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Abstract

This work is devoted to characterizing an optimal R&D investment policy for a growing
economy taking into account the phenomenon of technology spillovers. We focus on the
issue of a reasonable balance between domestic technologies and assimilated technology
spillovers. Both factors require R&D expenditures inducing decrease in production rate
in the short run. The efficiency of the utilization of spillover technologies depends on
the firm’s assimilation capacity. The assimilation capacity is a function of the level of
the technology stock and ability to maximize the benefits of a learning exercise and,
consequently, of the level of accumulated R&D expenditures. The domestic technology
stock supposes high inputs into scientific, technological and production research. In the
long run R&D investment leads to increase of sales and production diversity. We also
take into account a nonlinear effect of the influence of technology intensity on growth in
production rate.
The model is applied on a company level. We identify model’s parameters using real

data series (in particular, for the Sony Corporation).
Using dynamic optimality principles the corresponding model is analyzed and the

optimal level for the R&D intensity is constructed. The uniqueness of the optimal solution
is stated and properties of optimal regimes are explored.
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Background

The paper deals with classical problems of economic growth and optimal allocation of
resources (see [Arrow, 1985], [Arrow, Kurz, 1970], [Grossman, Helpman, 1991]). The
analysis refers to the endogenous growth theory [Grossman, Helpman, 1991], in particular
economies’ utility functions are defined as the discounted integrated consumption indices
of the logarithmic type. A generalized endogenous growth model for economies with
absorptive capacities was analyzed in [Borisov, Hutschenreiter, Kryazhimskii, 1999] where
the asymptotic behavior of knowledge-exchanging economies was investigated.
The type of the growth dynamics under consideration was studied in [Watanabe, 1992].

For the description of interactions between technology spillovers and indigenous technolo-
gies we use econometric constructions of this paper.
Also we apply basic elements of the model proposed in [Tarasyev, Watanabe, 2001],

[Watanabe, 1992] dealing with the structure of production, technological change and the
rate of growth of total factor productivity.
Our analysis of the spillover effect is based on a modification of the nonlinear model

elaborated in [A.Tarasyev, C.Watanabe, 2001].
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Optimization of R&D Investment under

Technology Spillovers: A Model and a Case Study

(Sony Corporation)

Klavdia Izmodenova-Matrossova (izmklav@rmbc.ru)
Alexander Tarasyev * (tam@imm.uran.ru)
Chihiro Watanabe (chihiro@me.titech.ac.jp)

1 Introduction

For a technological firm, the problem of optimal R&D investment consists in finding a
policy, which maximizes an appropriately chosen utility function. A strong difficulty in
choosing optimal R&D policy arises due to the mutually contradicting trends – growth
and decline – in interaction between production and technology. On the one hand, invest-
ments in R&D generate new sales, on the other hand they redistribute resources between
production and the technology stock and, thus, introduce a risky factor into the process
of technology innovation.
The assimilation of technologies produced externally (the technology spillover effect)

is able to improve the performance of the firm through increasing the technology stock of
the firm. It has been widely discussed (see, e.g. [13]) that the firm’s assimilation capacity
plays a significant role in governing the R&D intensity, technology stock, and production.
This effect provides a serious motivation for analyzing the development of the assimilation
capacity in the context of dynamic interactions between the technology stock, sales, and
R&D intensity.
Our research adjoins classical studies on economic growth and optimal allocation of

resources [1], [2], [4]-[8], [10]. Unlike the model described in [6], which treats the dynamics
of the knowledge stock as a function of the price for the technology output, we deal with
a dynamics which describes the growth of sales due to R&D investments.
The model describes the behavior of a firm in an economy sector. The firm’s outputs

are production, y, and the domestic technology stock, Td, which is included in the potential
spillover pool for other companies. Production is measured in terms of sales. The direct
interaction between the technology stock and firm’s production is described in terms of
R&D expenditures. A control parameter is the R&D intensity, i.e. the share of revenues,
which is spent into R&D (R&D expenditures/production).
The firm has the assimilation capacity. The firm’s accumulated technology stock, T ,

consists of indigenous technologies, Td, and assimilated technologies, zT s, generated by
other firms. It is assumed that the results of research activities of neighboring firms are
assimilated at very low prices; the model supposes that the prices are zero. The total
technology stock of all firms forms the ”potential spillover pool” Ts.

*The author was partially supported by the Russian Fund for Fundamental Research, Grant
02-01-00769, and the Program for the Sponsorship of Leading Scientific Schools, Grant 791.2003.1.
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2 System Dynamics

The suggested model of a firm which describes dynamic interactions between production,
technology stock and R&D investments uses the following variables:
t – time;
y = y(t) – production;
Td = Td(t) – stock of domestic (indigenous) technologies;
T = T (t) – total technology stock of the firm;
Ts = Ts(t) – spillover pool (exogenous technologies);
rd = rd(t) – R&D intensity;
z = z(t) – assimilation capacity;
ẏ(t)/y(t) – production rate;
Ṫd(t) = rd(t)y(t) – marginal change of domestic technologies Td(t) caused by R&D

expenditures;
Ṫs(t) – marginal change of spillover pool caused by total R&D expenditures of other

firms at the technology market;
T/y – technology intensity;
y/T – productivity of technology;
y/Td – productivity of domestic technology;
ψ1 = ψ1(t) – the ”shadow price” of production y(t);
ψ2 = ψ2(t) – the ”shadow price” of domestic technologies Td(t);
ψ1y – the ”cost” of production;
ψ2Td – the ”cost” of domestic technologies;
n = n(t) – measure of invented products.
To define the dynamics of production, we use the equation obtained via differentiating

a Cobb-Douglas type production function (see [10], [11]):

ẏ(t)

y(t)
= f1(t) + f2 ·

(
T (t)

y(t)

)γ
− gd(t)rd(t), (1)

where function f1(t) represents a non-R&D contribution and gd(t) is the discounted
marginal productivity of domestic technology. The negative sign in front of the net con-
tribution of technological investments (−gd(t)rd(t)) shows that in the short-run spending
into the domestic R&D prevails upon the rate of returns due to domestic technologies
and, therefore, provides a risky factor of technological investments. Furthermore, in (1)
parameter γ is an elasticity of technology to production (0 ≤ γ ≤ 1), and parameter f2 is
a scale coefficient (f2 > 0). We assume that the following inequality is valid:

gd(t) = pd(t)− qd(t) > 0.

