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PREFACE

This report is one of a series describing IIASA research into methods
for comparing alternative models that could be applied for the establish-
ment of control policies to meet water quality standards. In addition to
model evaluation, this project has focused on problems of optimization and
conflict resolution in large river basins.
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ABSTRACT

Economists have frequently proposed the use of taxes to internalize
externalities, the unit tax on a particular activity being equal to the marginal
social damage it generates. This paper introduces such a taxation scheme,
comprising a set of rules which, given a set of polluters, their profits and
costs, and a Central Authority for environmental control, generates a set
of taxes to be levied on the waste emissions. Different attributes of
the taxation schemes are then presented, the most important of which
(stability) refers to the possibility of overall eooperation between all the
polluters. The paper concludes by examining the implications of the exis-
tence of stable taxation schemes and of the imposition of constraints either
on the emissions or on the percentage of load removed.






Stable Taxation Schemes in Regional

Environmental Management

INTRODUCTION

Many opportunities and problems faced by individual decision
units can be better dealt with or exploited by group behavior.
One example that this paper is concerned with is the problem of
dealing with water pollution, and the opportunity presented is
for a joint arrangement to treat and transport wastes. Regional
or areawide wastewater treatment systems offer economic and en-
vironmental benefits to wastewater dischargers. Economic bene-
fits arise from economies of scale and the opportunity to devel-
op a comprehensive, consistent wastewater treatment system which
minimizes redundant capacities. Environmental benefits arise
from the increased reliability of larger, better funded systems
and the opportunity to move effluents to discharge points with

minimal adverse impact.

Along with the potential benefits come the problems of how
to organize the regional system efficiently including an agree-
ment on how the benefits should be distributed. One mechanism
for allocating benefits is through a pricing structure based on
the services of a regional authority. Depending on the particular
pricing structure and the administrative control exercised by a
central coordinating agency, different distributions of profits
and benefits result. Certain pricing rules may unduly favor one

class of users over another.

A central problem for the investigation is the question of
what allocation of benefits among the participants reinforces
group adhesion. We refer to a pricing rule as stable if once
stated there are no incentives for the users of the service to
reject the regional plan. Such an incentive to reject would

exist if a smaller group of participants could conceive of a plan



that would allow for greater rewards. The desirability of cen-
tral treatment of water depends on the existence of economies of
scale. Given that there are economies of scale over the relevant
range of demand, the potential for a profitable collaboration
among users exists. The options for choosing stable prices de-

pends on the degree of economies of scale.

In presenting the model of a regional system, we consider
two possible institutional arrangements. Either the waste treat-
ment plants could be owned and operated by the producer, or they
could be operated by a regional authority. The general setting
involves a transfer from the producers in the region and the
regional authority. The transfer consists of waste discharge,
possibly treated, and funds from the producer to the regional
authority. The amount of waste discharge to be transferred to
the regional authority and the decision on any further treatment
is based on achieving the greatest regional profit, where profit
is measured by private gains by firms in terms of their own out-
puts, and both the environmental damages and treatment costs. It
should be emphasized that a best regional plan does not necessarily
imply one central treatment plant but may consist of a completely
decentralized system of treatment plants, one for each discharger.
The main point is that the plan developed should take into account
the total costs and profits for the entire region. Associated
with a regional solution will be a set of charges paid by the
firms to the regional system. The charges are both for the treat-
ment of waste that the regional authority carries out (if any) and
for the environmental damages. The charges have a variety of pur-
poses; first, they are incentives to the firms to develop produc-
tion processes which generate less waste discharge; secondly, they
are used by the regional authority to pay for the costs of dis-
posing of the waste including compensation for environmental dam-

ages; and last, the charges should support the regional system.

In order to understand and analyze the problem of supporting
financially a regional system based on overall planning, we will
use some of the concepts from the theory of games, and in particu-

lar the characteristic function. 1In order to explain the meaning



and use of this function, consider a regional system consisting

of N firms plus the regional authority. One way of describing a
game is to determine what each collection or coalition of players
can achieve. The characteristic function of a coalition is such

a measure, for it gives to each coalition what that coalition's
total profit is worth. For the regional problem, the character-
istic function determines the maximum net profit attainable for
any group of firms and the regional authority. 1In order to
specify the function, we must define what the legal conditions
governing the formation of a regional system are. For example,
without any legal restrictions on direct discharge by a producer,
there would be no rationale for any regional system. The legal
imposition of restrictions on effluent discharge creates a possible
need on the part of the dischargers for some coordination of waste
treatment in order to achieve economies of scale. From the view-
point of the regional authority, it must receive some guidance
from the governing political unit on how discharges should be
determined. Thus the method for calculating the values of the
characteristic function must reflect the legal restrictions on the

choices available to the participants.

We shall assume that the regional authority has been given
legal responsibility for all discharges. Based on a damage func-
tion, it must make appropriate payments for compensation. Dis-
chargers must obtain an agreement with the regional authority for
a certain discharge level. Without an agreement, no discharge is
possible. Reflecting these conditions, the characteristic func-
tion is defined to have the following properties. First, the
value of a coalition without the regional authority as a member
is zero, since we assume that some waste discharge is generated
at any level of production and discharge rights must be granted
by the regional authority. Secondly, a coalition with only the
Central Agency as a member will have zero value since there is no
discharge taking place. Thus the only coalitions with potentially
positive value for the characteristic function are those that con-

tain both the regional authority and at least one producer.



In summary, the characteristic function V is defined with
respect to different collections of dischargers and the regional
authority. The value of the function gives the total potential
>rofit available including taking account of treatment costs and
anvironmental damage. Because of the legal restrictions, zero
value is given to coalitions that do not include the regional

authority.

Changes in the characteristic function V indicate how profit
depends on the coalition structure. Thus consider Y, and Y,
iistinct collections of all parties N (dischargers and Central
authority) where the Central Authority is a member of, say, Yqe
Then V(yz) = 0 and V(y1) > 0. Suppose V(y1) < V(y1 U yz). In
that case, the addition of the members of y, to the group con-
3isting of ¥4 improves the total profit. 1In the case we are
nodelling, a regional authority controlling pollution discharge,
this would mean that the increase in environmental damage and
treatment costs is less than the additional profit made by Yy-
The reverse condition, V(y1) > V(y1 U y2), reflects a situation
vhere the additional members from Y, lower the total profits.
Jnder this circumstance, the environmental damages and treatment
costs are extremely high. One would expect strong resistance to

having the additional members added to the region.

