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PREFACE

This paper is part of a larger task in Systems and Decision Sciences
that is concerned with institutional structures and their role in shaping
decisions. A particular problem in this field is to characterize the formal
processes or rules by which groups of decision makers should choose among
available alternatives. Typically, these rules are formulated as specific
voting procedures. This article examines certain common-sense properties
of voting rules and describes a particular rule that is shown to be the unique
one satisfying these properties. The first half of the paper introduces
the basic concepts and summarizes the results; the second half is devoted
to a detailed proof, using convex analysis, of the principal theorem.
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SUMMARY

Voting rules on many alternatives may be broadly divided into two
classes: those that use a scheme of “weighting” the alternatives to deter-
mine their overall order of desirability, and those that use binary compar-
ison to ascertain whether there is an alternative (called a Condorcet alterna-
tive) that is able to defeat every other alternative by a simple majority. The
first approach is identified with Borda, the second with Condorcet. In this
paper it is shown that the basic desirable property of weighting systems —
namely “consistency” under aggregation — can be achieved without sacri-
ficing the common-sense property of choosing a Condorcet alternative
whenever one exists. In fact, these two properties, together with the
requirement of “neutrality” on alternatives, essentially determine a unique
rule known in the literature as Kemeny’s rule.
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A Consistent Extension of Condorcet's Election Principle

1. INTRODUCTION

In France during the latter half of the eighteenth century,
the problem of designing voting rules for an assembly began to
be studied systematically for the first time. Two of the major
contributors were Jean-Charles de Borda and Marie J.A.N. Caritat,
Marquis de Condorcet, both members of 1'Académie Royale des
Sciences. From these two men sprang two streams of thought
on the problem of collective decision making that persist to
the present day. 1In 1770, Borda [4] read a paper before the
Academy in which he proposed the following method, which he
called "election by order of merit": for each voter's
announced {(linear) preference order on the alternatives, a score
of 0 is assigned to the least preferred alternative, 1 to the
next-to-least preferred, and so forth; then the total score of
each alternative is computed and the one with the highest score is
declared the winner. Condorcet [6] proposed instead that if
there is some alternative (the Condorcet alternative) that de-
feats every other in pairwise simple majority voting, then that
alternative should be selected. A difficulty with Borda's rule is
that it may not result in the choice of the Condorcet alternative

(as in Example 1 where a, is the Condorcet alternative and ayy the

1
Borda choice); but a difficulty with Condorcet's principle is
that, 1f a Condorcet alternative does not exist, it is unclear

which alternative should be chosen.

Example 1.

Number of voters (6) (4) (1)
a4 a2 a3
a2 a3 34
a, a, a,



The challenge of combining the regularity of Borda's ap-
proach with Condorcet's principle into a unified method is a
long-standing problem in the theory of elections. Black [3]
proposed that the Condorcet alternative be chosen when one
exists, and otherwise that the Borda method be reverted to.

This somewhat ad hoc proposal avoids the fundamental issue of
choosing properties that are natural in the context of election,

and then asking what (if any) methods have these properties.

In this paper we shall identify certain basic properties
suggested by the Borda and the Condorcet approaches, respective-
ly, and show that these properties uniquely determine a method

first proposed by John Kemeny [10, 11].

Let A = {a1,a2,...,am} be a set of m alternatives under
consideration, W = {0,1,2,...} the names of the possible voters.
A preference order on A is simply a linear order. We will de-
note such an order by the sequence 0 = (ai1,a12,...,aim) where aj
is most preferred, and so forth. L(A) will denote the set of

all m! linear orders on A.

For any (finite) electorate MgN, a profile on M is a spe-
cification of the preferences of the voters in M, i.e. a func-
tion ¢ : M+ L(A). Let ¢ be the set of all possible profiles
for the given A. For any oe L(A) and ¢ ¢ ¢, n0(¢) will denote

the number of voters in ¢ having preference order o.

A preference function (PF) is a function f that associates
with each profile ¢ e ¢ a nonempty set of preference orders
f(¢) €SL(A) representing the consensus preference orders for
the given electorate. (Normally, if there are no ties, f(¢)
will be a unique preference order.) A choice funetion (CF)
is a function g from ¢ to the nonempty subsets of A; g(d) re-
presents the "winning" (i.e. the most preferred) alternative(s)
for the given electorate. To each PF f there corresponds in a

natural way a CF £ defined by

(1) £(¢) = {a;eA:a, is most preferred for some ge £(¢)}



If f(¢) depends only on the numbers n0(¢) for each ¢, then
f is said to be anonymous. Similarly, if f is symmetric in its
treatment of alternatives, then f is »meutral, Both of these
are standard assumptions since Arrow [1], and a PF (or a CF) sat-

isfying both is said to be symmetric [14].

2. CONSISTENCY AND A GENERALIZATION OF BORDA

Borda's "order of merit" method may be generalized to the
situation where the scores awarded to alternatives are not
necessarily evenly spaced. In general, given s = (s1,52,...,
eR™ and profile ¢ we may assign a score of s_ to each voter's

m
to each next-to-the-

s _)
m
least-preferred alternative, a score of S -1

least preferred alternative, and so forth. If the total score

of alternative a; is denoted by si(¢), then we may define a PF
s

f~ by

(2) (a, ,a; ,...,a, )ef2(¢) iff s, (¢) C(9) > .
2 lm 19 1, m

v
w
lv
.
.
v
0
-
.