Here pd(t) describes the decrease in production due to domestic R&D expenditures, and
marginal productivity of domestic technologies, qd(t), shows the increase of the R&D
knowledge stock. A procedure of measuring the discounted marginal productivity of tech-
nology is described in [15].
The technology stock, T (t), is expressed through the domestic technologies Td(t), and

assimilated spillover technologies, z(t)Ts(t), as follows:

T (t) = Td(t) + z(t)Ts(t). (2)

This structure of the technology stock T (t) is justified by the empirical analysis which
shows that this assimilation capacity approach is statistically extremely significant (see
[12]).
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The next equation in the model’s dynamics describes the evolution of the domestic
technology stock:

Ṫd(t) = u(t) = rd(t)y(t). (3)

Here u = u(t) = rd(t)y(t)) (or, equivalently, R&D intensity rd = rd(t)) is a control
parameter which is responsible for the current change in technology stock Td(t).
In line with the previous approaches [13], the assimilation capacity z(t) is modeled as

z(t) =
1

1 + Ṫs(t)Ts(t)
/ Ṫd(t)Td(t)

Td(t)

Ts(t)
. (4)

Equation (4) suggests that the assimilation capacity z(t) is proportional to the ratio of
the indigenous technologies and the potential spillovers pool.
Introducing notations

ξ = Ṫd/Td, ω = Ṫs/Ts (5)

for the technology rates and linearizing formula (4) with respect to the domestic technology
rate ξ we get the following approximate expression for the assimilation capacity :

z =
ξ

ω

Td
Ts
=
Ṫd

Ṫs
. (6)

Taking into account formula (6), we represent the technology stock T through a linear
approximation :

T = Td +
Ṫd

Ṫs
Ts = Td +

u

ω
(7)

Combining formulas (1)-(7), we obtain a system of three differential equations describ-
ing the distribution of resources between the productivity rate ẏ(t)/y(t) and investment
rd(t) into the domestic technology Td(t).
Production y(t) and the domestic technology stock Td(t) are the phase parameters in

the model. The R&D change u = rdy (or, equivalently, R&D intensity rd) is the control
parameter. From the economic point of view it is clear that rd = rd(t) is bounded from
above:

rd(t) ≤ rud < +∞. (8)

We also assume that functions f1(t) and gd(t) are continuous and bounded (f1(t) > 0,
0 ≤ gd(t) ≤ 1).

3 Utility Function

Now we formulate the firm’s goal and define its long-run profit arising due to R&D invest-
ments. We consider the firm’s utility function (see [1]) :

Wt0 =

∞∫
t0

e−ρ(t−t0) lnD(t)dt. (9)

Here D(t) is a consumption index representing the utility of products (technologies) at
time t, ρ is the discount rate, t is the running time, and t0 is the fixed initial time.
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If one assumes a constant elasticity of substitution between every two products, the
form of the consumption index D(t) is specified as follows (here we refer to the CES type
of demand function [5]),

D(t) =


 n∑
j=1

xαj (t)



1/α

, n = n(t). (10)

Here j is the current index of innovative goods, xj(t) is consumption in brand with index
j, n(t) is the number of available varieties at time t. The elasticity of substitution between
any two products, e, is defined through a parameter α as

e =
1

1− α > 1.

The utility function is transformed into an expression depending on production, the
technology stock and R&D investment. Similarly to [5] we assume that quantities xj(t)
are equal for each index j, thus,

xj(t) =
y(t)

n(t)
. (11)

The quantity of innovative products n(t) depends on the accumulated R&D investment,
T (t), and the rate of change in technology, u(t), through the relations

n = n(t) = bT β1(t)uβ2(t), u(t) = rd(t)y(t). (12)

Here β1 and β2, respectively, are elasticities of the technology stock T (t) and technology
change u(t) with respect to the index of innovative products n = n(t). Formulas (11), (12)
imply that innovation depends upon the forefront R&D activities demonstrated by the
domestic technology change u(t) and upon the accumulation of the past R&D activities
and technology spillovers, which are represented by the technology stock T (t).
Combining equations (10)-(12), one finds that

D(t) =


 n∑
j=1

(
y(t)

n(t)

)α
1/α

=
y(t)

n(t)
n1/α(t) = y(t)n

1−α
α (t). (13)

The substitution of (13) into (9) leads to the following formulas for the utility function:

Wt0 =

∞∫
t0

e−ρ(t−t0)[lny(t) + a1 lnT (t) + a2 lnu(t)) +A ln b]dt =

=

∞∫
t0

e−ρ(t−t0)[lny(t) + a1 ln(Td(t) +
u(t)

ω
) +

+a2 lnu(t)]dt+

∞∫
t0

e−ρ(t−t0)A ln b)dt

where

a1 = Aβ1, a2 = Aβ2, A =
1− α
α
.
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The second integral does not depend on y(t), Td(t), Ts(t), and u(t). Therefore, it does
not influence on the choice of optimal investment. Hence, we can consider the equivalent
utility function

Ut0 =

∞∫
t0

e−ρ(t−t0)[lny(t) + +a1 ln(Td(t) +
u(t)

ω
) + a2 lnu(t)]dt. (14)

The structure of the utility function Ut0 (14) shows that the investors are interested
in growth of production y(t) as well as in growth of the domestic technology stock Td(t),
its current change u(t), and assimilated technologies z(t)Ts(t) = u(t)/ω.
The logarithmic terms in Ut0 (14) imply that production y(t), the technology stock

T (t), the marginal change of the domestic technology u(t), and the R&D intensity rd(t) =
u(t)/y(t) are strictly positive; moreover, we assume that these values are strictly separated
from zero:

0 < yl ≤ y(t), 0 < T l ≤ T (t), 0 < rld ≤ rd(t), 0 < rldy(t) ≤ u(t). (15)

Combining the upper and lower bounds (8) and (15), we get upper and lower bounds
for the R&D intensity rd(t):

0 < rld ≤ rd(t) ≤ rud < +∞. (16)

4 Optimization Problem

We consider the following problem of optimal control, Problem (P ): find the R&D intensity
r∗d(t), which maximizes the utility function (14)

Ut0 =

∞∫
t0

e−ρ(t−t0)[ln y(t) + a1 ln(Td(t) +
rd(t)y(t)

ω
) +

+a2 ln rd(t)y(t)]dt =

∞∫
t0

e−ρ(t−t0)[(1 + a2) lny(t) +

+a1 ln(Td(t) +
rd(t)y(t)

ω
) + a2 ln rd(t)]dt (17)

provided the dynamics is described by

ẏ(t)

y(t)
= f1 + f2

(
T (t)

y(t)

)γ
− gd(t)rd(t), T (t) = Td(t) +

rd(t)y(t)

ω
,

Ṫd(t) = u(t) = rd(t)y(t),

with constraints
0 < rld ≤ rd(t) ≤ rud < +∞,

and initial conditions

y(t0) = y
0, Td(t0) = T

0
d , Ts(t0) = T

0
s .

The main difference of Problem (P ) from classical problems of optimal control ([9])
consists in the unboundedness of its time interval. Generally the application of the Pon-
tryagin maximum principle in the case of infinite time horizon is less effective when in the
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case of finite time horizon (see [3]). In the numerical approximation solution of Problem
(P ) one can restrict the time horizon to a large but finite interval. Therefore, we formulate
the problem for a finite time horizon [t0, θ].
For the utility function (14) we have

Ut = U
θ
t0 + Uθ,

where

Uθt0 =

θ∫
t0

e−ρ(t−t0)[(1 + a2) lny(t) +

+a1 lnT (t) + a2 ln rd(t)]dt, (18)

and Uθ is the approximation error.
We will estimate Uθ from above by a small parameter ε = ε(θ). Let us start with

estimating the integrand. We make a natural assumption that T (t) < y(t). Due to (1) we
have

ẏ(t) < My(t),

where
M = f1 + f2 − gdrld, gd = supgd(t).

Thus,
y < y(θ)eM(t−θ) = y(t0)e

M(θ−t0)eM(t−θ).

