2 → [0, 1] satisfy the Carathéodory condi-
tions. Then there exists a constant u ∈ [0, 1] such that the initial value problem (1),(2)
with v = v(t, x1, x2) has at least one solution x for which x(1) ∈M .

Proof of Proposition 3. One needs to show the existence of an absolutely continuous
function x : [0, 1]→ R2 and a number u ∈ [0, 1] such that

ẋ1 = v(t, x1, x2),

ẋ2 = 2(1− t)u,
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x(0) = 0,

(1− x1(1))
2 + (1− x2(1))

2 = 1.

The first three equalities imply x1(1) ≤ 1, x2(1) ≤ 1, and x2(t) = t(2− t)u. Substituting
this expression in the last of the equalities, one can see that u = 1 −

√
1− (1− x1(1))2.

Excluding x2, u from the system, one obtains the following initial value problem for a
scalar functional differential equation:

ẋ1(t) =

= v

(
t, x1(t), t(2− t)

(
1−
√
1− (1− x1(1))2

))
,

x1(0) = 0.

It suffices to show the solvability of this problem, which will imply the existence of x, u
with the required properties.

Denote by S the set of all functions z : [0, 1]→ [0, 1] that satisfy Lipschitz condition
with the coefficient 1. According to Arzelá-Ascoli theorem, the set S is a compactum in
the space of continuous functions. Besides that, S is convex. Denote

F (z(·))(t) =

=

t∫
0

v

(
τ, z(τ), τ(2− τ)

(
1−
√
1− (1− z(1))2

))
dτ.

The function F (z(·))(t) of the argument t satisfies Lipschitz condition with the coefficient
1 because 0 ≤ v ≤ 1. Note that F maps the set S into itself and is continuous in the
norm of the space of continuous functions. Due to the theorem of Schauder, the mapping
F has at least one fixed point in the set S. Thus, the above-given initial value problem
for functional differential equation has a solution, and Proposition 3 is proved.

Remark 1. Let the strategy v = v(t, x1, x2) be such that for any fixed number u ∈ [0, 1],
a solution to initial value problem (1),(2) is unique. In particular, this is so if the function
v(t, x1, x2) satisfies a condition of Lipschitz. Then, in the proof of Proposition 3, one can
do without the fixed point theorem of Schauder. It suffices to use the simple fact that a
scalar continuous function defined on an interval vanishes provided it takes values of both
signs. One can proceed further by approximating a Carathéodory strategy by Lipschitz
strategies.

Remark 2. If usual restrictions are imposed on a differential game, and the initial
point is fixed, then all the possible trajectories do not leave a bounded region of the phase
space. One can supplement the target set by an additional point that does not belong to
the above-named bounded region. If the initial target set is convex, one obtains a new
target set, which is neither convex nor connected. Obviously, the differential game with
the new target set inherits all the essential properties of the initial game and is in fact
equivalent to it. This simple consideration can be used to construct formal examples of
differential games with various properties whose target sets are not convex. However, the
new target set is nonconvex just formally, as the part of the target set which is actually
used in the game remains convex.
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3 A Two-Point Target Set

In the conflict control problem considered in this section, the target set consists of two
points. The evasion in this problem can be ensured by some continuous strategies but not
by program controls. The maximal possible distance is provided by an upper semicontin-
uous multivalued strategy and by a discontinuous strategy, but any smaller distance can
be delivered by a continuous one-valued strategy. In particular, the considered problem
gives a counterexample that shows that in the conditions of some results by the author on
continuous strategies, one of the main assumptions cannot be omitted.

Problem 2. Consider a control system whose motion can be described by a scalar ab-
solutely continuous function x(t) of the argument t ∈ [0, 1]. Let x(t) satisfy the differential
equation

ẋ = u+ v (5)

for almost all t ∈ [0, 1]. The initial state is zero:

x(0) = 0. (6)

The disturbance u and control v are chosen in the closed intervals:

u ∈ P = [−2, 2], v ∈ Q = [−1, 1].

The target set
M1 = {−2,+2}

consists of two points. The control v is formed with the purpose to ensure the evasion
x(1) /∈M1 for any measurable disturbances u : [0, 1]→ P .

3.1 Program controls in Problem 2. One can prove the following
Proposition 4. Program controls v : [0, 1]→ Q cannot guarantee the evasion in Problem

2.
Indeed, for a fixed measurable function v(t), one can find some u ≡ const ∈ P such

that the corresponding trajectory ends in the target set x(1) ∈M1. Denote w =
1∫
0
v(τ)dτ .