A major issue explored in the paper is the existence of

charges on the dischargers which allows the regional authority

to at least cover its costs while at the same time, there is no
incentive for any group of dischargers to withdraw from the re-
jional system. 1In our formulation of the problem, the regional
authority has certain extraordinary power in that a discharger
cannot operate without securing some agreement with the authority.
Under this assumption, as already mentioned, a virtual veto power
is possessed by the regional authority. As long as certain condi-
tions on the profit functions for the firms are satisfied, then
jlobally stable arrangements for charging the dischargers exist

as long as V(N) > V(y) for all coalitions y. 1In fact, if globally
stable charges do exist, the value of the grand coalition must

nave this property. In general terms, the satisfaction of this



condition means that overall cooperation is profitable. From a
total profit point of view, joint cooperation in regional plan-
ning among all dischargers is better than having any smaller group
operating in the river basin. Thus, what is best from the opti-
mality point of view can also be achieved via a globally stable

pricing system.

The benefits accruing to each party are the net profits after
a taxation charge has been levied by the Central Authority. A
taxation scheme is acceptable if each coalition member will get
a non-negative benefit; it is efficient if the total benefits of
any coalition sum to its characteristic function value. Taxation
schemes that are both stable and efficient will necessarily be
acceptable. Examples that have the above properties and will be
described in subsequent sections include: equal amount of bene-
fit per polluter, lexicographic, generalized lexicographic, and
a method based on the Shapley value.

The benefit accruing to the Central Authority is the summed
charges over polluters minus the costs for environmental damage
(and in some cases, treatment costs). Environmental damage costs
are convex in the effluents; that is, they satisfy the congestion
effect. Thus, the existence of these costs represents a counter-
balancing force to the formation of the grand coalition N. If
these costs did not occur, then there would exist stable and effi-
cient taxation schemes, and it would be possible for the Central
Authority to be nonprofit making. However, if the variation in
the damage costs is appropriately large, then no stable and ef-
ficient taxation schemes with zero benefit to the Central Authority
can exist. The paper concludes by examining the implications on
the solution of the game when there is an imposition of constraints

on the emission or treatment of effluents by the polluters.

DESCRIPTION OF THE PROBLEM

The Parties

We will, in general, make reference to the scheme of Figure 1

where the first block represents the pollution units called firms
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Figure 1. Structure of the system.

and the second and third blocks are the network of treatment plants
and the environment (e.g. river basin, lake, sea,...). The vari-
able Qi (i =1,...,m) represents the mass flow rate of pollutant
from firm i to the network of treatment plants while the variable
qj(j =1,...,p) represents the mass flow rate of pollutant dis-

charged by the jth effluent of the network into the environment.

Each firm i is characterized by a profit Di(Qi)’ i.e. the
profit for producing an amount of good which corresponds to a
production Qi of pollutant.

The network of treatment plants is characterized by a cost T
which is, in general, a function of the input and output vectors
Q = (Q1...Qm) and q = (q1...qp), i.e.

T = T(Q,q) . (n

Given a class of networks (i.e. given the structure of the net-
work) we assume that the cost T is the one corresponding to the
least cost solution, i.e. Equation (1) represents the cost of the
cheapest network in the class. For example, if the structure of
the network is the one described in Figure 2a (completely disag-

gregated network: one firm - one plant - one effluent) then

where Ti(Qi,qi) is the cost of the cheapest treatment plant which

transforms Qi into q; - In this particular case the cost of the

network is the sum of the single costs of the treatment plants.
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Figure 2. Two particular structures of the treatment network (each circle
represents a wastewater treatment plant).
(a) completely disaggregated network
(b) partially disaggregated network.

On the other hand, if there is no restriction on the structure of

the network, T only depends upon the total input and the total
output, i.e.

T = T(z Ql' z CIJ) .
i j

The third component of our system, the environment, is
characterized by a function

E = E(q)

which is the sum, in monetary terms, of all possible damages
to society (health, vegetation, goods,...).

In the following we will assume the existence of a unit
called Central Authority (C.A.) which, depending upon the cases,
will represent the treatment network and the environment or the
environment alone (see Figure 3). 1In the first case (see Figure
3a) the C.A. is taking care of the construction of the network

and will charge each firm i depending upon the amount Q of
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Figure 3. The unified representation

(a) charges on Q;
(by charges on q;

pollutant produced, while in the second case (see Figure 3b)
the charge is on the output qj of the network of treatment
plants. These two cases can be formally described as a unique
case (see Figure 4) where the units constituting the first com-

ponent of the system are called polluters and are supposed to
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Figure 4. Compact structure of the system.

be characterized by a demand function Ai(xi)(i

=1,...,n) while
the second component is the Central Authority which is charac-

terized by a cost funetion C(x) where x stands for (x4, "Xn)'
For example, if the situation is the one represented in Figure



3a the polluters can be identified with the firms (xi = Qi) and

the demand and cost functions are

C(x) = min [T(x,q) + E(qQ)]
q

On the other hand, if the charge is on the output of the treat-
ment network (i.e. X; = qi) and the network is completely dis-

aggregated as in Figure 2a, we have

Q
C(x) = E(x)

while when groups ¥i of firms jointly take care of their waste
and discharge aj (i.e. the treatment network is only partially
disaggregated as shown in Figure 2b), the demand functions are

defined for each group y; as

A.(x.) = max Y oD.(Q.) - T() 9Q.,x.)
R [jEyi 1) v, 7 l]

jey;

In more complex situations the variable x5 rust be defined as

a subvector of g and charges must be imposed on these subvectors.
For the sake of simplicity in the following we will make refer-
ence only to the case in which Xy is scalar, even if the theory

presented in this paper can be developed for the general case.

From now on the set of polluters is called N, i.e.