Substituting this estimate into the integral Uθ, we obtain the following relation

Uθ <

∞∫
θ

e−ρ(t−t0)[(1 + a1 + a2)(lny(θ) +M(t− θ)) + a2 ln rud ]dt =

= [(1 + a1 + a2)(lny(θ)−Mθ) + a2 ln rud ]
∞∫
θ

e−ρ(t−t0)dt+

+M(1 + a1 + a2)

∞∫
θ

te−ρ(t−t0)dt =

=
1

ρ
((1 + a1 + a2) lny(θ) + a2 ln r

u
d +
M

ρ
(1 + a1 + a2))e

−ρ(θ−t0) =

=
1

ρ
((1 + a1 + a2)(lny(t0) +M(θ− t0)) +

+a2 ln r
u
d +
M

ρ
(1 + a1 + a2))e

−ρ(θ−t0). (19)

The last expression tends to zero when θ tends to infinity, and can be bounded from
above by the accuracy estimate ε = ε(θ). Thus, we get the uniform convergence of the
indefinite integral (14).
Let us denote by (P1) the optimal control problem with the utility function (18) on

the finite horizon instead of utility (14) on the infinite horizon. Then Problem (P1) is a
classical optimal control problem with the free right end point on the fixed time interval
[t0, θ], and the Pontryagin maximum principle [9] is a necessary optimality condition in
this problem.
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The Hamiltonian for Problem (P1) has the form

H(t, y, Td, rd, ψ1, ψ2) = e
−ρ(t−t0)((1 + a2) lny +

+a1 ln(Td +
rdy

ω
) + a2 ln rd) +

+ψ1(f1y + f2(Td +
rdy

ω
)γy(1−γ) − gdrdy) + ψ2rdy. (20)

Taking into account formula (3) for technology change Ṫd(t) = u(t), we get the following
presentation of the Hamiltonian H through the control parameter u = u(t)

H(t, y, Td, u, ψ1, ψ2) = e
−ρ(t−t0)(lny +

+a1 ln(Td +
u

ω
) + a2 lnu) +

+ψ1(f1y + f2(Td +
u

ω
)γy(1−γ) − gdu) + ψ2u, (21)

The maximum function for the Hamiltonian (21) has the following form:

Ĥ(t, y, Td, ψ1, ψ2) = sup
rd∈[rld,r

u
d ]

H(t, y, Td, rd, ψ1, ψ2). (22)

If (y(t), Td(t), rd(t)) is a control process, (ψ1(t), ψ2(t)) is the pair of adjoint variables,
then at any time t the Hamiltonian H (20) describes the current flow of utility from all
sources.
For the adjoint variables ψ1 and ψ2 interpretable as ”shadow prices” of production y

and domestic technologies Td, respectively, we have the following dynamics

ψ̇1(t) = −
∂H

∂y
=

= −e−ρ(t−t0)((1 + a2)
y(t)

+
a1

(Td(t) + rd(t)y(t)/ω)

rd
ω
)−

−ψ1(t)(f1(t) + f2(1− γ)
(
Td(t) + rd(t)y(t)/ω

y(t)

)γ
+

+f2γ

(
Td(t) + rd(t)y(t)/ω

y(t)

)γ−1 rd
ω
− gd(t)rd(t))− ψ2(t)rd(t),

ψ̇2(t) = −
∂H

∂Td
=

= −e−ρ(t−t0) a1
(Td(t) + rd(t)y(t)/ω)

−

−ψ1(t)f2γ
(
Td(t) + rd(t)y(t)/ω

y(t)

)γ−1
. (23)

Prices ψ1 and ψ2 measure the marginal contribution of y and Td to the utility function
(18).
For the finite time horizon [t0, θ] (t0 ≤ θ < +∞) the following transversality conditions

are valid:
ψi(θ) = 0, i = 1, 2. (24)

It is easy to see that due to (23)-(24) the following result holds:
Lemma 1. The solution (ψ1(t), ψ2(t)) of the system (23) subject to the dynamics

(1)-(5) and restrictions (16) satisfies the inequalities:

ψi(t) > 0, t ∈ [t0, θ], i = 1, 2. (25)
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Thus the Pontryagin maximum principle [9] for Problem (P1) can be formulated as
follows:
Theorem 1. Let (y∗(t), T ∗d (t), r

∗
d(t)) be an optimal control process in Problem (P1).

Then there exists a pair (ψ1(t), ψ2(t)) of adjoint variables such that (ψ1(t), ψ2(t)) is a so-
lution of adjoint system (23), taken along the optimal control process (y∗(t), T ∗d (t), r

∗
d(t));

the maximum condition holds:

H(t, y∗(t), T ∗d (t), r
∗
d(t), ψ1(t), ψ2(t))

a.e.
=

Ĥ(t, y∗(t), T ∗d (t), ψ1(t), ψ2(t)); (26)

the transversality condition (24) takes place;
and, moreover, both functions ψ1(t), ψ2(t) are strictly positive (25).
Let us assume that the maximality condition of the Pontryagin maximum principle

holds for t ∈ [t0, θ]:

H(t, y∗(t), T ∗d (t), r
∗
d(t), ψ1(t), ψ2(t)) =

= Ĥ(t, y∗(t), T ∗d (t), ψ1(t), ψ2(t)). (27)

That is

e−ρ(t−t0)((1 + a2) lny
∗(t) + a1 ln(T

∗
d (t) +

r∗d(t)y
∗(t)

ω
) +

+a2 ln r
∗
d(t)) + ψ1(t)(f1y

∗(t) + f2(T
∗
d (t) +

r∗d(t)y
∗(t)

ω
)γy∗(t)(1−γ) −

−gd(t)r∗d(t)y∗(t)) + ψ2(t)r∗d(t)y∗(t) =
= Ĥ(t, y∗(t), T ∗d (t), ψ1(t), ψ2(t)), (28)

where the admissible triple (y∗(t), T ∗d (t), r
∗
d(t)) satisfies the conditions of the Pontryagin

maximum principle (see [9]), and T ∗(t) = T ∗d (t) + r
∗
d(t)y

∗(t)/ω. Thus, if the maximized
Hamiltonian Ĥ(t, y∗(t), T ∗d (t), ψ1(t), ψ2(t)) is differentiable in y, Td at y

∗(t), T ∗d (t) then
the adjoint equation (23) can be rewritten in the form

ψ̇(t) = −∂Ĥ(y
∗(t), T ∗d (t), ψ(t))

∂(y, Td)
, (29)

where ψ(t) = (ψ1(t), ψ2(t)).
Proposition 1. The maximized Hamiltonian Ĥ is a continuously differentiable and

strictly concave function in y and Td for any t ∈ [t0, θ].
Proof. 1. First, let us show that the Hamiltonian H (21) is a twice continuously

differentiable and strictly concave function of variables y, Td, and u for any t ∈ [t0, θ],
ψ1(t) > 0, ψ2(t) > 0.
Twice differentiability of Hamiltonian H (21) in variables y, Td, and u follows from

it’s structure: the logarithmic and power functions are twice continuously differentiable.
To prove the strict concavity of the Hamiltonian Ĥ in y and Td, let us show first that

the matrix of second derivatives

J =
∂2H(y, Td, u, ψ1, ψ2)

∂(y, Td, u)2
(30)

is negative definite, i.e.