Then x(1) = w + u. In case w �= 0 take u ≡ (2 − |w|)sgnw. One has |u| = 2 − |w| < 2,
and so u ∈ P . Besides that, x(1) = 2sgnw ∈M1. In case w = 0 choose an arbitrary fixed
u ∈ M1 ⊂ P . Then x(1) = u ∈ M1. Thus, no program control v(t) ensures the evasion,
and Proposition 4 is proved.

It is interesting to note that in the proof of Proposition 4, only constant disturbances
u are needed. The situation is the same as with Propositions 1 and 3.

3.2 Strategies of evasion. In the present subsection, feedback strategies are given
that guarantee evasion in Problem 2. These include a family of continuous strategies,
a discontinuous strategy, and an upper semicontinuous multivalued strategy. As in the
corresponding considerations in Section 2, here one can directly substitute a strategy
(including a discontinuous strategy) into the right-hand side of the differential equation
and consider absolutely continuous solutions that satisfy the obtained differential equation
or inclusion almost everywhere (or even everywhere). This can be done here because the
functions v(x) employed are of sufficiently simple form.

First, consider some estimates.
Lemma. Let a number ε ≥ 0 and a function v(x), x ∈ R, be fixed such that

v(x) = −sgnx for |x| > ε. (7)
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A measurable function u : [0, 1]→ P is given. Let x : [0, 1]→ R, x(·) ∈ AC, satisfy the
initial value problem

ẋ = u(t) + v(x), x(0) = 0. (8)

Then, for any t ∈ [0, 1], the inequality

|x(t)| ≤ 1 + ε (9)

holds.
In Lemma, no conditions are imposed on v(x) for |x| ≤ ε. Here the function might be

discontinuous and multivalued provided it makes sense to consider absolutely continuous
solutions to the initial value problem (8).

Proof of Lemma. Fix an arbitrary point t = t1 in the interval [0, 1]. In the proof
of the required inequality (9) at this point, one obviously can restrict oneself to the case
|x(t1)| > ε. The values of the continuous function |x(t)| for t ∈ [0, t1] range from zero to
a number larger than ε. So, there exists some s ∈ [0, t1] for which |x(s)| = ε. The set
of all s ∈ [0, t1] with this property is nonempty, closed, and bounded. Denote the largest
number in this set by s1. Thus, 0 ≤ s1 < t1 ≤ 1, |x(s1)| = ε, and for s1 < t ≤ t1 one has
|x(t)| > ε. If the inequality d

dt |x(t)| ≤ 1 holds for almost all t ∈ [s1, t1], then

|x(t1)| = |x(s1)|+
t1∫
s1

d

dτ
|x(τ)|dτ ≤

≤ ε+ t1 − s1 ≤ 1 + ε;

that is, (9) is true at t1. It remains to estimate d
dt |x(t)|. Condition (7) implies that for

s1 < t ≤ t1 one has v(x(t)) = −sgnx(t); thus, v(x(t))sgnx(t) = −1. Due to (8), for almost
all t ∈ [s1, t1], one has

d

dt
|x(t)| = ẋ(t)sgnx(t) =

= (u(t) + v(x(t)))sgnx(t) = u(t)sgnx(t)− 1.

The last value is not larger than 1 because |u| ≤ 2. Lemma is proved.
If ε > 0, then the function v(x) given by (7) can be defined for |x| ≤ ε so that one

obtains a one-valued continuous strategy, for example, the following strategy:

v(x) =

{
−x/ε, |x| ≤ ε,

−sgnx, |x| ≥ ε.
(10)

According to Lemma, this strategy ensures that inequality (9) holds. In case ε < 1,
inequality (9) enables one to estimate from below the distance to the target set. Thus,
one obtains

Proposition 5. For ε ∈ (0, 1), the continuous strategy (10) ensures in Problem 2 that
the distance from x(1) to the target set M1 is not smaller than 1− ε.

