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PREFACE

One of the basic methodological problems of large-scale systems analy-
sis is 10 define meaningful mathematical structures for the components or
“picces” comprising the system and to study their interconnections. Most
of the fundamental advances in mathematical programming and optimal
control theory, such as the Dantzig-Wolfe dccomposition method, fast
Fourier transforms, and generalized x-y functions have been special cases of
this basic idea.

The resuits of this report provide a reasonably general mathematical
framework within which the structurc-conncctivity question may be
attacked by algebraic and geometric means. As the initial cffort in what
is projected to be a long-term rescarch program. the current paper deals
primarily with definitions, examples, and indications of the utility of the
proposed methodology .

The results of this study should prove useful in a number of IIASA
areas, particularly to the Energy, Water, and Ecology groups.
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SUMMARY

The report shows how a binary relation between two abstract sets may
be geometrically interpreted as a simplicial complex. Standard and non-
standard concepts from combinatorial topology are then employed to study
the global conncctivity structure of the complex. Classical notions such as
homology are illustrated by examples chosen from various fields.

The eonncetion between the standard differential equation definition
of a dynamical system and the polyhedral dynamic set-up is explored in some
detail. It is shown that the complex associated with a linear system provides
a very illuminating paradigm within which new interpretations of open- and
closed-loop control laws are possible. The report concludes with a discussion
of topics for future investigation.
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Polyhedral Dynamics and the Geometry of Systems

GLOBAL VS. LOCAL ANALYSIS IN SYSTEM THEORY

Beginning with the work of Newton in celestial mechanics,
mathematical techniques for the analysis of systems have pro-
ceeded upon the basic principle that a detailed understanding
of local system properties would lead (via the system's dynam-
ical equations of motion) to a complete understanding of the
global system structure and behavior. Obviously, this reduc-
tionist principle served well for several centuries in physics
until the advent of quantum mechanics and relativity theory called
it into question in connection with the study of the so-called

"elementary" particles.

In more recent times, the unparalleled success of the re-
ductionist point of view in classical physics has spawned the
hope on the part of many biologists, sociologists, economists,
and others that, by following the local path blazed by the
pioneering physicists, they too would be rewarded not only with
new conceptual insights, but also with ready-made operational
tools "pre-tested", so to speak, by the physicists. Unfortunately,
such a program, while still under way, has already met with
some of the same obstacles encountered by the modern physicists
and it now seems clear that, at best, local analyses will be
only partially successful in answering many of the most pressing

problems faced in the socio-economic sphere.

The failure of the local, calculus-based, tools to provide
satisfactory answers to questions involving the global structure
of systems has generated a renewed interest in the system theory
community in the use of global mathematical techniques in systems
analysis. Supposedly arcane (and useless) areas of mathematics

such as group theory, invariant theory, Lie algebras, and



differential geometry are now being used to probe the inner
workings of complex systems and many new insights into the
"holistic" structure of systems have been obtained in the past

decade or so [12,13].

As an aside, it is amusing to note that this shift in em-
pnasis from the local to the global corresponds to a swing of the
intellectual pendulum back from Newtonian to Aristotelian physics.
In his Politics, Aristotle states "in the order of Nature the
State is prior to the household or the individual. For the whole

must needs be prior to its parts.” This view is in direct con-

flict with the post-medieval scientific method since it leads to
a physics in which the significance of set members is explained
in terms of the significance of the set (the whole). Modern
physical theories, of course, do exactly the opposite; the whole
is "explained" in terms of the (elementary) parts. The Aristo-
telian view dominated physical thought for many centuries until
the modern experimentalist view, begun by Galileo and legitima-
tized by Newton, took over the stage. Now we see a revival of
interest in the holistic theories, sending us back to that other

Aristotelian notion of "moderation in all things".