∆J∆T < 0, for all ∆ = (∆y,∆Td,∆u) �= 0.
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To show this we use the Sylvester’s criterion. Let us calculate the first derivatives of the
Hamiltonian H (21) with respect to variables y, Td, and u

∂H

∂y
= e−ρ(t−t0)

1

y
+ ψ1(f1 + f2(1− γ)(Td+

u

ω
)γy−γ), (31)

∂H

∂Td
= e−ρ(t−t0)

a1
(Td + u/ω)

+ ψ1f2γ(Td +
u

ω
)(γ−1)y(1−γ), (32)

∂H

∂u
= e−ρ(t−t0)

(
a2
u
+

a1
(Td + u/ω)

1

ω

)
+

+ψ1f2γ(Td +
u

ω
)(γ−1)

1

ω
y(1−γ) − ψ1gd + ψ2. (33)

We calculate now second derivatives of the Hamiltonian H (21)

∂2H

∂y2
= −e−ρ(t−t0) 1

y2
− ψ1f2γ(1− γ)(Td+

u

ω
)γy−(1+γ) < 0, (34)

∂2H

∂T 2d
= −e−ρ(t−t0) a1

(Td + u/ω)2
−

−ψ1f2γ(1− γ)(Td+
u

ω
)(γ−2)y(1−γ) < 0, (35)

∂2H

∂u2
= −e−ρ(t−t0)(a2

u2
+

a1
(Td + u/ω)2

1

ω2
)−

−ψ1f2γ(1− γ)(Td +
u

ω
)(γ−2)

1

ω2
y(1−γ) < 0, (36)

∂2H

∂y∂Td
= ψ1f2γ(1− γ)(Td+

u

ω
)(γ−1)y−γ , (37)

∂2H

∂y∂u
= ψ1f2γ(1− γ)(Td+

u

ω
)(γ−1)

1

ω
y−γ, (38)

∂2H

∂Td∂u
= −e−ρ(t−t0) a1

(Td + u/ω)2
1

ω
−

−ψ1f2γ(1− γ)(Td +
u

ω
)(γ−2)

1

ω
y(1−γ). (39)

According to the Sylvester’s criterion in the case of 3× 3 symmetric matrix J (30) to
justify its negative definiteness and, hence, to check the strict concavity of the Hamiltonian
H (21) in variables y, Td, and u we should verify the following inequalities:

∆
(1)
1 =

∂2H

∂y2
< 0, ∆

(2)
1 =

∂2H

∂T 2d
< 0, ∆

(3)
1 =

∂2H

∂u2
< 0, (40)

∆2 =
∂2H

∂y2
∂2H

∂T 2d
−
(
∂2H

∂y∂Td

)2
> 0, (41)
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∆3 =
∂2H

∂u2


∂2H
∂y2
∂2H

∂T 2d
−
(
∂2H

∂y∂Td

)2−

−∂
2H

∂y2

(
∂2H

∂Td∂u

)2
− ∂

2H

∂T 2d

(
∂2H

∂y∂u

)2
+

+2
∂2H

∂y∂Td

∂2H

∂y∂u

∂2H

∂Td∂u
< 0. (42)

The determinants ∆
(i)
1 (40) of the first order are negative

∆
(i)
1 < 0, i = 1, 2, 3 (43)

due to inequalities (34)-(36).
The determinant ∆2 (41) due to reduction of similar terms with positive and negative

signs in multiplication of formulas (34)-(35), (37) is presented by relation

∆2 = e
−2ρ(t−t0) 1

y2
a1

(Td + u/ω)2
+

+e−ρ(t−t0)(1 + a1)ψ1f2γ(1− γ)(Td+
u

ω
)(γ−2)y−(1+γ) > 0, (44)

and is evidently positive.
In calculation of the determinant ∆3 (42) all positive terms in multiplication of formulas

(34)-(39) are compensated by negative terms and the final relation has the negative sign

∆3 = −e−ρ(t−t0)
a2
u2
[e−2ρ(t−t0)

1

y2
a1

(Td + u/ω)2
+

+e−ρ(t−t0)(1 + a1)ψ1f2γ(1− γ)(Td+
u

ω
)(γ−2)y−(1+γ)] < 0. (45)

We completely prove that the Hamiltonian H (21) is a strictly concave function in
variables y, Td, and u.
2. Let us prove now the following result for the concave Hamiltonian H (21).
Lemma 2. Let function H = H(y, Td, u) : (0,+∞)× (0,+∞) (0,+∞)→ R be twice

continuously differentiable and strictly concave in y, Td, and u. Assume that u
0 = u0(y, Td)

delivers maximum to H(y, Td, u) in u. Then the composite function

F (y, Td) = H(y, Td, u
0(y, Td)) (46)

is strictly concave in y, Td.
Proof. Assuming the existence of the maximum point u0 = u0(y, Td) for function

u → H(y, Td, u) we have the uniqueness of this maximum due to strict concavity of
function H(y, Td, u) in u. This maximum point u

0 = u0(y, Td) is a solution of the necessary
maximum conditions

∂H

∂u
(y, Td, u) = 0. (47)

Since ∂2H(y, Td, u)/∂u
2 < 0 (36), then ∂H(y, Td, u)/∂u is a strictly monotonic function

and according to the implicit function theorem there exists the unique solution u0 =
u0(y, Td) of equation (47). This solution is differentiable and its derivatives are defined by
relation

∂u0

∂y
= − ∂

2H

∂y∂u
/
∂2H

∂u2
,

∂u0

∂Td
= − ∂

2H

∂Td∂u
/
∂2H

∂u2
. (48)
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Let us consider the composite function F (y, Td) = H(y, Td, u
0(y, Td)) and show that it is

strictly concave. For this purpose we use the Sylvester’s criterion. Let us calculate the
matrix of second derivatives of function F (y, Td) and prove that it is negative definite. The
first derivatives of function F (y, Td) are calculated according to the rule of differentiation
of composite functions and taking into account the necessary maximum conditions (47)

∂F

∂y
=
∂H

∂y
+
∂H

∂u

∂u0

∂y
=
∂H

∂y
(y, Td, u

0(y, Td)), (49)

∂F

∂Td
=
∂H

∂Td
+
∂H

∂u

∂u0

∂Td
=
∂H

∂Td
(y, Td, u

0(y, Td)). (50)

Second derivatives of function F (y, Td) are calculated as follows:

∂2F

∂y2
=
∂2H

∂y2
+
∂2H

∂y∂u

∂u0

∂y
=
∂2H

∂y2
−
(
∂2H

∂y∂u

)2
/
∂2H

∂u2
=

=


∂2H
∂y2
∂2H

∂u2
−
(
∂2H

∂y∂u

)2 /∂2H
∂u2

< 0, (51)

the sign in (51) is negative since due to strict concavity of function H(y, Td, u) the numer-
ator is positive and the denominator is negative;

∂2F

∂T 2d
=
∂2H

∂T 2d
+
∂2H

∂Td∂u

∂u0

∂Td
=
∂2H

∂T 2d
−
(
∂2H

∂Td∂u

)2
/
∂2H

∂u2
=

=


∂2H
∂T 2d

∂2H

∂u2
−
(
∂2H

∂Td∂u

)2 /∂2H
∂u2

< 0, (52)

the sign in (52) is negative since due to strict concavity of function H(y, Td, u) the numer-
ator is positive and the denominator is negative;

∂2F

∂y∂Td
=
∂2H

∂y∂Td
+
∂2H

∂y∂u

∂u0

∂Td
=
∂2H

∂y∂Td
− ∂

2H

∂y∂u

∂2H

∂Td∂u
/
∂2H

∂u2
=

=

(
∂2H

∂y∂Td

∂2H

∂u2
− ∂

2H

∂y∂u

∂2H

∂Td∂u

)
/
∂2H

∂u2
. (53)

Let us calculate the determinant of the matrix of second derivatives for function F (y, Td):