Assume now ε = 0. Then (7) takes the form:

v(x) = −sgnx for x �= 0. (11)

Any number from [−1, 1] can be assigned to be v(0). In virtue of (9), this strategy ensures
that the inequality |x(t)| ≤ 1, t ∈ [0, 1], is true for an arbitrary solution of the initial value
problem (8) that corresponds to an admissible u(t). Thus, the strategy (11) guarantees
that the distance from the point x(1) to zero is no larger than 1, and so, the distance from
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this point to the target set M1 is not smaller than 1. This number is the best possible for
the evader. To check that, one can take a constant control u ≡ u0 with |u0| = 2.

The function (11) is discontinuous whatever number is chosen as its value at zero.
However, taking the set Q = [−1, 1] for the value of (11) at zero, one obtains an upper
semicontinuous multivalued strategy:

V (x) =

{
[−1, 1], x = 0,
−sgnx, x �= 0.

(12)

So, the conclusion follows:
Proposition 6. The discontinuous one-valued strategy (11) and the upper semicontin-

uous multivalued strategy (12) ensure in Problem 2 that the distance between x(1) and
the target set M1 is not smaller than 1. This distance is the best possible for the evader.

3.3 Two results on continuous strategies. This subsection renders in brief two results
from [5] which are used in the next subsection. More details can be found in the article
cited.

Fix real numbers t0 < ϑ and integers n, p, q ≥ 1. The functional spaces used in this
subsection consist of functions that are defined on the interval [t0, ϑ] and take values in the
n-dimensional space Rn unless something different follows from the context. Nonempty
closed P ⊂ Rp, Q ⊂ Rq are given. The set P is assumed to be bounded. Let a function
f : [t0, ϑ]×Rn × P ×Q → Rn satisfy the Carathéodory conditions. For a fixed function
χ : [t0, ϑ] → [0,∞), χ(·) ∈ L1, almost all t, and all u ∈ P , v ∈ Q, x, the estimate holds:
|f(t, x, u, v)|n ≤ χ(t)(1+ |x|n). Here | · |n denotes a fixed norm inRn. A closed set M ⊂ C0

and a vector x0 ∈ Rn are given. All these requirements are assumed in both propositions
of this subsection.

For a multivalued mapping [t0, ϑ] � t �→ W (t) ⊂ Q, denote by Φ(W (·)) the set of all
x(·) ∈ AC that satisfy the initial value problem ẋ(t) ∈ f(t, x(t), P,W (t)), x(t0) = x0. Here
the differential inclusion is valid almost everywhere on [t0, ϑ], and f(t, x(t), P,W (t)) =
{f(t, x(t), u, v) : u ∈ P, v ∈ W (t)}. Sets Φ(w(·)) for one-valued functions w(·) will be
used also.

Denote by Λ the set of all multivalued maps [t0, ϑ]× C0 � (t, z(·)) �→ V (t, z(·)) ⊂ Q

that satisfy the following properties: For almost all t and all z(·), the set V (t, z(·)) is
nonempty, closed, and bounded; t �→ V (t, z(·)) is measurable for any fixed z(·); besides
that, z(·) �→ V (t, z(·)) is upper semicontinuous for almost any fixed t.

When employing acyclic sets below, one can use Vietoris homology or Alexandroff-Čech
homology.

Proposition 7. Let Ω be a family of multivalued maps of the form [t0, ϑ] � t �→
W (t) ⊂ Q. For any W (·) ∈ Ω, almost all t, and any x ∈ Rn, the set f(t, x, P,W (t)) is
convex. For any W (·) ∈ Ω, the intersection Φ(W (·)) ∩M ⊂ C0 is nonempty and acyclic.
A multivalued map (t, z(·)) �→ V (t, z(·)) belongs to Λ. Besides that, t �→ V (t, z(·)) belongs
to Ω for any fixed z(·). Then there exists an absolutely continuous x(·) ∈ M such that
x(t0) = x0 and the inclusion ẋ(t) ∈ f(t, x(t), P, V (t, x(·))) holds for almost all t ∈ [t0, ϑ].

Consider a corollary for a one-valued strategy:
Proposition 8. Let the set f(t, x, P, r) be convex for almost all t ∈ [t0, ϑ] and all x ∈ Rn,

r ∈ Q. For any measurable function w : [t0, ϑ] → Q, the intersection Φ(w(·)) ∩M ⊂
C0 is nonempty and acyclic. The map v : [t0, ϑ] × C0 → Q is such that v(t, z(·)) is
measurable in t for any fixed z(·) and continuous in z(·) for almost any fixed t. Then
one can find an absolutely continuous x(·) ∈ M such that x(t0) = x0 and the inclusion
ẋ(t) ∈ f(t, x(t), P, v(t, x(·))) is true for almost all t ∈ [t0, ϑ].
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3.4 Problem 2 as a counterexample. In Propositions 7 and 8, the assumption that the
intersection is acyclic cannot be omitted. The corresponding counterexample is provided
by Problem 2.