N={1,2,...,n}
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while by
N=1{0,1,2,...,n} = N U {0}

we denote the set of all parties (polluters and C.A.). Con-
sistently, if y is a subset of the parties, then 7 is the union
of this subset and the C.A. i.e.

y=y v {0} ,

while y is the set obtained by eliminating the C.A. from y,
i.e.

y =y - {0}

Notice that y ¢ y ¢ ¥ and either y = y or 5 = y. Moreover, given
a set y of polluters we denote by xY the vector {xi} with i € y
and for the sake of simplicity in notation we define the vector

Y Y

x? also for sets y containing the C.A. as x7 = x¥.

We can now define the aggregated demand function Ay(xy) for

any set y of polluters as

A (x¥) = A, (x, 2
y(x ) igy l(xl) (2)

while for sets y containing the C.A. we write

Yy, _ Yy
A = A
y(x ) g(x )

since the C.A. is not characterized by any demand function. Simi-
larly, given a set y of polluters we define the cost C (x¥) as the
cost characterizing the C.A. in the case in which only the pol-

luters of the set y are present in the system, i.e.

Cy(xy) = C(x*) X :x*y = x¥ , X =0 (3)
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and again we write Cy(xy) instead of Cu(xg) in the case in which

9

y contains the C.A.

The Characteristic Function

Given a system (i.e. a set N of polluters, their demand func-
tions, a Central Authority, and its cost function) we are inter-
ested in the maximum net profit attainable by any subset y of the
parties. This net profit, denoted by V(y) is the so-called char-

acteristic function and is defined on all subsets y of N as follows

0 if y or y = {0}

V(y) = y ()
max[Ay(xy) = ¢, (xN)] if y = 7 # {0}

]
leg

1

[y

where Ay(xy) and Cy(xy) are defined as in Equations (2) and (3).

In the following x¥ will denote that particular vector which
solves the optimization problem (4). The assumption of zero net
profit for all subsets of polluters (y = y) represents the fact
that polluters are not obliged to participate in the system but
at the same time cannot enter the system without making an agree-

ment with the C.A.

The reader accustomed to game theory must notice that we do
not a priori assume that the characteristic function V is super-
additive (V(x) + V(¥) < V(¥ U y) for all sets x and y of polluters
such that x N y = @) as usually done in game theory (note the dif-
ference between x and z). Superadditivity can be a priori in-
ferred only if the option always exists for groups to act sepa-
rately if their joint action would not lead to an improvement of
their total profit. However in environmental pollution problems
this option never exists, since the environmental damage can never
be decomposed into the sum of individual damages each attributable

to a given group.

An important attribute of characteristic functions is that

of convexity.
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Definition 1 (Convexity of V)

A characteristic function is convex if

Viz U {i}) - V(x) € V(y v {i}) - V(y) (5)

for all « ¢ y C N and for all i €N - y.

The Taxation Scheme

The charge on Xy is denoted by Ci(xi) and will often be
referred to as tax in what follows. When the ith polluter is

charged an amount Ci(xi) his benefit is given by

Bi(xi) = Ai(xi) - Ci(xi) i€ N (6)

while the benefit accruing to the C.A. is

By (x) = g C;(x;) - clx) . (7)

We assume that each polluter is profit maximtzing in the sense

*
that he selects his discharge X4 by maximizing Equation (6) i.e.

* *
Bi = max [Bi(xi)] = B.(xi) . (8)

1
X.
1

Then the corresponding benefit for the C.A. is given by

We are now in the position to formally define a taxation scheme.

Definition 2 (Taxation scheme)

A taxation scheme is a set of rules that, given a system, gener-

ates a set of taxes Ci(-),i e N.

Some examples of taxation schemes may clarify this definition.
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EXAMPLE 1

The following two rules define a taxation scheme.

1. Compute V(N) and xiN.

2. Determine Ci(-) i € N so that
(i) X, = x? i EN
.. * 1T -« =
(ii) B. = V(N) 0 <a <1 ieN .
i n

Condition (i) means that the taxes are such that the polluters
by solving their own problems will maximize the total (social)

benefit since (i) implies

ZBZ = V(N) .
N

Condition (ii) means that the polluters divide equally part of
the total benefit. Moreover, if a = 0 there is no benefit for

the C.A., while if o = 1 there is no benefit for the polluters.

Remark 1

Rule 2 above makes sense only if the functions Ci(-) satisfying
conditions (i) and (ii) can actually be found. Obviously if the
demand functions Ai(°) are concave then such functions Ci(-) exist

and are characterized by

dc. da. N N %

= i _ C.(xN) = A.(xN) - B,

ax. | N ax. | N ot ot *
i . i | x.

i i

The first condition means that the marginal charge equals the
marginal demand and implies proposition 2{(i). The second con-
dition which follows from Equation (6), leads to proposition 2(ii).
The functions Ci(-) may not be everywhere differentiable as in the
case of bulk or two-part tariffs. However, for our purpose it_is

sufficient to assume that Ci(~) is locally differentiable at x?.
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EXAMPLE 2 (Lexicographic taxation scheme)
The following two rules define a taxation scheme.

1. Given an ordering i»w(i) in N compute

V(xk) for x, = {i: w(i) < k} k=20,1,2,...,n

(note that the computation of the last term V(xn) gives the vector
NY.
X

2. Determine Ci(-) i € N so that
(1) xf = xN ieN
i i
- * . N
(ii) B; = V(xw(i)) - V(xw(i)_1) ie
V(x_1) =90

* -
As in the preceding example we have } B, = V(N) (this follows from

N
(i)). The sense of condition (ii) is as follows: a polluter gets

a benefit equal to the improvement he generates in the total bene-
fit when he enters the system following the order w. If w(0) =20
the C.A. has no benefit while if w(0) = n we have the same scheme

of Example 1 with a = 1.

EXAMPLE 3 (Generalized taxation scheme).

The following two rules define a taxation scheme.

1. As in rule 1 of Example 2, but for all orderings wj('),
jo=1,2,...,(n+1)!

2. Determine Ci(-) i € N so that

(i) xf=x" ieN

1 1

x (n§1)! _
(ii) B, = AL (Vi W) - Vix v _4)1 1eN

i = j wj(l) wj(l) 1

(n+1)!
0 < A. .= =
<Ay < 2 A= Viz_y) =0
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* I .
Again we have ZBi = v(N). Condition (ii) says that the benefits
N
of the ith polluter are a convex combination of the benefits

obtained by means of all lexicographic taxation schemes.