∆F =
∂2F

∂y2
∂2F

∂T 2d
−
(
∂2F

∂y∂Td

)2
=

= [


∂2H
∂y2
∂2H

∂u2
−
(
∂2H

∂y∂u

)2

∂2H
∂T 2d

∂2H

∂u2
−
(
∂2H

∂Td∂u

)2−

−
(
∂2H

∂y∂Td

∂2H

∂u2
− ∂

2H

∂y∂u

∂2H

∂Td∂u

)2
]/

(
∂2H

∂u2

)2
=

= [
∂2H

∂u2


∂2H
∂y2
∂2H

∂T 2d
−
(
∂2H

∂y∂Td

)2−
− ∂

2H

∂Td∂u

(
∂2H

∂y2
∂2H

∂Td∂u
− ∂

2H

∂y∂Td

∂2H

∂y∂u

)
+
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+
∂2H

∂y∂u

(
∂2H

∂y∂Td

∂2H

∂Td∂u
− ∂

2H

∂T 2d

∂2H

∂y∂u

)
]/
∂2H

∂u2
=

= ∆3/
∂2H

∂u2
> 0, (54)

the sign in (54) is positive since due to strict concavity of function H(y, Td, u) the numer-
ator ∆3 is negative and the denominator is negative.
Since the determinants (51), (52), and (54) alternate the sign from minus to plus,

then according to the Sylvester’s criterion the matrix of second derivatives for function
F (y, Td) is negative definite and, hence, function F (y, Td) is strictly concave in variables
y, Td. Lemma 2 is proved.
3. Let us consider now restrictions on control parameter rd (16) and, hence, on control

parameters u
rldy ≤ u ≤ rudy. (55)

We choose the lower u = rldy and upper u = r
u
dy bounds for control parameter u and

substitute them to the Hamiltonian (21). We obtain two composite functions

G(y, Td) = H(y, Td, ry), r = rld, r = rud , r > 0. (56)

Let us prove that composite functions G(y, Td) (56) are strictly concave. For this purpose
we use the Sylvester’s criterion and show that the matrix of second derivatives of function
G(y, Td) is negative definite.
We calculate the first derivatives of function G(y, Td)

∂G

∂y
=
∂H

∂y
+
∂H

∂u
r,

∂G

∂Td
=
∂H

∂Td
. (57)

Second derivatives of function G(y, Td) have the following form

∂2G

∂y2
=
∂2H

∂y2
+ 2r

∂2H

∂y∂u
+ r2

∂2H

∂u2
, (58)

∂2G

∂T 2d
=
∂2H

∂T 2d
, (59)

∂2G

∂y∂Td
=
∂2H

∂y∂Td
+
∂2H

∂Td∂u
r. (60)

Due to the Sylvester’s criterion for the matrix of second derivatives of the Hamiltonian
H(y, Td, u) (21) we have in particular the following inequalities for the determinant of the
first and second orders

∂2H

∂y2
< 0,

∂2H

∂T 2d
< 0,

∂2H

∂u2
< 0,

∂2H

∂y2
∂2H

∂u2
−
(
∂2H

∂y∂u

)2
> 0,

which in turn imply the estimate

∣∣∣∣∣ ∂
2H

∂y∂u

∣∣∣∣∣ <
∣∣∣∣∣∂
2H

∂y2

∣∣∣∣∣
1/2 ∣∣∣∣∣∂

2H

∂u2

∣∣∣∣∣
1/2

. (61)
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The minors of the first order for the matrix of second derivatives of the composite function
G(y, Td) (56) can be estimated as follows

∂2G

∂y2
=
∂2H

∂y2
+ 2r

∂2H

∂y∂u
+ r2
∂2H

∂u2
≤

≤ ∂
2H

∂y2
+ 2r

∣∣∣∣∣ ∂
2H

∂y∂u

∣∣∣∣∣+ r2∂
2H

∂u2
<

<
∂2H

∂y2
+ 2r

∣∣∣∣∣∂
2H

∂y2

∣∣∣∣∣
1/2 ∣∣∣∣∣∂

2H

∂u2

∣∣∣∣∣
1/2

+ r2
∂2H

∂u2
=

= −



∣∣∣∣∣∂
2H

∂y2

∣∣∣∣∣− 2r
∣∣∣∣∣∂
2H

∂y2

∣∣∣∣∣
1/2 ∣∣∣∣∣∂

2H

∂u2

∣∣∣∣∣
1/2

+ r2
∣∣∣∣∣∂
2H

∂u2

∣∣∣∣∣

 =

=

(∣∣∣∣∣∂
2H

∂y2

∣∣∣∣∣− r
∣∣∣∣∣∂
2H

∂u2

∣∣∣∣∣
)2
≤ 0, (62)

∂2G

∂T 2d
=
∂2H

∂T 2d
< 0. (63)

Let us calculate the determinant of the second order for the matrix of second derivatives
of function G(y, Td)

∆G =
∂2G

∂y2
∂2G

∂T 2d
−
(
∂2G

∂y∂Td

)2
=

=

(
∂2H

∂y2
+ 2r

∂2H

∂y∂u
+ r2

∂2H

∂u2

)
∂2H

∂T 2d
−

−
(
∂2H

∂y∂Td
+ r

∂2H

∂Td∂u

)2
=

=


∂2H
∂y2
∂2H

∂T 2d
−
(
∂2H

∂y∂Td

)2+
+2r

(
∂2H

∂y∂u

∂2H

∂T 2d
− ∂

2H

∂y∂Td

∂2H

∂Td∂u

)
+

+r2


∂2H
∂u2
∂2H

∂T 2d
−
(
∂2H

∂Td∂u

)2 =
= D1 + 2rD2 + r

2D3, (64)

where D1, D2, D3 are the corresponding minors of the matrix of second derivatives for
the Hamiltonian H(y, Td, u) (21).
Let us show that for the minors D1, D2, D3 the following inequality takes place

D1D3 −D22 > 0. (65)

Really, we have the chain of relations

D1D3 −D22 =

=


∂2H
∂y2
∂2H

∂T 2d
−
(
∂2H

∂y∂Td

)2

∂2H
∂u2
∂2H

∂T 2d
−
(
∂2H

∂Td∂u

)2−
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−
(
∂2H

∂y∂u

∂2H

∂T 2d
− ∂

2H

∂y∂Td

∂2H

∂Td∂u

)2
=

=
∂2H

∂T 2d
[


∂2H
∂y2
∂2H

∂u2
−
(
∂2H

∂y∂u

)2 ∂2H
∂T 2d

−

−
(
∂2H

∂y2
∂2H

∂Td∂u
− ∂

2H

∂y∂Td

∂2H

∂y∂u

)
∂2H

∂Td∂u
−

−
(
∂2H

∂u2
∂2H

∂y∂Td
− ∂

2H

∂y∂u

∂2H

∂Td∂u

)
∂2H

∂y∂Td
] =

=
∂2H

∂T 2d
∆3 > 0, (66)

the sign is positive since both multipliers (see (43), (45)) are negative.
Basing on relation (65) one can evaluate the sign of the determinant ∆G (64)

∆G = D1 + 2rD2 + r
2D3 ≥

≥ D1 − 2r|D2|+ r2D3 > D1 − 2rD1/21 D
1/2
3 + r2D3 =

= (D
1/2
1 − rD1/23 )2 ≥ 0. (67)

Thus, minors of the first order (62), (63), and the second order (67) alternate signs
starting from minus and, hence, according to the Sylvester’s criterion the matrix of second
derivatives for the composite function G(y, Td) (56) is negative definite, and the composite
function G(y, Td) is strictly concave.
4. To get the maximized Hamiltonian Ĥ(y, Td) (22) we paste strictly concave functions