It can be seen from Subsections 3.1 and 3.2 that in Problem 2, continuous strategies
and upper semicontinuous multivalued strategies are more efficient then program controls.
Consequently, here one cannot apply Proposition 8 and Proposition 7, which give sufficient
conditions for the opposite situation. The reasons for that are discussed below.

Using the notation of Subsection 3.3, take t0 = 0, ϑ = 1, x0 = 0, p = q = n = 1,
f = u + v, χ ≡ 3. Assume that M is the set of all continuous functions x(·) such that
x(1) ∈M1. As M1 is closed inR, one can see that M is closed in the space C0. Proposition
4 implies that Φ(w(·))∩M is nonempty for admissible w : [0, 1]→ Q.

For the case of continuous strategies (10), all the conditions of Proposition 8 are valid
except for the assumption that Φ(w(·))∩M ⊂ C0 is acyclic for any measurable w : [0, 1]→
Q. One can show that this assumption is false for w ≡ 0. Really, the set Φ(0) consists of
all solutions to the initial value problem ẋ(t) ∈ P , x(0) = 0. Thus, Φ(0) is the set of all
x : [0, 1] → R that satisfy the condition of Lipschitz with the coefficient 2 and emanate
from the origin x(0) = 0. As M1 consists of two points ±2, the intersection Φ(0)∩M is the
set H that consists of two linear functions x(t) = ±2t. Indeed, for x(·) ∈ Φ(0)∩M one has
2 = |x(1)| = |(x(t)−x(0))+(x(1)−x(t))| ≤ |x(t)−x(0)|+ |x(1)−x(t)| ≤ 2t+2(1− t) = 2,
and all these inequalities turn out to be equalities. So, |x(t)| = 2t. Besides that, H ⊂ C0

is homeomorphic (and even isometric) to the two-point set M1. Thus, H is not acyclic.
For the same reason, one cannot apply Proposition 7 in the case of multivalued strategy

(12). Really, by substituting x(t) ≡ 0 into (12), one obtains a multivalued map W (t) ≡ Q,
which should belong to the family Ω of Proposition 7. The set X = Φ(Q) ∩M consists
of all solutions to the initial value problem ẋ(t) ∈ P + Q, x(0) = 0 with an additional
condition x(1) ∈M1. Thus, X is the family of all x : [0, 1]→ R that satisfy the condition
of Lipschitz with the coefficient 3 and the relations x(0) = 0, x(1) ∈M1. One can consider
X ⊂ C0 as a metric space. The set H , which was introduced above, is a subset ofX . It was
shown that H ⊂ C0 is not acyclic. It suffices to check that H is a deformation retract ofX .
From here it follows that X is also not acyclic. Denote γ(λ, x(·))(t) = (1−λ)x(t)+λtx(1).
The map γ : [0, 1] × X → C0 is continuous. Besides that, γ(0, x(·))(t) = x(t) is an
identity mapping in x(·), and γ(1, x(·))(t) = tx(1) takes values in H and is identical on
H . It only remains to show that γ(λ, x(·)) ∈ X for x(·) ∈ X . Indeed, γ(λ, x(·))(0) = 0,
γ(λ, x(·))(1) = x(1) ∈ M1. The condition of Lipschitz with the coefficient 3 is also true
as |γ(λ, x(·))(t2)− γ(λ, x(·))(t1)| ≤ (1− λ)|x(t2)− x(t1)|+ λ|x(1)(t2 − t1)| ≤ (3(1− λ) +
2λ)|t2 − t1| ≤ 3|t2 − t1|. Finally, one can see that Proposition 7 cannot be applied to the
case of multivalued strategy (12) because the assumption of the intersection being acyclic
does not hold.

4 Conclusion

Properties of continuous strategies in differential games with nonconvex target sets differ
essentially from those in the case of convex target sets and linear dynamics. Concrete ex-
amples can be given to demonstrate that. However, these properties can be similar to those
in the linear-convex case provided some assumptions are imposed on the corresponding
sets of trajectories of the considered controlled system with disturbance.
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