EXAMPLE 4 (Shapley tazation scheme)

This scheme is a particular case of Example 3. In fact it cor-

responds to letting

A= 1
J (n + 1)

in condition (ii).

Each example shows that a taxation scheme generates differ-
ent taxes Ci(') and different benefits BI when applied to differ-
ent systems. For this reason B?, i€ ¥ will indicate the benefit
accruing to the ith party when the set of polluters in the system
is y. Moreover, we define Bz =0, 1 € y since the polluters alone
cannot have profit. Therefoie, in the following, given a set
y € N, either Bg = Bg if y = 7, or B? = B% =0 if y = ¥.

Attributes of Taxation Schemes

As mentioned in the introduction three fundamental attributes
can characterize taxation schemes, namely acceptability, effi-

ctency and stability.

The acceptability of a taxation scheme corresponds to the
fact that the benefits of all parties are non-negative. More

precisely, we have the following definition.

Definition 3 (Acceptability)

A taxation scheme is gcceptable, for the set N, if the correspon-

ding vector of benefits BN = (BE,BE,...,BN) is non-negative,
- 198

i.e.

i
|



-16~

The notion of efficiency is directly related to the definition of
characteristic function. In short, a taxation scheme is said to
be efficient when the solution it generates (through the profit
maximization of the polluters) is characterized by the maximum
total benefit.

Definition 4 (Efficiency)

A taxation scheme is efficient with respect to N if

N
|

I BY = v(y) vy
y

All the preceding examples are examples of acceptable and effi-

cient taxation schemes.

The literature on "optimal taxing" (see, for instance, [1-31])
has extensively dealt with the problem of selecting charges such
that the total cost of treatment is minimized while a given water
quality standard is satisfied. If we define the environmental
cost E(q) as zero when the standard is met and infinity when it
is not, we see that the classical problem is reduced to the deter-

mination of a particular efficient taxation scheme.

Finally, stability is defined as follows.

Definition 5 (Stability)

A taxation scheme is stable, with respect to N, if

ZBgzzBiy vy SN .
¥ Y

That is, we have a stable taxation scheme when all subsets y of
N take advantage of the coalition with the remaining parties.

If a taxation scheme is efficient with respect to N, we have

I 84 =vw vy SN .
Y
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Therefore, in this case the condition of stability can be modi-

fied as follows.

Remark 2

An efficient taxation scheme is stable with respect to N, if

e~y

1B

Y

> V(y) vy o N

We now use two of the preceding notions (efficiency and

stability) to give the following definition.

Definition 6 (Core)

The set of the vectors BN of benefits generated by all the taxa-

tion schemes which are efficient and stable with respect to N is

called the core of N.

A simple and visual representation of the core can be given in the
case n = 2, i.e. when there are only two polluters in the system.

. , . * k%
In Figure 5 the three dimensional space of benefits (BO,B1,B2)

is shown, together with the three planes

B0 + B, = v({0,1})

* *

B, + B, = v({0,21)

* * *

BO + B1 + B2 =v({0,1,2})

These planes are characterized by the fact that they contain all
the vectors of benefits generated by efficient taxation schemes.
More precisely, if an efficient taxation scheme is applied to N
the corresponding vector of benefits belongs to the last plane,
while, if it is applied to, for example, {0,1} the corresponding
vector of benefits lies on the intersection of the first plane

*

with the plane B2 = 0.
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B,* B, = V(i0,2})

B;* By =V (10,1

B+ B; + B, =V(V)

Figure 5. The space of the benefits and the core (ABCDE).

It can be noticed from the figure that v({0,1,2}) is greater
than v({0,1}) and v({0,2}), which means that in this case the
characteristic function is convex (see Equation (5)). Moreover,
the vectors B* corresponding to the points of the polyhedron
ABCDE, are such that
*

- 'ﬁ *>
B, = V(N), EBi—V(f/) Y

N
z|

=)~
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and there are no other points satisfying these relationships.
Since these are the conditions of efficiency and stability it
means that the core is contained in the convex polyhedron ABCDE.
In the following we will prove that there exist taxation schemes
generating all the points of the polyhedron ABCDE (see Property

3 below) so that we will conclude that the core is the convex
polyhedron ABCDE. The following three properties will be used
later on to analyze some particular cases. The first two are very
simple while the third is a suitable reformulation of an important

result proved by Shapley [4].

Property 1

A taxation scheme which is stable and efficient with respect to

N is also acceptable with respect to N.

Proof
Stability and efficiency imply (see Remark 2)
N —
QBizV(y) ¥ y CN (9)
Y

On the other hand from the definition of the characteristic func-

tion we get
v{i}) = o0 ¥i€eN

so that Equation (9) gives

v
o
<
zj

ie

bz

which means acceptability of the taxation scheme. (@)

Property 2

If the demand functions Ai(-) are concave functions, then a neces-

sary and sufficient condition for the existence of a stable and

efficient taxation scheme 1is
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N
Z|

VIN) = V(y) ¥y

Proof

Necessity

The efficiency of the taxation scheme implies

V(N)=§B'?'=ZB.+ Y B
N Y -

Thus, from Property 1 we obtain

vV(N) > ) Bf
Y

which can be transferred into
v(N) 2 v(y)
if Remark 2 is taken into account.

Sufficiency

The concavity of the functions implies (see Remark 1) the exis-
tence of an efficient taxation scheme of the kind described in

Example 1. Let us select the taxation scheme with a = 1, i.e.

the taxation scheme for which Bg = 0 for all polluters i and
Bg = v(N). For this scheme we have

ENREN

7 el - {o if y
y V(N) if y

But, by assumption, V(N) > V(y) ¥ y € N (and therefore
V(N) 2 V(y) ¥ y = ¥ while for y = y we have V(y) = 0) so that
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which is the stability condition for efficient taxation schemes
o

(see Remark 2).