Moreover, if ties occur relative to s (i.e., if several
distinct preference orderings result from (2)) then we might use
another scoring vector t,EP@ to resolve these ties; thus we de-

fine the composition fg()f§(¢) by

(3)  (a, ,a, ,.--,a;, ) eES0£2(¢) Liff s, (6) 2 s, (4) 2...2s. ()
2 1m 1 2 m

and for all k<&, s. (¢) = s, (¢) implies t, (¢) 2> t. (¢).

i i i i

k L k L
Any PF £2 (or composed series of such functions) and the cor-
responding CF is called a scoring function [14,16). Borda's
method is a particular scoring function in which no provision
is made for resolving ties; another example is the method of

plurality veoting (take s = (1,0,...,0)).

A natural property of voting rules, which in particular is

enjoyed by scoring rules, is the following. If two committees



meeting separately arrive at the same consensus ordering (using
some f), then meeting together this should still be their consen-
sus. lore precisely, we say that a PF (or a CF) f is consistent
[14,15,16] if whenever ¢ and ¢' are profiles on disjoint elector-
ates such that f£(¢) N £(¢') F ¢; then f(¢+¢') = £(¢) N £(s').
(Here ¢ + ¢' is the profile defined by the union of the two elec-
torates.) Thus, if ties occur in the separate committees, then
consensus rankings consist precisely of the ties common to both.
It can be shown that any scoring PF f is consistent, as is the
corresponding CF £. 1In fact, consistency turns out to be the
fundamental property characterizing scoring functions when re-

garded as choice functions.

(4) Theorem 1 [16]. A choice function is a scoring function

1f and only <f it s symmetric and consistent.

Notice, however, that if f is a consistent preference func-
tion, then f is not necessarily a consistent choice function.
For example, with three alternatives ay, ay, ag, it is possible
that two committees agree on their first choice (say a1) but
differ on their ranking of the remaining two; in this situation
consistency for a preference function makes no reguirements on
the consensus preference order for the two committees together,
while a consistent choice function requires that the first choice
for the merged committees be a.

Intuitively, consistency for preference functions seems
to be a less stringent requirement than consistency for choice
functions. However it should also be noticed that this is not,
strictly speaking, a weaker concept, since it is possible that

A

f is consistent while f is not. For example, define the PF f

on three alternatives such that o = (a, ,a. , a, ) ¢ £(¢) iff a.
i,"71, i, i,

has the highest Borda score, and no((b)2 + nT(zb)2 > no.(tb)2

2
+ n_,(¢)" where o' = (a, ,a, ,a, ), T = (a, ,a, ,a, ), and
1 1 1

,.[-I
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o
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2. THE CONDORCET PROPERTY

Given a profile ¢, let nij(¢) be the number of voters pre-
ferring a; to aj minus the number preferring aj to aj - Condor-
cet's proposal was that any alternative a; such that nij(¢) >0
for all j # i (i.e., that would defeat any other alternative in
pairwise simple majority voting) should be the choice of the
group, or, in the case of a preference functicn, the most-pre-
ferred alternative. A parallel concept is that if a; is an al-
ternative such that nij(¢) < 0 for all j # i (i.e., it would be de-
feated by every other alternative), then a; should be the Teast-
preferred alternative. Suppose now that a; is an alternative
such that nij(¢) = 0 for all j # i. We call a, a quasi-Condor-
cet alternative for ¢. (Fishburn [8] uses this term somewhat
differently.) By a natural extension of Condorcet's principle,
a quasi-Condorcet alternative is evidently no better than, and

also no worse than, any other alternative.

Formally, we say that a PF f is quasi-Condorcet if for

any ¢ e ¢ and any quasi-Condorcet alternative a; for ¢

(5) (...aj,ai...)ef(cb) iff (...ai,aj,...)‘ef(cb) for all § # i

In general, a Condorcet alternative is any alternative a;
such that nij(¢) > 0 for all j # i. We say that a PF f is

Condorcet if

(6) nij(¢) > 0 implies not (...aj,ai...) e £ (¢)

and

(7) nij(¢) = 0 implies (...ai,aj...) e £ (¢) iff (...aj,ai‘.-)
e f (¢).

Similarly, we say that a choice function g is Condorcet if
g(¢) is precisely the set of Condorcet alternatives whenever
such exist. (This definition corresponds to what Fishburn [7]
calls a "strongly Condorcet" CF.) Further, it should be noted
that the Condorcet property defined above for preference



functions is somewhat stronger than that used in [12].)

Example 2.

Consider the following profile on two voters and three

alternatives.
(ay.a,,a3)
[
(ayrasz,ay)
where a, is a quasi-Condorcet alternative. If f is any PF such

that a, is always preferred to a, in a collective preference,

2 3
then for f to be Condorcet we must have

f(¢) = {(a1la2Ia3) ’ (a21a1ra3) I(a2Ia3la1)}

that is, a, is as good--and as bad--as any other alternative.