Our goal in this report is to outline a mathematical approach
based upon concepts from algebraic topology for the study of glob-
al system structure. The essence of our approach, introduced by
Atkin in 1974 under the name of g-Analysis (here we propose to
describe the theory as "polyhedral dynamics"), is to utilize the
connective structure of the system in order to obtain a geometrical
(and algebraic) representation of the system as a simplicial com-
plex. Ideas and techniques of classical algebraic topology, to-
gether with some newer notions motivated by the system-theoretic
context, are then used to provide new insights into the global
connectivity structure of the system and to study the manner in
which the individual system components interconnect to form the
total structure. Following a discussion of the basic topological
concepts introduced by Atkin [1,2,3,4] in a variety of frame-
works, we examine the notions precisely by interpreting them in
the context of linear systems. In this manner we hope to obtain

a deeper understanding of the nature of feedback control laws, as



well as an alternate viewpoint on the problem of controllability.
In addition, we shall show that the standard duality results of
linear system theory have a natural geometrical interpretation in
the language of simplices and complexes. Finally, we present
evidence to suggest that the majority of the global structural
results given for linear systems may also be extended to nonlinear

systems with only modest additional effort.

BASIC CONCEPTS FROM ALGEBRAIC TOPOLOGY

In this section, we briefly review the background material
from classical algebraic (combinatorial) topology which will be
needed for our subsequent development. Much more detail can be
obtained in any of the classic references in this area, for

example [5,6], and the Appendix C of [1].

The general set-up for polyhedral dynamics, as initially
conceived by Atkin [1], is to regard a system as a relationship
between the elements of finite sets. To avoid, for the moment,
hierarchical considerations [2,3,4]), we assume that two finite
sets X=={x1,...,xn}, Y=={y1,___lym} are given, together with a
relation X ¢ YxX, i.e. X is a rule which associates elements of
Y with those of X according to some criterion. For example, if
Yy = {1,2,3,4,5}, X = {0,1,2}, and X is the relation " -- is less
than =", then X = {(1,2)}, i.e. the subset of Y x X corresponding
to the relation ) is the single element set {(y1,x3)}. Associ-
ated with any such relation X, we also have the inverse relation

2”1 ¢ Xx Y, which is defined by the rule that if (y,x) € A, then

(x,y) € A-1. For example, if ) represents the open proposition
"-- is the child of —-", then A_1 is the proposition "--is the
parent of —". Clearly, regarding a system as a relation between

two sets is a very general concept whose successful application
hinges critically upon an adroit choice of the sets X and Y and
the relation A. However, it is a notion sufficiently broad,

mathematically speaking, to support a surprising amount of geo-

metrical structure as we now indicate.

In direct correspondence to the foregoing set-theoretic

description of a system, we can obtain a geometrical representation



of the relation A € Yx X in the following manner. Let the ele-
ments {x1,...,xn} of the set X abstractly represent the vertices
of a simplicial complex, while the elements of Y represent the
simplices. Then the simplices actually forming the complex

(denoted by KY(X;X)) are defined by the relation A. Thus the

simplex 6,1 = <Xi1’xiz""’xi; is a member of KY(X;A) if and
only if there exists some ij:Y such that (yj,xi_)e A for all

S
s =1,...,r. In this case, we denote the simplex <xi ,xi PR

1 2
X.> by yj. The dimension of K, dim K, is defined to be equal

i
torthe dimension of the highest dimensional simplex contained
in K. Thus, assuming each element of Y is A-related to at least
one element of X, we see that X induces the simplicial complex
KY(X;A), which geometrically represents the global picture of
the relation. By interchanging the roles of X and Y, and using
the inverse relation A_1, we also obtain the conjugate complex
KX(Y;A—1) representing the relation P

A simple example will help to clarify these matters. Let
X = {bread, milk, stamps, shoes}, Y = {market, department store,
bank, post officel}l; let A be the relation (yi,xj) € A if and only

if product xj can be purchased at facility Y- Then clearly,
A= {(y1rX1),(Y1:X2),(Yu,X3),(YZIXQ)} .

Thus, the simplices of KY(X;A) are
Y1 = <x1,x2>, y2 = <xu>, y3 = <¢>, yu = <x3>

(Note: the "empty" simplex Y3 does not belong to KY(X;A) unless
we agree to "augment" the complex by the addition of ¢ as a
vertex representing a (-1)-dimensional simplex.) Geometrically,

KY(X;A) has the structure

X2

X, %3



showing that K,(X;A) 1s a multiply-connected complex consisting

Y
of the 1-simplex Yqr the two O-simplices Yy and Yy and the (-1)-

simplex yy- As is obvious by inspection, this "system" displays
a very low level of connectivity, a notion we shall make more

precise in a moment.