Property 3

If the characteristic function is convex, the core exists and is

a convex polyhedron. Moreover the generalized lexicographic taxa-

tion schemes (see Example 3) are stable (and efficient) and generate

all the benefits of the core.

Proof

A fundamental theorem due to Shapley [4] says that, if the char-
acteristic function V(y) is convex the set C of the (n + 1)th

dimensional vectors B = (BO,B "'Bn) satisfying the following

17
two conditions

and

is a convex polyhedron characterized by (n + 1)! vertices. More-

over, let w represent one out of the (n + 1)! ordering i+w(i) of
the components of the (n + 1)th dimensional vector B and define
Bw as

w A w w

B = (BO...Bn)
where

v - .
By & ViFy(qy) T V-
r, = {i:w(i) £ k} V(z_,) =0 .
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Then, the point BY is one of the vertices of the set C. If we
compare the preceding equations with the taxation scheme defined
in Example 2 we understand that the lexicographic taxation schemes
are stable and efficient, and that the generalized schemes gener-
ate all benefits belonging to C, i.e. the core and the set C

coincide. o

PROPERTIES OF THE MODEL

In order to analyze the existence of stable and efficient
taxation schemes in regional environmental management, it is
necessary to postulate some structural properties for the func-
tions characterizing the units we called firms, treatment network

and environment.

Profit Functions

We assume that the profit function Di(-) has the following
properties:
(1) Di(O) =0
(ii) dDi/dQi >0 Qs > 0
(iii) a%p./da0% < o 0. > 0
i i i )

Assumptions (i) and (ii) only state that no production implies

no profit and that more production implies more profit. Assump-
tion (iii), namely the fact that the marginal profit is a de-
creasing function of Q- is usually satisfied for sufficiently
high values of Qi’ i.e., for sufficiently large firms. On the
other hand, small firms are sometimes characterized by increasing
marginal profits because of the economies of scale in the tech-
nology of production. This means that the theory developed in
the following can only be applied to the cases when the firms



-23-~

exploiting the common resource are so large that their marginal
profit cannot be increased by increasing the amount of goods
produced. On the other hand point (iii), namely that the profit
function Di(') is concave, cannot be relaxed since it implies

that efficient taxation schemes can be levied on Qi ({see Remark 1).

Treatment Plant Cost

The cost function Ti(Qi,qi) of a single treatment plant is

assumed to exhibit the following properties ([1,3,5]):
(a) Ti(Qi’qi) is convex with respect to q;
(b) Ti(Qi,qi) is convex with respect to Qi

(c) Ti(Qi,aQi) is concave with respect to Qi

These properties are always satisfied particularly the third one
which is due to the economies of scale always present to some
extent. Thus the function Ti(Qi’qi) is not convex (see property
(c)) though it is convex with respect to Qi and aj - The shape

of the surface Ti(Qi,qi) is in fact of the kind shown in Figure 6.

/

-1

{constant load)

9=7
(constant discharge)

Figure 6. The cost funetion T(Q.¢) ol a reatment plant.
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Treatment Network Cost

Let us assume that there are no constraints on the structure
of the network. Thus, as we already said, the cost of the treat-

ment network is a function T(Q+,q }) of the total input Q+ = Z Qi
i

+

of the network and of its total output g, = ¥ q- The cost of a
3

treatment networkX will be assumed to satisfy an important property

referred to as economies of scale which can be formulated as

follows:
1 1 — 1 L] > " " = " n

T(Q+A,Ql+8) = T(Q),ql) 2 T(Qy+A,qj+8) = T(Q4,q)) (10)

for
1 n ) n

Q; < of qa; < aj § < A
This property is a natural generalization of the property of
economies of scale of the cost of a treatment plant (see property
(c) above). 1In fact if it is assumed that

q; = aQi q: = aQi § = aA
Equation (10) becomes

T(QL+A,a(QI+A)) = T(Q),00)) > T(QI+A,a(QI+8)) - T(QY,0Q!)

from which it follows that the function T(Q+,uQ+) is concave.
Moreover, if the structure of the network of the treatment plant
is somehow constrained, the property of economies of scale must
be formulated in a more general way, by substituting Qi,qi,Q:,
qi,A and § in Equation (10) with the wvectors Q',q',Q",q",A and

§ (4>0,6>0).
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Environmental Damage

The main feature to be taken into account when discussing
the damages produced by the users of an environmental resource

is the so called congestion effect. At some low level of use

an additional use of the resource may practically generate no
surplus of damage. A point is reached, however, where an addi-
tional user will cause others to have to incur additional costs

or suffer disutilities associated with congestion (see [6] for

details). This property can be given the following very general
form

E(gq" + §) - E(g") £ E(gq" + &) - E(g") (11)
where q', g" and § are three non-negative vectors and gq" > q'.

Equation (11) implies that E is convex with respect to each

component qi(qj = q% and 6j = 0 for all j # i in Equation (11)).

ANALYSIS OF PARTICULAR CASES

The traditional approach to pollution control has been legis-
lative regulation of the discharges. The laws existing today
either stipulate the allowable amount of waste that each type of

firm can discharge (effluent standard) or fix a reguired treat-

ment efficiency (e.g. 85% biological oxygen demand removal before

discharge). In some environmental laws it is tacitly assumed

that all the discharges satisfying the standards induce negli-
gible environmental damage, while other legislations do not con-
sider E(g) to be zero and therefore each polluter is asked to
compensate the damage in monetary terms. Generally, each polluter
acts by himself and takes care of his own treatment plant. How-
ever, a reglonal waste treatment system could often be of advan-
tage because of the economies of scale and the possibility of re-
allocating discharges. Thus, it is of interest to analyze the
case of a regional authority (the C.A.) which takes care of the

treatment network. In doing so the C.A. either will acquire the

rights of discharge owned by the firms (in the case of effluent
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standard) or will be obliged to use a treatment network of suf-
ficiently high efficiency (in the case of required treatment
efficiency). In both cases taxes are levied on the pollutant

flow rates Qi generated by each firm.

In this section we analyze the existence of stable and
efficient taxation schemes, both in the case of effluent stan-
dards and in the case of fixed treatment efficiency. To gain
insight into the advantages of a well-designed regional waste
treatment network we will make a comparison between the case
in which the treatment network is unconstrained and the case in

which it must be a completely disaggregated one.