A very special case of the Condorcet situation occurs when-
ever all voters have the same preference order, say ¢. Then ¢
is a Pareto ordering and a PF is said to be Pareto if it always
chooses the Pareto ordering when one exists. (A still weaker
condition, which implies the Pareto property in the presence of
consistency, is the following: a PF is faithful if the consensus
order is the same as the individual order when society consists
of a single individual. This concept was first introduced in
1151.)

We say that a PF (or a CF) f is consistent on a subdomain
¢'S ¢ if whenever ¢',¢" e ¢', and ¢' + ¢" is defined and contained

in ¢'; then

(8) £(¢")NE(P") F ¢ implies £(¢'+¢") = £(¢")N£(™)



Let I be the subdomain of profiles for which a Condorcet
alternative exists, that is

(9) T = {¢e d: nij(¢);:0 for some i and all j # i}

It is easy to see that any Condorcet choice function is
consistent on the domain T'. One of the difficulties in trying
to find a natural way to extend Condorcet's principle to the
domain ¢ - T (which is nonempty if m > 3) is that it is impossible
to find such an extension which is consistent as a choice func-
tion.

Theorem 2. There is no Condorcet choice function g and

. - .
domain A ¥ T such that g is consistent on A.

Proof.+ Let m be the number of alternatives. For m = 1 or
2, T = ¢ and there is nothing to prove.

Consider then the case m > 3, and let A 2 ', ¢ ¢ A-T.
Suppose, by way of contradiction, that there exists a Condorcet,
consistent choice function g defined on A. Without loss of
generality, let a, € g(é*). Since o¢* £ T, a, is not a Condorcet
alternative, and there is a j # 1 such that nj1(¢*) > 0; say
without loss of generality j = 2. Let n be the number of voters
in ¢*. Define a new profile ¢ on 2n-+n21(¢*) voters such that
n-+n21(¢*) voters have preference order (a1,a2,a3,...,a ) and

m
n voters have preference order (a2,a1,a3,...,am). Evidently a,

is a Condorcet alternative for ¢, so ¢ € T and y{¢9) = a,. On

the other hand, (¢*¥+¢) € T and g{¢* +¢) = {a1,a2}. But consis-

tency implies that g(¢* +¢) = {a1}, a contradiction. Notice,

moreover, that if A is homogeneous (i.e. ¢* + ¢* = 2¢* € A), then
g(2¢*%) = g(¢*) = faj} ,

whereas 2¢* + ¢ ¢ T and g(2¢* + ¢) = {az}, contradicting an

even weaker version of consistency.

tThe authors wish to thank Bengt Hansson for suggesting this
simple way of proving Theorem 2.



(10) Corollary. For m > 3, no scoring CF is Condorcet.

Theorem 2 does not imply, however, that consistency for pre-
ference functions is incompatible with Condorcet's principle. We
shall in fact show that there is a preference function with these
two properties, and that subject to neutrality, it is unique.

4. THE KEMENY FUNCTION

As an example of axiomatic techniques applied to the social
sciences Kemeny [10] introduced a PF (described in greater detail
in Kemeny and Snell {11]) that turns out to play a special role
here. The problem defined in [10] is that of finding a consensus
preference order for alternatives being considered by a group
of "experts". The approach is to reduce the problem "to one
which is analogous to those of classical statistics"™ [11, p. 9]
by introducing the idea of a distance measure between any two
preference orders. The object then is to axiomatize some mea-
sure of distance uniquely. This is achieved by the usual sort
of geometric conditions (including the triangle inequality), a
certain notion of "betweenness", a kind of independence of ir-
relevant alternatives condition, and by a normalization assumption.
The result of these axioms is the distance measure, which can be

described as follows.

With each preference order ce L(A) associate an mxm skew
symmetric matrix Xo, whose rows and columns are labelled by the
alternatives, such that the (ai,aj) entry, xgj, is 1 if a; is
preferred to aj in o, -1 if aj is preferred to a;, and 0 if
i=73. x’ is called the election matrixz for o. Similarly, if
¢ is any non-null profile, the election matrix for ¢ is defined
to be

x? - I n () x7 .
o
If ¢ is null then set x¢ = 0. Notice that the (ai,aj) entry of
x? is precisely nij(¢)-



The Kemeny distance between any two permutations ¢ and 1

is given by

o T
(11) d(¢,1) =% i§j|xij - xijl
The difficulty with this approach is: having achieved the
distance measure, it is not clear how to use it to find a con-
sensus. In other words, given a profile ¢, what is the ordering
that can be said to be "least-distant" from the individuals'
orderings in ¢? Xemeny proposes two alternate solutions from

statistics: the median and the mean.

Given ¢, a median ranking is defined to be any T such that
(12) T minimizes ] n_(¢)d(o,T) .
o
A mean ranking is any 1 such that
(13) T minimizes ] n_(¢)d°(o,1) .
o

The reader may verify that in Example 1 the mean is (ay,
a1,a3) (the same as the Borda result), whereas the median is

(a1,a2,a3).

Kemeny left the problem of which solution to choose unre-
solved. But from the standpoint of collective decision making
there is ample reason to prefer the median, since it turns out
that the median consensus leads to a Condorcet method, while the
mean does not. The latter statement follows from Example 1. To
see the former, we re-express the Kemeny function in the follow-

ing way. For any preference orders ¢ and T,

(14) dlo,1) = 5x%.-x%-x%9.x% ,

where, in general, X : X' is defined by X » X' = Z
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hence, since x? . x9 = m{(m-1) for any ¢, minimizing d(o,t) with
L o T
respect to T is equivalent to maximizing X + X . Thus for any

profile ¢, 1T is a median if and only if
(15) T maximizes Z n0(¢)X0 e x' o= X¢° X
o

Kemeny's rule is the PF defined by
(16) ®(¢) = {1 : x? + x* = max} .