A compact form with which to represent the relation * is by

its incidence matrix A. Adopting the convention that the (i,j)

entry of A corresponds to the pair (yi,xj), we set

J1' if (yi,xj) £ A
A =

1] [O, otherwise .

Thus, we represent KY(X;A)

while the conjugate complex K (Y;A_1) has the representation

X

= A ("'" denoting matrix transposition).

A more complete picture of how K is connected is obtained
by a study of the "homological" structure of the complex.
Roughly speaking, we analyze how many "holes" X contains and
their respective dimensions. To make these geometrical notions
precise, we first present some background definitions and con-
cepts, taken from the work in [1]. 1In what follows, we adopt
the standard notation op to represent an arbitrary, but fixed,

p-dimensional simplex (i.e. a simplex consisting of p+1 vertices).

Chains and Boundaries

We restrict the discussion to the case of a relation A



between two finite sets X and Y; in particular X C Y x X and
A—1<:X xY. Either of the two simplicial complexes KY(X;A),
KX(Y;A_1) possesses a finite dimension and a finite number of

simplices.

We therefore take the case of such a complex, say KY(X;A),
in which dim K = n; we assume that we have an orientation on K,
induced by an ordering of the vertex set X, and that this is
displayed by labelling the vertices KyrXgre oo r Xy with k > n+1.
We select an integer p such that O £ p < n and we label all the
simplices of order p as oi

p
that there are hp p-simplices in K.

, 1 = 1,2,...,hp, where we suppose

We now form the formal linear sum of these p-simplices and
call any such combination a p-chain, allowing multiples of any
one op. We denote the totality of these p-chains by Cp and one
member of Cp by Cp' Thus a typical p-chain

h
= 1 2 p
c_ = m10p + m op oo omy op ,
P
with each m, €J where J is an arbitrary Abelian group. We can
then regard this set Cp as a group (an additive Abelian group)
under the operation +, by demanding
h

= (m, + m')o1+ +(m, +m' )o P

1 " p T h hp p

c_ + ¢!
p p

together with the identity (zero) Op for which each m, = 0.

Combining every group Cp, for p=0,1,...,n, we obtain by the
direct sum the chain group C., written
C. = CO 2] C1® - ®Cn

Any element in C 1is of the form

With every p-chain cp we now associate a certain (p-1)-
chain, called its boundary, and denoted by Bcp. We define acp

precisely in terms of the boundary of a simplex Bop, and if



c_ =1 m,cl we take
P ilp
i
dc, . = m. 9
p = 1 ™%

In other words, we require that 3 should be a homomorphism from

C_ into C__,.
p TM° Fp-1

. . - N . 3
If a typical op is op RSEOIEE xp+1 we define Up by

i+1
>
g e Ry - xp+1

">

= 3< > = - <
BOP IR Xy - X541 E (-1) X 4%
where ﬁi means that the vertex Xy is omitted.

Figure 1 shows a geometric representation of a o, = <x1x2x3>

together with the orientation, and the induced orientations on

the edges. In this case
802 = 8<x1x2x3>
_ _1y 2 4y 3 _q\ 4 .
= (=1 Texoxg> + (21) Tixgxy> + (=1) XyX,>
this means that
1
9o, = g, - 0, + © ,

which is a 1-chain, a member of C1.

X

2
+ O 3
"// '001) \\\:‘71
2

- x2

xg—’ +O?

Figure 1. A 2-simplex with its faces oriented.



The boundary of a chain can be seen as its image under the

operator 3, which is a map

3+ C_~»C for =1,...n
P’ Tp-1 P
Not only is 9 a homomorphism (it preserves the additive structure),
but it is easily seen to be nilpotent--that is to say, a(acp) =

0O in C or

p-2'

82 = O(the zero map).