F (y, Td) (46), G(y, Td) (56). Let us show that sewing of these functions is continuously
differentiable. To this end it is necessary to calculate partial derivatives of functions
F (y, Td), G(y, Td) and verify that these derivatives are equal to each other at points of
sewing of these functions. Points of sewing (ys, T sd ) of functions F (y, Td), G(y, Td) are
defined by relations

F (ys, T sd ) = H(y
s, T sd , u

0(ys, T sd)) = H(y
s, T sd , ry

s) = G(ys, T sd), (68)

or, equivalently, by relation
u0(ys, T sd) = ry

s. (69)

Let us calculate partial derivatives of functions F (y, Td), G(y, Td) at points (y
s, T sd) of

sewing of these functions

∂F

∂y
(ys, T sd) =

∂H

∂y
(ys, T sd , u

0(ys, T sd )) +

+
∂H

∂u
(ys, T sd , u

0(ys, T sd))
∂u0

∂y
(ys, T sd), (70)

∂F

∂Td
(ys, T sd) =

∂H

∂Td
(ys, T sd , u

0(ys, T sd )) +

+
∂H

∂u
(ys, T sd , u

0(ys, T sd ))
∂u0

∂Td
(ys, T sd), (71)

∂G

∂y
(ys, T sd ) =

∂H

∂y
(ys, T sd , ry

s) +
∂H

∂u
(ys, T sd , ry

s)r, (72)
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∂G

∂Td
(ys, T sd ) =

∂H

∂Td
(ys, T sd , ry

s). (73)

Due to necessary conditions of optimality (47) at points of sewing (69) we have relations

∂H

∂u
(ys, T sd , u

0(ys, T sd )) =
∂H

∂u
(ys, T sd , ry

s) = 0, (74)

and, hence, partial derivatives (70), (71) of function F (y, Td) and partial derivatives (72),
(73) of function G(y, TD) coincide with each other

∂F

∂y
(ys, T sd ) =

∂H

∂y
(ys, T sd , u

0(ys, T sd)) =

=
∂H

∂y
(ys, T sd , ry

s) =
∂G

∂y
(ys, T sd) (75)

∂F

∂Td
(ys, T sd ) =

∂H

∂Td
(ys, T sd , u

0(ys, T sd)) =

=
∂H

∂Td
(ys, T sd , ry

s) =
∂G

∂Td
(ys, T sd) (76)

at points of sewing (ys, T sd) (69) of these functions.
Thus, we obtain that the maximized Hamiltonian Ĥ (22) is continuously differentiable

and strictly concave function in (y, Td). Proposition 1 is proved.
Proposition 2. Under the conditions of Proposition 1 the Pontryagin maximum

principle gives sufficient conditions to find the unique optimal solution in the Problem
(P1).
Proof. Let (y, Td, rd) = (y(t), Td(t), rd(t)) be an arbitrary admissible process. Denote

by x the pair (y, Td). Due to the strict concavity of Ĥ in x the following inequality holds:〈
∂Ĥ(x∗(t), ψ(t))

∂x
, x∗(t)− x(t)

〉
< Ĥ(x∗(t), ψ(t))− Ĥ(x(t), ψ(t)), (77)

if x(t) �= x∗(t).
Combining this inequality with condition (28) we obtain that for t ∈ [t0, θ] the following

chain of inequalities takes place:〈
ψ̇(t), x(t)− x∗(t)

〉
< Ĥ(x∗(t), ψ(t))− Ĥ(x(t), ψ(t))≤

≤ 〈ψ(t), ẋ∗(t)− ẋ(t)〉+
+e−ρ(t−t0)(lnD(x∗(t), r∗d(t))− lnD(x(t), rd(t))),

where

lnD(x(t), rd(t)) = lnD(y(t), Td(t), rd(t)) =

= (1 + a2) lny(t) + a1 ln(Td(t) +
rd(t)y(t)

ω
) + a2 ln rd(t).

Hence,

d

dt
〈ψ(t), x(t)− x∗(t)〉+ e−ρ(t−t0) lnD(x(t), rd(t)) <

< e−ρ(t−t0) lnD(x∗(t), r∗d(t)).
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Integrating this inequality over t ∈ [t0, θ], we get

〈ψ(θ), x(θ)− x∗(θ)〉+
θ∫
t0

e−ρ(t−t0) lnD(x(t), rd(t))dt <

<

θ∫
t0

e−ρ(t−t0) lnD(x∗(t), r∗d(t))dt.

Taking into account the transversality conditions (24), we obtain

θ∫
t0

e−ρ(t−t0) lnD(x(t), rd(t))dt <

θ∫
t0

e−ρ(t−t0) lnD(x∗(t), r∗d(t))dt.

Thus, (x∗, r∗d) = (y
∗(t), T ∗d (t), r

∗
d(t)) is the unique optimal solution in the Problem (P1).

The proposition is proved.

5 Results of Numerical Simulations (Sony Corporation)

This section presents the results of application of the model to the Japanese Electrical
Machinery Sector. We develop simulations on the basis of the described mathematical
model and construct numerically optimal solutions. In parallel we carry out the multi-
variant scenario analysis and sensitivity analysis.
For numerical analysis of the model we choose the software package ”Dynamic Model

Optimizer” which has been developed by Ivan Matrossov. Methods of numerical analysis
of differential equations and optimal control problems are realized in this package.

5.1 Identification of model’s parameters

We focus on the Sony Corporation. The simulation scenarios are calibrated on the
real data. The source of data is Tokyo Institute of Technology (Laboratory of Prof.
C.Watanabe). We simulate the model in period 1980 - 2020 and compare the optimal
trajectories of the model with the real time series in period 1980-2000. In figures given
below the horizontal axis displays time and the vertical axis shows values of a presented
variable. All variables (except R&D intensity and assimilation capacity) are measured in
billion of Yen.
For Sony Corporation we use the following initial values of the main variables in 1980

(in bln Yen):
y0 = 427.22 – production,
T 0d = 157.1 – domestic technologies, (36)
T 0s = 2482.88 – spillover pool.
First, by the method of least squares we find linear functions Rd(t) = 13.4(t− 1980)+

50.7 Rs(t) = 125.81(t− 1980) + 723.8 for the rates of domestic technologies Rd(t) and
spillover pool Rs(t) as approximations of the real data (Fig. 1,2, respectively).
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Analyzing statistical data we choose function f1(t) as a smoothed stair (Fig.3) with
max = 0.14 and min = 0.07.

0
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f1

Fig. 3.

The algorithm of identification of other model’s parameters consists in the following.
We have the data in the period from 1980 till 2000 for the main variables of the model,
such as ystat(t), T statd (t) T stats . Our problem is to find such values of parameters f2, gd,
γ, that the solution of the system of differential equations (1)-(5) with initial conditions
(36) approximates the real data in the best way. In order to do that we solve the following
auxiliary optimal control problem: find such values of f2 ∈ [f l2, fu2 ], gd ∈ [gld, gud ], γ ∈
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[γ l, γu], which maximize the objective function

2000∫
1980

(
−(y(t)− ystat(t))2 − (Td(t)− T statd (t))2 − (Ts(t)− T stats (t))2

)
dt,

subject to the dynamics (1)-(5).
For solution of this problem we apply the BFG QN algorithm. Let us indicate the values

for model’s parameters which we choose after the identification of model’s parameters:
f2 = 0.1, gd = 0.65, γ = 0.77.
The further analysis of data and statistical results in [12], [14], [15] allow us to find

the values of the parameters: e = 1.69, β1 = 0.62, β2 = 0.34.
Under such values of parameters the conditions of proposition 1 is hold and we can

use the results of theorems 1 and 2.
Figures 4-7 illustrate two curves, one of which is the solution of Cauchy problem (1)-(5)

with the mentioned numerical values of parameters and initial data (36), the second curve
is statistical data.
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Fig. 4. Trajectories of Domestic Technology Stock Td.