I1f for some i and ¢, nij(¢) > 0, then we could not have

T = (...aj,ai...) € K(¢) because 1' = (...ai,aj...) satisfies
X¢° Xﬂ > X¢° X' so x' did not maximize X¢- xT. On the other
hand, if nij(¢) = 0 and T € K(¢) then clearly t' & K(4).

Hence X is a Condorcet PF and, in particular, a guasi -Condorcet
PF. Notice that a. is a Condorcet alternative for ¢ if and

only if the aith row of X¢

is nonnegative. If a; is the unique
Condorcet alternative (i.e., the aith row of X¢ is positive ex-
cept for position (ai,ai)) then a; is necessarily most-preferred
in any preference order in K(¢). The fact that Kemeny's median
rule is Condorcet was not mentioned by Kemeny, though it provides
an excellent reason to prefer the median over the mean. This
fact was first pointed out in [12], where a characterization of
Kemeny's rule for two and three alternatives was given in terms
of six properties. 1In this paper we shall extend and generalize
these results by showing that, for any number of alternatives,
the Kemeny rule is the unique preference function that is neutral,
consistent and Condorcet, thus reconciling the consistency aspect

of Borda's rule with Condorcet's principle.

We have already noted above that K is Condorcet; it is also
immediate that it is symmetric. We claim that K is consistent

(as a PF). 1Indeed, if ¢' + ¢" is defined and if there is a 1
'

that maximizes both X¢ + X' and X¢ . XT, then any such 1 maxi-

. ) + " ] "
mizes X¢ ¢, X' = (X¢ + X¢ ) . x' as well. Moreover, for any

1 ”n 1 ] n
other t1' such that (X¢ + X¢ ) . x' = (x¢ + X¢ ) -XT, vie must
" )

1 1 ) n
have X¢ - x = X¢ « X' and X¢ - x' = X¢ . XT, proving that
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(17) K(¢'+¢") = K(¢")NK($")

whenever the latter is nonempty.

Before proving that these conditions uniquely characterize
K, we turn to a consideration of the polytope whose extreme
points are the election matrices XU, ce L(A). This polytope
turns out to have important applications to a variety of com-

binatorial optimization problems ([17].

5. PERMUTATION POLYTOPES

Let
(18) p={x%: ] A =1, >0}

To compute K(¢) for any ¢, it suffices to consider the lin-
ear programming problem: maximize X¢- X over all XeP. The op-
timum extreme points x° give the consensus ranking(s) o e K(¢).

P is a linear transformation of a so-called permutation polytope
[5,17]: if J is the mxm matrix of all 1's, and I is the mxm

identity matrix, then the transformation
(19) X>45(X +J - 1)

defines the permutation polytope P' associated with P. The set
of inequalities defining P' (and hence P) are not explicitly
known (Bowman having proposed an insufficient set in [5]; a
counterexample is due to A.J. Hoffman). However, various char-
acterizations of neighbors on these polytopes are known that
give some computational assistance in finding optimal extreme

points [17].

For any permutation ¢ let S (o) be the set of all unordered
pairs of symbols {ai,aj} such that ¢ reverses the order of a;

and aj (relative to the natural order):
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(20) S(o) = {{ai,aj}: i < j and aj precedes a; in ol .

(21) Let FO be the graph whose vertex set is S{(¢) such that
{ai,a.} e S(o) is adjacent to {ai,ak} e S(o), k # j, if and only
if {aj,ak} £ S{o).

The following characterization of neighbors is due to Hoffman.

(For a proof of this and other facts about permutation polytopes,

see [17].)

(22) x® and X° are neighbors on P if and only if r, is

connected.

6. THE PRINCIPAL THEOREM

(23) Theorem 3. Kemeny's rule is the unique preference
Y

functzon that ie neutral, consistent, and Condorcet.

We shall in fact prove a stronger result. Define, for any
PF f, the dual of £, —-f, to be the PF that inverts the orders

of f:

(24) (a. ,a, ,...,a. Ye=-f(¢) & (a. ,a.
2 m m lm—1

re--vay Y e £(d) .
1
The trivial PF, T(¢), is the PF defined by
(25) T{(¢) = L(p), for all ¢

We shall show that

(26) the only PF's that are neutral, consistent,

and quasi-Condorcet are T, K, and -K.

Theorem 3 follows from this since of the three only K is
Condorcet--in fact, only K is faithful--when m > 2 (they are

all equal when m = 1).
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To prove (26), we begin by establishing two lemmas. Let X

denote the vector space of all mxm, real skew-symmetric matrices.

Lemma 1. Let f be a neutral, consistent, quasi-Condorcet
PF. Then for every ¢ ¢ ¢, f£f(¢) depends only on the election
matrix X¢. Moreover, where gofzg is the set of all rational
m xm skew-symmetric matrices, there exists a unique extension

of £ to gQ that is neutral, consistent, and quasi-Condorcet.