A more recent approach to water quality control is by ef-
fluent charges. The stability analysis of this alternative

possibility will be developed later.

Effluent Standards and Taxes on Qi

We assume that each firm has a right of discharge §i and
that the Central Authority is taking care of the treatment facil-
ities. When no constraints are imposed on the structure of the
network the total cost of the C.A, is

C(Q) = min [T(Q,,q,) + E(q)]
g

—N_z_

R

The last constraint means that the C.A. can discharge up to a
. _N . . .

maximum ¢, given by the sum of the rights of discharge of the

polluters. 1In general, the optimal solution qo is a function
of Q+, i.e.

while if the environmental damage E(g) is assumed to be zero



-27-

the total output qi is not dependent upon Q, since it is obviously
given by
o =N
a, = 49,
When the Central Authority is constrained to use a completely
disaggregated network we assume that it also loses the right to

reallocate the discharges of the polluters, i.e. the total cost

of the C.A. 1is

€(Q) = min [} T,(Q;,q;) - E(@)]

q N *

subject to

. < q. i
q; <q; v i€N
In this case the vector qO is a function of the vector Q (and

not of Q,), while if E(q) = 0 obviously qi =g;.-
We analyze now four possible cases in the following order:

(i) unconstrained network, E(g) = 0

(ii) unconstrained network, E(q) # 0
(iii) completely disaggregated network, E(q) = 0
(iv) completely disaggregated network, El(q) # 0.

(1) Under the hypothesis E(q) = 0, we can prove the following
basic property.
Property 4

If the environmental damage is negligible and the cost of the

treatment network satisfies Equation (10), then there exist

efficient and stable taxation schemes.

The proof of this property, given in the Appendix, can be easily
modified in order to show that if the strict inequality is satis-

fied in Equation (10), then there exists an infinity of stable
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taxation schemes characterized by By = 0 (see segment CD of
Figure 5). 1In other words, the Central Authority can charge the
firms only for the cost of treating the waste and still have

options in sharing the total benefit among the firms.
(ii) If we assume
E(q) # 0 q >0

it is not possible to prove that the characteristic function is
convex and therefore the existence of stable taxation schemes can-
not be inferred any more by means of Property 3. On the other
hand, it could be shown by means of simple examples that the nec-
essary and sufficient condition of Property 2 can be either satis-
fied or not, so that we can have cases in which stable taxation
schemes exist and cases in which all taxation schemes are unstable.
But, even when stable taxation schemes exist, the C.A. is more
constrained than in the preceding case (E(q) = 0). 1In fact we
will now prove that when the congestion effect of the environment
is particularly important taxation schemes characterized by zero
profit of the C.A. cannot be stable. This means that stability
can be obtained only at the price of transforming the C.A. into

a profit corporation. More precisely, we prove the following

property.

Property 5

When the congestion effect is dominant with respect to the econ-

omies of scale (in the sense specified by Equation (12) below),

each polluter desires to expel the others from the system, unless

the C.A. is to some extent a profit-making corporation.

Let us denote with qN the output vector of the treatment network
N = qo(Qﬁ)) and with q{l}

of the treatment network that would be used if the ith polluter

serving the system N(g the output vector

were alone in the regional system with a pollutant production
N( (i}

Q; (q

to the economies of scale is

= qo(Qg)). Then the reduction of the treatment cost due
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PR ES N U |

% T(Qilq+ T(Q+,q+) ’

while

is the increase of the environmental damage due to the congestion
effect. The congestion effect is dominant with respect to the

economies of scale if

E(qN> - E(q{i}) > 7 T(Q
N N

Vgl Vb (12)

i,q+ - T(Q+lq

Thus Property 5 is equivalent to the following precise statements:
Equation (12) implies the non-existence of stable and efficient

taxation schemes with Bg = 0.

Proof of Property &

The characteristic function is given by

o N N X N,
V(N) = AN(Q ) - [T(Q+,q+) + E(q)]
Hence, from Equation (12) we obtain

< v, (1)

where
v, = v({o,i})

On the other hand if there exists a taxation scheme which is stable

and efficient with respect to N we have

B, + B. 2 V, ¥ i€eN
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Thus,

o=

%[B +Bi]ZE’Vi
from which the following sequence of expressions can be obtained:

nB

o =z

N
+2B12%Vi

N _
(n - 1B, + V(N) > % v,
N
0

B, > [% v, - ViM1/(n - 1) . (14)

But Equation (13) implies that the right hand side of the last

expression is strictly positive so that the property is proved. O

From the proof of this property we can conclude that if we
consider a sequence of problems in which the environment is more
and more sensitive to the congestion effect we would obtain cores
that are smaller and smaller. In Figure 7 a sequence (a) - (d)
is shown; in (a) and (b) inequality (12) is not satisfied, while
(c) refers to the limit case in which Equation (12) is satisfied

with the equality sign.

(iii) Let us now analyze the implications of constraining the
C.A. to use a completely disaggregated network of treatment plants.
For this, consider first the case in which the environmental

damage is negligible

E(q) =0
and recall that in this case qg = qi. Then
V(N = A (Q.) - , g = - 3
max [% i Q) % T, (Q,,§;)] % max [A; (Q;) - T,(0,,3;)]

1
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vihy = § v, (15)

and this condition implies that the characteristic function is
convex. In fact, since Vi is strictly positive, from Equation (15)
we obtain

Viz) € V(y) Yo Sy

which implies that condition (5) is satisfied with the strict

inequality if i = 0 and with the equal sign if i # 0. Since V

Figure 7. Smaller cores are obtained for increasing congestion effect.
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is convex, Property 3 can be applied and the conclusion is that
the core exists. The fundamental difference with respect to the
case of the aggregated network is that we now have only one point

in the core with Bg = 0. 1In fact if B

o=

= 0 we have

N N
B, = % B, -

VIN) =

z|

Hence stability and Equation (15) imply

which proves the uniqueness of such taxation schemes. This case

is shown in Figure 8 where the point C = D represents the unique

By

Figure 8. The core when E(q) = 0 and a completely disaggregated network is
used.
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possibility for the C.A. to be a non-profit corporation. This
point requires a specific distribution of the benefit V(N) among
the firms. If a different distribution is desired (see, for in-
stance, point S of Figure 8), this can be done only by means of
an unstable taxation scheme. Nevertheless, if the benefit of the
C.A. is allowed to be positive then the scope can be obtained by

means of stable taxation schemes (see segment AR of Figure 8).