One can see that trajectories of the simulation model approximate the real time series
with a good accuracy.
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Fig. 7. Trajectories of Assimilation Capacity z.

Fig. 8 shows the interaction between production and R&D intensity in the model for
Sony Corporation. Due to the time lag in R&D investments, which equals approximately
to 4 years, the R&D intensity increased during 1980-1984, then its stagnation started,
whereas production continued to grow. These trends correspond to the so called inertial
scenario. For the period 1980 - 1998 the inertial trajectories almost coincide with the
empirically observed trajectories.

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020

Production R&D Intensity

Fig. 8. Trends of production and R&D intensity in inertial scenario.

5.2 Analysis of the impact of technology spillovers

Our next experiment intends to analyze the effect of technology spillovers for Sony Corpo-
ration. Two scenarios are considered - in the first case, the firm is able to use technologies
developed by other firms, and, in the second case, the firm does not have such possibilities.
Table 1 presents the values of the optimal solutions of the model in two scenarios.

Scenario 1 demonstrates the firm’s evolution given by the solution of the optimal control
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Problem (P1). Scenario 2 assumes that there is no spillover effect that is the firm cannot
utilize spillover technologies (in terms of the model it means that the firm’s assimilation
capacity is zero, i.e. z = 0). Table 1 shows the values of the main firm’s parameters in
years 1990, 2000, 2020.

Table 1. Simulation - based comparative analysis of the development of the
Sony Corp. under scenarios 1 and 2.

Year Scenario 1: ex-
ternal technologies
assimilated (z�=0)

Scenario 2: no
assimilation of ex-
ternal technologies
(z = 0)

Variable

1990 1643.4 1653

Production2000 6218.6 6173.9
2020 61741 59017

1990 0.074 0.062

R&D2000 0.07 0.059

Intensity2020 0.067 0.057

1990 627.39 407.47

Technology2000 1949 1112.7

Stock2020 13536 7229.2

Domestic1990 448.57 407.47

Technology2000 1266.5 1112.7

Stock2020 8323.8 7229.2

1990 106.24 103.1

Objective2000 181.18 175.62

Function2020 262.38 254.24

One can see that under Scenario 1, all firm’s parameters take greater values than under
Scenario 2. The simulations show that this trend holds during the entire period 1990-2020
and implies that Scenario 1 provides a higher value of the utility.
This case study demonstrates advantages of utilizing spillover technologies.

5.3 Sensitivity analysis 1

Now we shall estimate the sensitivity of the model with respect to parameter gd, the
discounted marginal productivity of technology, which serves as a risky factor of R&D in-
vestments in the model. First (case 1), we take gd as function of time, which approximates
the real data series, gd = gd(t) (see Fig. 9). Solving Problem (P1), we obtain the optimal
R&D intensity shown on Fig. 10.
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Fig. 9. Discounted marginal productivity of technology.

In the case 2 we deal with the constant average value of gd for 20 years from 1980 till
2000, i.e.

gad =

∫ 20
0 gd(t)dt

20
=

∫ 20
0 (1− 0.75exp(−0.09 ∗ t))dt

20
≈ 0.65.

The simulation result is demonstrated in Fig. 11. In both cases the trends in the optimal
R&D intensity differ on the first half of the time interval. Function gd(t) (Fig.9) increases
fastly from 1980 till 2000, thus increasing the uncertainty of R&D investments. This
trend explains the decrease of the R&D intensity in this period in the case 1 (Fig. 10)
(the investors were probably not willing to spend much into R&D due to the unstable
economic situation).
In the case 2 trajectories of the R&D intensity do not have trend to decrease. Table

2 shows the simulated values of the optimal R&D intensity, production, technology stock
and objective function for cases 1 and 2.
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Fig. 10. The optimal R&D intensity in the case 1 (gd = gd(t)) (Sony
Corp.).
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Fig. 11. The optimal R&D intensity in the case 2 (gd = const) (Sony Corp.).

During the first half of the time interval the domestic technology stock and the total
technology stock are greater in the case 1 due to a higher level of the optimal initial R&D
intensity. Since 1990 the optimal R&D intensity in the case 2 prevails over the case 1 and
this fact explains the essential difference in technology stocks in cases 1 and 2. Production
function has the opposite trends in cases 1 and 2. Note, that in the case 2 where the risky
factor gd is stable the objective function keeps greater values at the end of the analyzed
period (till 2020).

Table 2. Simulation-based comparative analysis of the influence of dis-
counted marginal productivity of technology for the Sony Corporation in cases
1 and 2.

Variable Case 1985 1990 2000 2010 2020

R&D case 1 0.0948 0.0599 0.043 0.039 0.037
Intensity case 2 0.0765 0.0745 0.07 0.068 0.0665

Production case 1 809.29 1626.5 6347.5 22441 62428
case 2 838.71 1643.4 6218.6 21972 61741

Domestic case 1 341.05 514.24 1112.4 2583.2 5670.2
Tech.Stock case 2 265.51 448.51 1266.5 3492.1 8323.8

Technology case 1 454.66 685.09 1699.8 4102.4 9151.5
Stock case 2 359.96 627.39 1994.9 5623.3 13536

Objective case 1 59.601 108 182.94 232.5 262.22
Function case 2 57.291 106.24 181.18 231.87 262.38

Figures 12 and 13 show the evolution of production function in cases 1 and 2, respec-
tively.
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Fig. 12. Optimal production in the case 1 (gd = gd(t)) (Sony Corp.).
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Fig. 13. Optimal production in the case 2 (gd = const) (Sony Corp.).

In the case 2 the technology stock is much higher due to a higher level of the R&D
intensity (see Figures 14 and 15).
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Fig. 14. The optimal technology stock in the case 1 (gd = gd(t)) (Sony
Corp.).
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The sensitivity analysis leads to preliminary conclusions that the model is sensitive to
the factor gd, and, therefore, calibration of this factor demands high precision.
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Fig. 15. The optimal technology stock in the case 2 (gd = const) (Sony
Corp.).

5.4 Sensitivity analysis 2

Now let us pass to the simulation results with respect to changes in the elasticity of
substitution e, which plays an important role in identification and forecast of the optimal
R&D intensity. In all previous experiments the elasticity of substitution equals 1.69, which
is the average value for the Electric Machinery Industry (see [15]).
The simulations show that trends in the model’s trajectories are not influenced by

variation of e whereas the values of the parameters depend on e essentially. Table 3 shows
the outcomes for Scenario 1: e = 1.69 and Scenario 2: e = 1.02. One can see that for
Scenario 2 the optimal R&D intensity is about 15% higher whereas the optimal production
is kept on a lower level. A possible explanation is that in Scenario 2 where products are
easily substitutable the firm is not interested in producing huge amounts of ”similar”
products; its interest is focused primarily on producing new technologies to improve its
products. As a result for Scenario 2 we have a very high level of the technology stock.
In 2020 absolute values of the domestic technology stock and the total technology stock

in Scenario 1 are greater due to an essential difference in production levels. But if we look
at the relative values we see that the technology intensity is higher in Scenario 2 (0.63)
than in Scenario 1 (0.21). This result shows that the optimal R&D investment strategies
under different economic conditions can alter considerably.
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Table 3. Simulation - based comparative analysis of variation of the elas-
ticity of substitution for the Sony Corporation in Scenarios 1 and 2.