Proof, The proof of Lemma 1 is similar to results in [15]
and [16]. With f as given, suppose ¢, ¢' are two profiles on
disjoint voter sets such that x® = X¢'. Choose a profile ¥ on
a voter set disjoint from those of ¢ and ¢' such that X¢+w =
x®"* - 0. £ guasi - Condorcet implies f£(¢+¥) = £(¢'+y) = L(A);

hence by consistency
£(¢) = £(6) NLA) = £(¢+ (P+d')) = £((o+Y) +¢') = L(A) NE($") = £(¢")

From this it follows that whenever X¢ = X¢' then £(¢) = £(¢")
(since we can always find ¢" disjoint from ¢ and ¢' such that
X¢ = X¢" = X¢'). We may therefore view f as defined on the
domain of election matrices. Notice that any matrix in KQ can
be expressed as a rational linear combination of election

matrices. Indeed, for any i#3j the profile with two voters

having preference orders (ai,aj,a1,a2,...am) and (am,am_1,...,
a1,ai,aj) hgs nij =—nji==2, and nhk==0 for all other h,k, and any
matrix in X~ can be expressed as a rational linear combination

of these. For any positive integer n > 0 and election matrix X
define f({1/n)X) = £(X). This is well-defined, because if

(1/n)X = (1/n'")X' then by consistency f(nX') = £(X') and f(n'X) =
f(X); so £((1/n))X) = £((1/n")X'). It is easy to verify that this

extended f is neutral, consistent, and guasi-Condorcet, and this
is clearly the only extension of f to gQ that has these proper-

ties. O
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A particular consequence of the hypotheses of Lemma 1 is
that £ is anonymous, hence symmetric. In the sequel, any f sat-
isfying the three hypotheses (in particular, K) will be consid-

Q

ered as acting in the domain X~.

Bor the next lemma we need to introduce the notion of
derived PF's. For any subset BCA, [B| = k > 0, and 0 ¢ L(B),
let ¢ <A - B> denote the set of all m!/k! linear orderings of A
that agree with ¢ when restricted to B. Further, let gg de-
note the set of all rational k x k skew-symmetric matrices whose

rows and columns are indexed by the elements of B, and for any

Ye Xg let X = Y<A - B> denote the matrix in §Q obtained from Y
by adjoining a zero row and a zero column for every a ¢ A-B. For

any PF f defined on &Q, let fB, the derived PF on alternative

set B, be defined as follows:

%2

X2, ocfP(y) iff 0<A-B>Cf(Y<A-B>)

(27) For every Ye

Lemma 2. If f is a neutral, consistent, quasi-Condorcet

PF for alternative set A, then

B

(i) for any BCA, |B| > 0, f is neutral, consistent,

and quasi-Condorcet;

(ii) either £% is pareto for at? |B| > 2,
or -£% is pareto for a1 |B| > 2,
or £2 is trivial for all |B| >2 .

Proof , The verification of (i) is left to the reader; it
may also be found in [13]. (ii) proceeds by showing that it
holds for all B, 2 < |B| < k, inducting k.

Let B = {a1,a2}, and let X be the 2 x 2 election matrix cor-
responding to the preference order (a1,a2). Then there are

three possibilities:
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{a1,a2}
(28) £ (X) = {(a1,a2)} '

{a1,a2}
(29) £ x) = {(ayapt
{a1,a2}

(30) f (X) = {(a1la2)l(a2la1)}

{a1,a2}
If (28) holds then by neutrality f is Pareto; if (29)
a,,a
holds, then by neutrality -f 1772 is Pareto; if (30) holds, then
{a1,a2} {a1,a2}
by neutrality £ (-X) = £ (X) and since all elements

g are expressible as nonnegative linear combinations of X
{a,,a,}
and -X it follows by consistency that in this case f e is

in X

trivial. Thus (ii) holds for the particular B = {al,az}; hence

by neutrality it holds whenever [B| = 2.

Suppose now that (ii) has been shown to hold whenever 2 <
|B| < k for some k < m; we will show it holds whenever 2 < |B| <
k+1.

Let B = {a,,a,,-..,a }, and for each h, 1 < h < k+1 let
1722 k+1 ="z

h _ h

Yy = (Yi

the htP Trow and column are zero and

.} be the (k+1) x (k+1) skew-symmetric matrix such that

h . . . .o
yij =1 1if i < 3 i,j # h
=-1 if i > j i,j #h
. th , . .
(Here the i row and column are associated with alternative a.,

i
etc.)

Yh, with the hth row. and column deleted, is the election

Q

matrix ZhE:X corresponding to the preference order (a1,

~B—{ah}
a2,...,éh,...,ak+1) = 0p- In the above notation
Yh = Zh<a >,

h
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Case 1. Suppose (28) holds.

B—{ah}
Then by induction £ is Pareto, so
B—{ah} h
£ (z) = {ch} for all h, 1 <h < k+1 ,
and
B, ,h, _
£77(Yy7) = op<ay> -

By consistency of fB,

B k+1 n
£ I Y = () o,<a,> = {o}
= h "h
h=1 1£h<k+1
But
k+1
2 Yh - kXO ,
h=1

where X° is the (k+1) x (k+1) election matrix corresponding to J;

hence by consistency

Bix% = (o) -

Thus by neutrality £B is pareto for B = {a1,a2,...,ak+1}; hence
£B is pareto whenever |B| = k+1. Therefore (28) implies that
£B is Pareto whenever 2 < |B| < k+1.