(iv) We finally consider the case

E(q) # 0 g >0
with the C.A. constrained to use a completely disaggregated net-
work of treatment plants. Again as in the case of aggregated
networks we can have cases in which there are no stable taxation
schemes. This can happen when there exists a subset x of N such
that the variation of the damage produced by the set N - z is

greater than the variation of the net benefit

w(N) =7 [A;(Q)) - T,(Q;,q;)]

E(g ) - E(q7) > W(N) - w(x) (16)

where

In fact condition (16) implies

Vv(N) = w(N) - E(q") < W(Z) - E(qi) = V(%)

v(N) < v(Z)
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which contradicts the necessary condition (see Property 2) for
the existence of stable and efficient taxation schemes. On
the other hand if the sign > holds in Equation (16) for all

r € N we can prove that
V(N) 2 V(F)

which implies the existence of the core. The only difference
with respect to the case of unconstrained networks (see point
(ii) above) is the uniqueness of the stable and efficient taxa-
tion scheme which assigns a zero benefit to the C.A., while the
difference with respect to the preceding case (iii) is the pos-
sibility of non-existence of such particular taxation schemes.

This easily follows from Equation (14) and the condition

V(N) < % A

which can be proved with the use of the property of congestion
effect of the environment. In Figure 8 an example is shown with
V(N) = ] v, while in Figure 9 (notice that V(N) < ] Vv.) the

N N

lowest point of the core (point C = D) is characterized by

B

[= 2=

= IL v, =v®1/(n - 1)
N

which corresponds to the limit given by Equation (14).

In order to complete our analysis, we could now consider
the case in which the Central Authority can reallocate the rights
of discharge even when it is forced to use a completely disag-
gregated network. The cost of the C.A. is then

c(Q) = m;n [% T;(Q;,q;) - E(q)]

+ =

9, £7
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BY

Figure 9. The core when K(q) # 0 and a completely disaggregated network
is used.

The analysis of this situation can be accomplished in a way simi-
lar to the preceding ones and the main result is that the freedom
to reallocate the rights of discharge gives rise to larger cores,
i.e. the number of efficient taxation schemes is generally larger
than in the case in which the C.A. cannot reallocate the rights

of discharge.

Fixed Percentage of Removal and Taxes on Qi

This time we assume that the law states that at least a cer-
tain percentage of each firm's waste production must be removed,

i.e. if a firm produces Qi then the corresponding discharge must
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be q; < &Qi. As in the preceding case A, the Central Authority
taking care of the waste treatment will select that effluent

load vector qo that minimizes his cost. Again qo is in general

a function of Q, while when the environmental damage is neglected
we have qi = EQ+ and q? = ﬁQi respectively for the cases of ag-
gregated and disaggregated treatment networks. The possible
cases we consider are the same as before. Since the analysis

can be developed in exactly the same way, we do not give any

proof and we only summarize the main results.

(1') In case (i) the core always exists and has an
infinity of points characterized by Bg = 0 (as

in Figure 5).

(ii') In case (ii) we can have instability of all taxation
schemes and, in any case, the number of stable and
efficient taxation schemes is lower than in an
equivalent system with E(q) = 0. All types of
cores shown in Figure 7 can be obtained depending
upon the relative relevance of the congestion

effect and of the economies of scale.

(11i1') In case (iii) the core always exists but it is of

the particular form represented in Figure 7c.

(iv') In case (iv) stable and efficient taxation schemes
can be obtained (if possible) only by transforming

the C.A. into a profit corporation.

Effluent Charges

Let us suppose that the waste productions {@i} of the
firms are given and assume that each firm treats its own waste.
Thus, the cost of the C.A. is simply the cost of the environmen-
tal damage E(g) and the charge is set on the effluents q,- The

demand function Ai(qi) is therefore given by

A;(qy) =Dy (Q) - T,(0.,q;)
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and it is convex since Ti(Qi’qi) is convex (see property (a)
of the cost of a treatment plant). This fact implies (see

Remark 1) that efficient schemes can be generated.

Again the characteristic function cannot be proved to be
convex and indeed by means of simple examples it could be shown
that there are cases in which all efficient taxation schemes are
unstable. More precisely the core exists only if the profits of
the firms are sufficiently high with respect to the correspond-
ing environmental damages. In any case the core, if it exists,
is of the kind shown in Figure 9. Again the conclusion is that
it is not possible to have stable taxation schemes with the C.A.

being a non-profit corporation. (Stability has its price!)

The analysis of the case in which the waste production Q;
of the firms has not yet been decided on and a standard on the
percentage of removal is imposed can also be carried out. Proofs
very similar to the ones we have already given are not reported
here for the sake of brevity and the main result is that stable
taxation schemes cannot be found if the profits of the firms are
not sufficiently high. Moreover all stable taxation schemes are

characterized by some positive benefit for the C.A.

INTERPRETATION AND IMPLICATIONS OF THE RESULTS

Very simple notions of the theory of games have been used
in this paper to analyze the problems of stability and efficiency
of taxation schemes in regional environmental management. Al-
though the conceptualization presented in the paper applies to
any kind of pollution problem (water, air, solid), reference is
made to the problem of water pollution in a river basin and three

particular classes of problems are analyzed in detail.

The first class is concerned with the case in which effluent
standards are imposed by law on each firm. A regional authority

is taking care of an areawide wastewater treatment system, the
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costs of which are apportioned among users by means of charges
levied on the residuals produced by each firm. The existence of
charging rules which allow the regional authority at least to
cover its cost under the constraint that there is no incentive

for any group of dischargers to withdraw from the regional system
(stability) is analyzed. The role played by the damage to the
environment and by the economics of scale in the treatment pro-
cess are pointed out. If the environmental damage is negligible,
stable taxation schemes can always be found, while, if the waste
is treated in a completely disaggregated way (i.e., firm by firm),
the opportunities for stable taxation schemes to exist are strong-

ly limited.