Variable Scenario 1985 1990 2000 2010 2020

R&D Scenario 1 0.0765 0.0745 0.07 0.068 0.0665
Intensity Scenario 2 0.163 0.159 0.153 0.151 0.15

Production Scenario 1 838.71 1643.4 6218.6 21972 61741
Scenario 2 672.95 1114 3185.6 8691.5 19291

Domestic Scenario 1 265.51 448.57 1266.5 3492.1 8323.8
Technology
Stock

Scenario 2 337.91 598.29 1567.6 3738.5 7679.3

Technology Scenario 1 359.96 627.39 1994.9 5623.3 13536
Stock Scenario 2 471.32 837.8 2432.6 5904.3 12227

6 Strategies of Optimal Balance between Domestic Tech-
nology and Absorbed Technology

This section is devoted to the question about optimal balance between domestic technology
stock and technology spillovers. In order to investigate this problem we make further
modification of the model. In this version we introduce the second control parameter
ra, which describes the expenditures for applying to technology spillover. We divide
R&D intensity r into two parts: the first part is the share of production which goes to
elaboration of domestic technologies, and the second part is directed to the process of
technology absorption

r(t) = rd(t) + ra(t).

It involves a modification of the equation for production (1), namely, we add the second
negative term in the equation related to the risk of investment into technology absorption
−gara. Also we introduce the auxiliary variable Ta - the technology stock used for apply-
ing spillover technology. The dynamics for this variable has the same structure like the
dynamics of domestic technology stock

Ṫa(t) = ra(t)y(t).

Finally we change the equation for assimilation capacity (4) – instead of domestic
technology Td we use the absorbed technology stock Ta.
The optimal control problem is to find such level of control parameters r∗d and r

∗
a which

maximize the utility function (18) and subject to the following equations:

ẏ(t)

y(t)
= f1(t) + f2

(
T (t)

y(t)

)γ
− gd(t)rd(t)− ga(t)ra(t),

Ṫd(t) = rd(t)y(t),

Ṫa(t) = ra(t)y(t),

T (t) = Td(t) + zTs(t),



–27 –

z(t) =
1

1 + Ṫs(t)Ts(t)
/ Ṫa(t)Ta(t)

Ta(t)

Ts(t)
.

We consider the results for two firms from the Japanese Electric Machinery Industry
with high (Sony Corporation) and low (Kokusai Company) levels of domestic technology
stock and production. The initial stage and parameters of the model for Sony are the
same as in Section 5.1. New parameters are the following: T 0a = 100, ga = 0.5. Let’s
indicate the initial stage and model’s parameters for Kokusai Co.:
y0 = 23.98, T 0d = 6.48, T

0
a = 4, T

0
s = 2622.49.

f1 = 0.14, f2 = 0.05, gd = 0.6, ga = 0.2, γ = 0.75,
e = 1.69, β1 = 0.62, β2 = 0.34.
For identification of the model’s parameters we use the algorithm described in Section

5.1.
The results of comparison analysis of the optimal strategies for these two firms are

the following. For Sony Corp. we obtain that the optimal strategy prescribes to spend
a relatively small portion of R&D for utilizing technology spillovers. One can see (Fig.
16) the curves for intensities of the total investment r , of domestic R&D investments rd
and technology absorption ra. The share of technology absorption in the total investment
varies from 0.55 till 0.7, but the difference between intensities of domestic investments and
technology absorption is not large.
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Fig. 16. Trajectories for Sony Corporation.

Optimal policy for Kokusai Company orients on technology absorption and the share
of technology absorption in the total investment is about 0.9 - 0.95 (see Fig. 17).
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Fig. 17. Trajectories for Kokusai Company.
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This investment policy involves the high level of optimal assimilation capacity for
this firm. The optimal synthetic absorption is essentially higher than figures of the real
absorption policy (see Fig. 18). For Sony Corp. we observe the growth trend of the
optimal assimilation capacity but there is no such large difference between the synthetic
scenario and the statistical data (see Fig. 19).
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Fig. 18. Trajectories of assimilation capacity for Kokusai Company.
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Fig. 19. Trajectories of assimilation capacity for Sony Corporation.

Finally let us analyze the impact of domestic and spillover technologies on the total
technology stock in the firm. Two pictures for Sony Corp. (see Fig. 20, 21) show the
trajectories of the real process and the optimal synthetic scenario. In the real process the
domestic technology Td has the dominant impact on the total technology stock T (see Fig.
20), while in the optimal synthetic scenario the impact of the assimilated technology Ta
and the domestic technology Td are almost the same (see Fig. 21).
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Fig. 20. Trajectories of the real technology stocks for Sony Corporation.
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Fig. 21. Trajectories of the optimal technologies stocks for Sony Corpora-
tion.

For Kokusai Co. the difference between the domestic technology and assimilated tech-
nology is essential in both cases (in the real data series and optimal synthetic scenarios),
but in the real process (see Fig. 22) the level of domestic technology is high (Td/zTs = 5/1),
while in the optimal synthetic scenario (see Fig. 23), vice versa, the assimilated technology
is larger than domestic technology (Td/zTs = 1/3). Consequently, there are higher levels
of the total technology stock, production and utility function in the optimal synthetic
scenario than in the real data.
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Fig. 22. Trajectories of the real technologies stocks for Kokusai Company.
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Fig. 23. Trajectories of the optimal technologies stocks for Kokusai Com-
pany.

In contrast to the previous version of the model the new modification has two con-
trol parameters and allows to investigate the optimal balance between investments into
domestic technology and assimilated technology. Solution of the optimal control problem
shows that more profitable for a firm to have larger share of investment into absorbed
technology in comparison with proportions of the real data on investments, especially, for
firms with small high-tech levels.

7 Conclusions

The goal of this paper is to elaborate a dynamical model, which describes impacts of
technology stock and technology spillover effect on production of a firm. Dynamics of
the model combines the growth trend generated by the exponential term of technology
intensity and the decline trend provided by the risky factor of technology innovation. The
optimal control problem is formulated in the framework of the model and the maximum
principle of Pontryagin is applied to its solution. Due to the uniqueness of the optimal
solution we apply numerical methods to design the optimal levels of production, technology
stock, R&D intensity, and assimilation capacity.
The sensitivity analysis of the model with respect to discounted marginal productivity

of technology and elasticity of substitution is carried out. It is shown that in the case
of quickly increasing discounted marginal productivity of technology the optimal R&D
intensity reduces swiftly. We demonstrate that if the elasticity of substitution is close to
the value 1 then the level of optimal R&D intensity grows rapidly.
The multi-variant scenario analysis of the model for the Sony Corporation is carried

out. It demonstrates advantages of efficient utilization of absorbed technology in manufac-
turing. Computer simulations show that the impact of assimilation capacity is essential.
We compare the optimal trajectories with the real data series in the interval since

1980 till 1999 and show that the real development of the Sony Corporation was close to
the optimal synthetic trajectories of the proposed model. We also compare the optimal
solutions for two firms from the Electric Machinery Industry of Japan and demonstrate
that the optimal strategy is very sensitive to the initial stage of a firm. Our analysis shows
that for firms with low level of domestic technology it is optimal to increase the share of
investments into technology absorption.
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