Case 2. If (29) holds, we can apply the same argument as
above to show that -fB is Pareto for 2 < |B| < k+1.

Ccase 3. If (30) holds, applying a similar argument as
Case 1 shows that fB(XO) = L(B) for all permutations o of
B = {a1,a2,..., ak+1}; hence by consistency fB is trivial.

Therefore, in fact, f~ is trivial whenever 2 < |B| < k+1.0

A subset CSZQn (Q is the set of rationals) is said to be
Q-convex if for all X, Y ¢ C and rational A, 0 ¢ X < 1, Ax +
(1- X)xs C. )
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One of the peculiar difficulties in proving results about
consistent preference functions (and CF's) is that, while under
various natural conditions, it is easy to extend their domain
unigquely to the rationals (i.e. to include "fractional" voters)
in such a way that consistencv and the other conditions are still
satisfied. (There is in general no immediate way to obtain such
an extension to the reals, even though in certain cases a unique
extension may exist.) (See for example [15,16].) As a prac-
tical matter errors can develop if, during the proofs, one is
not careful to restrict the analysis to Q-convex sets and rational-
valued vectors. Once the desired characterization is obtained then
the extension to the reals is usually obvious. (On this point
a difficulty is encountered in certain results in [12], where
for example Theorem 2 asserts incorrectly that a certain class

of functions may be uniquely extended to the reals.)

To be able to work with Q-convex sets conveniently in the
present context, we need the following results. (Proofs may be
found in [16]).

Lemma 3 [16]. cZ€q"™ is Q-convex if and only if

C = an\cvx(l, where cvx C is the convex hull of C.

Lemma 4 [16]. If CEEQn is Q-convex then cf(C) is convex.

k
Lemma 5 [16]. If C = U S; « where C QPF is convex and k
i=1

is finite, then for some i, dimC = diﬂlSi.

A particular consequence of Lemma 4 is that C&cvxC&clC,

hence c2C<Sc(cvxC ) &Scl(ciC) so

cl(cvxC) = ciC

From this we deduce ri(cfC) = ri(cvxC) , so by Lemma 3,

%N ri(caC) €C,and Q"N ri(ct(C)) is dense in ri(ck(C)).

Proof of (26), ©Let f be a neutral, consistent, quasi -

Condorcet SPF. To show that f is K, -K, or T, it suffices, by
Lemma 2, to assume that £ is Pareto and to show that f = K. (If

f is not Pareto then either -f is Pareto or else £ = T.)
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The proof that £ = K is by induction on the number of al-

ternatives, m.

If m = 1 there is nothing to prove.

~

Suppose that m = 2. Then, by Lemma 1, f is symmetric and
consistent; hence (for two alternatives) the associated choice
function % is also symmetric and consistent, so Theorem 1 implies
that % is a scoring function. But clearly the only distinct scoring
(1,0)’ f(0,1)' and f(0,0)'

which are the same as K, -K, and T respectively for two alterna-

functions on two alternatives are f

tives.

Suppose that m = 3. For any X ¢ XQ, X = (xij), such that

e = (a1,a2,a3) e K (X). It is easy to see that the following

inequalities must hold:

X12r¥33 2

o

+ X

v
[«

%13 23 2

X + X >0

12 13

Now any 3 x 3 rational skew-symmetric X satisfying (31) must

be a positive, rational, linear combination of the five skew-

symmetric 3 X 3 matrices X1,...,X5 determined by
1
(0,0,0) : X
(1,0,0) : x°
3
(X121X13,X23) (0,1,0) = Xu
(0,0,1) X
(1,-1,1) : X°

. i '

(32) We claim that f(x') = K(X") for 1 < i £ 5.
Indeed f(x1) = K(X1) = L(a1,a2,a3) by neutrality; also,

2
f(X2) = (a1,a2)< a3> = {(a1,a2,a3),(a1,a3,a2),(a3,a1raz)} = K(X7),
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by the fact that £° is Pareto for all |B| > 2 and f is quasi -
Condorcet. Similarly f(X°) = K(x°), £(x') = kK(x*). Finally,
note that X5 is symmetric under any 3-cycle permutation of ag.,

ay, and agi hence (since f(XS) + ¢ and if is neutral) either

5
(33) f(X7) = {(a1,a2,a3),(a2,a3,a1),(a3,a1,a2)}
or
5
(34) f(x ) = {(a3,a2,a1),(a2,a1,a3),(a1,a3,a2)}
or
5
(35) f(X7) = L({a1,a2,a3})
Now
(ayaay |0 701
Y =X =11 0 1
-1 -1 0
and because f is Pareto, f(Y) = {(a2,a1,a3)}. But Y + x5 = 2x“

so 1f either (34) or (35) were true consistency would imply
f(Xu) = f(Y)r\f(XS) = {(az,a1,a3)}, a contradiction. Therefore
£(x°) is as in (33), to £(X°) = K(X°) and (32) holds.