The second class of problems is concerned with the case in
which a standard on the percentage of removal is imposed by law
to each firm (crude interpretation of the U.S. law (best practi-
cal treatment)). Again the taxes are on the waste production
and results similar to those of the first case are found as far
as the roles of the environmental damage and the structure of the

network are concerned.

The third class of problems deals with the case of effluent
charges. It is shown that stable taxation schemes can in general
exist only if the firms are characterized by sufficiently high

profits.

In conclusion, the paper shows that if the damages to the
environment are not negligible and if these damages must be re-
funded by the users of the resource it is very unlikely that ef-
ficient and stable taxation schemes can be found if the regional
authority acts as a non-profit corporation. These results also
state that if the damages to the environment are neglected, or,
in other words, if the total benefit of the firms instead of
the social benefit is maximized, then efficiency and stability
are easily obtained. This is indeed, what happened in the history
of the industrial development of the last century in almost all
countries: the efficiency of the firms has been very high and

there has been no friction or competition for the use of the self-
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purification capacity of the environment. Nevertheless, these

two nice attributes have been obtained at a price which is de-

finitively too high: namely the fact that damages to society

are neglected. The increased public awareness nowadays makes

this solution no longer feasible. 1In this respect the
indicates an alternative solution, since stability and
can also be obtained by letting the regional authority
profit by the sale of emission rights. The higher the

mental congestion the greater must be this profit. If

paper
efficiency
get a
environ-
ethical

and political attitudes are against this kind of solution there

is no way to maximize the social benefit without generating fric-

tions among the polluters.
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APPENDIX

The proof technically consists in showing that the charac-
teristic function V is convex, since then Property 3 can be
applied. The proof is analogous to the one given by Soreson et
al. [7] for proving the convexity of V under slightly different

conditions.

Consider two sets A © B < N and a firm k € N - B. TFor sim-

plicity of notation let us denote

A=A vk} B =B U {k}
and recall that
x _ x - _ =
o) =1 of a@, =19
X X
where
X . .
Q. =0 ¥ié€zx if x = &

Consider the two following alternative cases

(1) o> of

.. A B

(ii) Q. < Q)
Case (1)

Equation (10) implies

B _.B _
Tl - 1 o.ah > T

+

as it can be verified letting
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" _ A " _ _A

Q+ - Q q+ - q+
_ B _ _B-A

b= BZA Qi ° T

Adding to both sides of Equation (A.T1)

v - 7 a ) + rebad
A

and reordering, we obtain

- - B -
v - A Ty v rela) -t} + R

B _A

Dy - (a.2)

B
>v(a) - ; A Q) + T‘} 0

Adding and subtracting } Ai(QE) to the left hand side H of the
B

last inequality we get

A By _ mioA B _B -
; A (Q)) + BZA A Q) - T(Q] + BEA Q@) - V(B) =H
Noting that
A A B _B
V(B) 2 g A, (@) + BEA a;(Q) - T(Q, + BZAQ )
we have
V(B) - V(B) 2 H . (2.3

On the other hand, since

B B _A
> -
V(A 2 ; A, (Q)) T(z Q;.a))
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we obtain

va) - ] a ) + T o%,8h > vy - v (A1)
i

where the left hand side is the right hand side of Equation (A.2).
Hence from (A.3) and (A.4) it follows

V(B U {k}) ~ v(B) > V(A U {k}) - V(A)

Case (ii)
In this case Equation (10) implies
A _A A A _A B, A _B B _B
T(Q+,q+) - T(Q+-Qk,q ) 2 T(Q++Qk,q+) - T(Q+.q+) (A.5)

as can easily be proved.

Adding

and

B B A
% A (Q)) - % A (@) - AL(Q))

(notice that the two expressions are equal) to the left and right

hand sides respectively of Equation (A.5), and reordering, we get

[% A @) + A P - T(QB+Qﬁ,qEJ - V(8)

> V(A) - [; Ai(Qi\) - T(Qi‘-Qi‘,aA)]

Finally, since
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B A B, A =B
V(B) > % A Q) + AL(Q)) - T(Q+0,T,)

A A_ A _A
V(A) 2 ; A Q) - T(Q-0L,T)

we obtain

V(B U {k}) - V(B) > V(A U {k}) - V(A)
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LIST OF SYMBOLS

Ai(xi)
Ay(xy)
Bi(xi)

BO(X)

*
B,
1

qo(Q+)

demand function of the ith polluter.

aggregated demand function for the subset y of N.
A.(x.) - C.(x.) = benefit of the ith polluter.
i'7 it7i

E C.(x.) = benefit of the C.A.
g i

optimal benefit of the ith polluter.

optimal benefit of the subset y of N in the case in
which only the polluters of y are present in the
system.

tax (charge) levied on the ith polluter.
cost function of the C.A.

cost supported by the C.A. in the case in which only
the polluters of the set y are present in the system.

profit function of the ith firm.

environmental damage.

the set of polluters.

the set of polluters and the C.A.

mass flow rate of pollutant produced by the ith firm.

a fixed level of waste production.

) Q; = total waste production.

N
input vector of the treatment network.

mass flow rate of pollutant discharged by the jth
effluent of the network of treatment plants.

2 qj = total discharge.
3
right of discharge of the ith firm.

¥ q; = right of discharge of the C.A.

N

discharge vector of the treatment network.
discharge vector of the least costly treatment net-

work which treats the input Q, with a total discharge

a, s §+~
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qm = qo(Qf) = optimal discharge vector of the set Z.

T(Q,q) = cost of the treatment network.

V(y) = characteristic function = maximum net benefit when
only the polluters of y are present in the system.

vy = V({0,i}) = maximum net benefit when only the ith
firm is present in the system.

Xy = emission of the ith polluter.

X5 = optimal emission of the ith polluter.

X = emission vector.

%Y = efficient emission vector for the y subset of polluters.

z,y = subsets of N.

pi = y U {0} = the subset y and the C.A.

Y = y - {0} = the subset of polluters in y.

w(i) = an ordering of the polluters.
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