Now for any X such that K(X) = {e} we have X = ] Ay X7 for

some rational A, > 0; so by consistency and the fact
that e ¢ f(Xl) K(Xl) for all i,

£(X) ﬂf(xi) -Nrixh = kX
i i

Thus f (X)
K(X) for all X, proving the theorem for m = 3.

K(X) whenever e € K(X); hence by symmetry f(X) =

Suppose that m > 4. The domain of f and of K is
XQ C X, and, by consistency, the sets

(36) £ ={xs§Q:osf(,x)}

are Q-convex for each oe L(A).
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Similarly

(37) K| = (xex?:0eKR(X)

is Q-convex for each oe L(A).

1 1 1

Note that f_ 22f ' (o) = xex?:£(X) ={o}} and K
s K(X) = {ag}}.

2k (o) =

Xe XQ

By Lemma 4, cR(f;1) = fO is convex for each o. Since

LJf; = X, Lemma 5 implies that int f; £ ¢ for some o: hence

o
. . -1 . -1 -1 -1
by neutrality int £~ ¥ ¢ for all ¢. Now int f  &Gcvx f St

’

so by Lemma 3,

(38) x%Nine £ g

6]

We claim that

(39) x9nine £2'Cf o)

that is, £(X) = {0} for any Xe¢ XQf\int f;1. Indeed, X% ¢ f;1, and

for any Xe §Qf\int f;1 and sufficiently small rational € > 0 we
Q

Nint f;1 and

_ € o 1 .
X = (1+e) X+ (1+s) o

so by consistency

have ¥ = (1+¢€)X - EXOE X

£x) = £xX0)NE() = (o} ,

proving (39).

Since XQ is dense in int f;1 for all o, it follows from
(39) that

(40) int f;1r\int f:1 = ¢ for all o # 1
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Therefore by the separation theorem for convex sets there
. o
exists, for every o # T, a nonzero matrix U Te § such that
U *X >0 for all Xe f;1
(41)

U «X <0 for all Xe f;1

Here "+" denotes the inner product of u®" and X, regarded as

vectors.

Let e = (a1,a ..,%“)e L(A) denote the identity permuta-

‘e
tion, and let o bezany neighbor of e (i.e., x% is a neighbor of
x€ on the polytope g). Let U = (uij) and recall from Section
5 that S(o) is the set of pairs p = {ai,aj} such that i < j and
aj precedes a; in ¢. We claim that for some X > 0 and for all

i< 3,

u.. = —u

ij ji A whenever {ai,aj}e S (o)

(42)

W, . = —u.

i3 3i 0 whenever {ai,aj}z'S(o) .

First, given any pair {ai,aj}t S(o), let i < j and define

a matrix Xe XQ by x.. = 1, and 0 elsewhere. Since

i R E
{a,,a.} J J
f is Pareto, the guasi-Condorcet property of £ implies
o
that e,ce £(X); hence g +x = 0 and

(43) uij = 0 whenever {ai,aj}z’s(o) .

Now let p = {ai,aj}, q = {ai,ak}e S (o) be any adjacent

pairs in the graph FO, where, without loss of generality, j < k.

Then {aj,ak}¢ S (o) and either

€ T (vee @i e0e A: waw ay - -- ) and ©

1l
[+
o

~
[+

}a-

or

]
il
[}
[V}
~
[+
[}
3
[o})
Q
1}
[V}
o1}
[V
P

<)



-22-

Define a matrix X = (xij)e gQ such that

Xs0o = =X.. =1 ,
ij ji
X.p, = =X, . =1,
(44) jk kj
Xig = "¥gi = 71

Xpg = 0 for all other h,%

Letting B = {ai,a.,ak} we know by Lemma 2 that £8 satisfies

J
our hypotheses, so if X is X restricted to the rows and the columns

corrfspondlng to ai,aj,ak, then (ai,aj,ak)e f (X) and (aj,ak,ai)
e £(X), by the preceding analysis for m = 3 (i.e. (33) above).
Since f is gquasi-Condorcet, we therefore have e,0 ¢ f(X); whence

ve% . % = 0 and

Zuij + Zujk - 2uik = 0

By (43), u., = 0; whence

jk

(45) u.. = u.

ij ik whenever {ai,aj}e S(o) is adjacent

in FO to (ai,ak)e S (o)
(46) Notice, moreover, that if {ai,aj}e S (o) is adjacent in FO
to {ai,ak}e S(o), then i < j implies i < k (because if not then
we have e = (... ap +e. @y .. aj... ) so 0 = (... aj... aj «--ay cee)
and {aj,ak}e S{(o), a contradiction).

Since o is a neighbor of e, G0 is connected (22); hence (45)

and (46) imply that for some A

uj5 = -uy; = A whenever i < j and {a;,aj}es(o)
u7)
uij = uji = 0 whenever i < j and {ai,aj}g’s(g) .
since f is Pareto, x%¢ f;1, and we must have U°° . x® >0,
that is, A > 0, and in fact A > 0 because u®¢ + 0, proving (42).



Without loss of generality, let A = 1; then

(48) ve? = 5(x®-x% .
For any given Y e )N(Q, if ee £(Y) then
v®% .Y > 0, that is,

(49) x¥+v > x?+ v for all neighbors o of e.

It follows that
(50) X7 +Y > X Y for all T e L(A) ’

implying that e € K(Y). Thus ec £(Y) implies ec K(Y), so by

neutrality f is a refinement of K, that is,
(51) £(X) S K(X)  for all xex9cx
We claim that
(52) whenever ¢ is a neighbor of 17, 0,TeK(X) and 1€ £(X) imply oe £(X).

Suppose ({52) is false for some neighbors ¢ and 1. Say

without loss of generality that 1 = e. Then for some x%e XQ,
(53) geck(x®) , eef(x®) , ogf£(x°)

Since 0 e K_| = {X€)~(Q te,0eK(X)}, ¥ = aff K;; is a sub-

eo
space of X. Let

Further, let Y, = cf(Y )S ¥, ¥ = ca(¥Y )SY. Since e and

¢ are neighbors, there is an X¢ X such that

£ xS =x-%9>5 x-x" for all v % e,o

Hence there is a rational X* ¢ )~(Q with this property, and



—24—

K(X*) = {e,0} .

Let W = ri(cvx K—1) . For every rational XeW and suffi-

eo

ciently small rational A > 0, X* € cvx K;; implies

X' = (14X)X - AX*eW

1

X rational implies X' K;O (see tue remarks after Lemma

5); hence {e,0} CK(X') NK(X*) = K(X). But K(x*) = {e,0}; so

(54)

K(X) = {e,0} for all rational XeW

For any rational Xe W, (51) combined with (54) shows that

eg f(X) or oe £(X), hence X¢ YeUYo' If Xe W is not rational,

then

X is a limit point of a sequence of rational xte K;;-

Hence there is a subsequence in Ye converging to X, or a sub-

sequence in Y0 converging to X. In any case

(55)

Y Yy 2
¥eU¥o "‘.?

By Lemma 5, at least one of the subspaces aff Ye' aff Yo

is equal to Y; let the other be Y'G Y.

(56)

We claim that
r1¥e0r1¥0= ¢ .

Suppose (56) is false. Then ri ?eﬂ ri ?0 =S ¥ ¢ is open

with respect to the subspace Y'. Since every point in ?e is a

limit point of Y <x9, and similarly for YO, S contains a

rational X' ¢ XQ, and by the remarks after Lemma 5,

(57)

v
X ege!‘\go .

The X° of (53) is in Ye’ so for sufficiently small rational

A >0,
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X" = (1+ 00X - xx%¢ ri¥,

whence e e £(X"}. Since

X' = X"/(1+2) + Ax°/(1+0)

f consistent implies

ee£(x') = £xN£(x)
while

of £(X°) implies o g £(X') .

Thus X'ngo, contradicting (57). This shows that (56) is

true.

The separation theorem for convex sets implies that there

is a nonzero skew-symmetric real matrix U, U ¢ ¥, such that

U+X >0 for all Xe Ye .

U-X<0 for all Xe Yo

Then, just as in the derivation of (47), we conclude that

for some real number A,

= —~u..

uij ji A whenever i < j and {ai,aj}e S(oc) ,

Uj4 = Tugy 0 whenever i < j and {ai,aj}¢'s(o) .
-1

e O)
eo

implies U« (X -X) =4 ) u,. =0

i< 4
{ai,aj}eS(O)

But Uef= aff K

Thus A = 0, so U =0, contradicting the choice of U. This proves

(52).

Now suppose f + K, that is, by (51) there is an X* such that

£ (X*) 4gx(x*) . Say

o,Te K(X*),0¢e £(X*),1 ¢ £(X*) .
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Let P* be the polytope {XeP :X*+X = max}.

Since |K(X*)| > 2, dim P* > 1, so by a theorem of Balinski
[2] there is a path o =.ﬂ1,ﬂ2,...,ﬂk = 1 such that for 1 < i < k,
Xﬂi is a neighbor of Xﬂl+1 on P and ﬂl e K(X*) for 1 < i < k.
By (52), o = ﬂ1,ﬂ2€ K(X*) and g =qnlg f(X*) implies 7l g f (X*)
and so forth; we conclude that ﬂk = 1¢ £(X*), a contradiction.

Thus f is identical to K.O

7. CONCLUSION

In the social choice literature two divergent streams of
thought are apparent. One, which stems from Borda's work,
emphasizes scoring methods; the fundamental property enjoyed by
these methods is that they are consistent, which amounts to
saying that they satisfy a kind of Pareto principle for sub-
groups. This condition seems very natural and desirable in the
context of collective decision making, and it is difficult to
see how a preference function not satisfying this property would
be able to find general acceptance. The other, which grows out
of Condorcet's proposal that an alternative able to get a major-
ity over any other should be the most-preferred alternative, is
the problem of extending this idea in a natural way to cases when

a Condorcet alternative does not exist.

As we have shown, these two ideas, suitably interpreted for
preference functions, are resolved in the method known as Kemeny's
rule; moreover subject to the basic requirement that all alterna-
tives be treated in an unbiased manner, Kemeny's rule is the

only preference function satisfying the three properties.

The present development, compared to Kemeny's, also provides
an interesting example of the use of axioms in the social sciences.
Kemeny axiomatized a distance measure by invoking certain math-
ematically appealing properties. But by concentrating on the
distance minimizing aspect of the problem, the point was missed
that it is the decision function itself, rather than the distance,

that possesses the important properties.
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