In the case shown in Figure 1, we have

220, = 2(30,) = d(0] - 0% + o)
= 8<x2x3> - a<x1x3> + 8<x1x2>
= <x3> - <x2> - (<x3> - <x1>) + <x2> - <x1>
= 0

Since 3:Cp+Cp_1 is a homomorphism, the image of Cp under 9

must be a subgroup of C we denote this image BCp variously

p-1’
by im 3 or by Bp—1 and, because 9 is nilpotent, we see that

= 0 in C

aBp-1 p-2

or 3(im 3) = O

Those p-chains c¢ ECp which are such that their boundaries
vanish, that is 3cp = Q, are called p-cycles. They form a sub-
group of Cp' being the kernel of the homomorphism 9, and are
usually denoted by the symbols Zp' the whole subgroup being Zp

The members of Bp (which is 9cC } are clearly cycles too, by

pt1

the above, and so BpC Zp' In fact Bp is a subgroup of Z

p*
The members of Bp are called bounding cycles (they are

cycles in an identical or trivial sense), and those members of

Zp which are not members of Bp can be identified as representa-

tives of the elements of the factor group (or quotient group)



Zp/Bp' The members of this factor group are of the form

and, if we select one member, say Zp' out of this equivalence

class, we can also denote it by [zp]. When two p-cycles z; and
22 differ by a p-boundary, then z1 - 22£:B and we say that z‘I

P p P P P
and z; are homologous (often written as z;'wzg). This is a

relation on the set of cycles and it is easy to see that it 1is
an equivalence relation. The quotient set Zp/~, under the re-
lation of 'being homologous to', 1s the quotient group Zp/Bp,

the group structure being determined by the operation + on the

members z_+ B . In this group structure, the set Bp acts as
the additive identity (the 'zero'), since )
(z +B )+ B _=12_+B
P P P P P
for all =z
P

This pth factor group Zp/Bp is what is called the pth
homology group and denoted by Hp

H = 7 B ’ =O,1,---l
p = Zp/Bp 0 P n

The group of cycles Zp being mapped to zero by the homomorphism
3 is what is known as the kernel of 9 (written ker 3) and so we

find the alternative form
H = ker 3/im 3
P

The operation of 3 on the graded group C can be indicated by

the sequence:

2
C =C,®C,®Cy0...0C &C ., ...0C

together with the symbolic diagram of Figure 2 below.
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Cp-1 Cp Cp+t

Figure 2. A nilpotent 8 operating on a graded group C.

In this diagram Bp is represented by the shaded bull's-eye in Cp;

Zp is the inner ring surrounding this shaded portion.

When Hp = O there is only one equivalence class in the
factor group and this is Bp; every z EZBp; every cycle is a
bounding cycle. When Hp # O there is more than one element in
the factor group and so there must be at least one cycle which

is not a bounding cycle at this level. 1In Figure 1 we have H1 =

O because the only 1-cycle is the combination 01— of+—o? (and

multiples thereof) and this is 802. Because there is no Cs there

cannot be a B2 (the 0, is not the boundary of anything) and since
30, # 0, Z, is also empty. Under these conditions we also write
H2 = 0. When Hp = O we speak of the homology being trivial at

the p-level; when we say that 'the homology is trivial', without
specifying the values of p, we mean that Hp = 0 for all values

of p other than p = 0. This latter group H, is never zero, ex-

0
cept possibly when the complex K is augmented by inclusion of the

simplex whose vertex set is empty.

We can see in Figure 1 that the homology is trivial, and

also that HO # 0. For any CH is of the form

C. = m,<x,> + m

0 1°% <X,.> + M, <X, >

2 72 373 !

and taking the boundary of a point to be zero, it follows that
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Co must be a O-cycle, coe ZO. But the vertices Xqs Xy x3 form

part of an arc-wise connected structure in the sense that 1-

chains Cqs ci exist such that

<x2> = <x1> + 8c1
<X3> = <xX.> o+ ac%

(in fact we need only take cq = 0? and ci = 0?). Hence we have
€y = ZO = (m1+-m24-m3)<x1> + 9 (some 1-chain) .

Hence the vertex X, acts like a special chosen O-cycle 20,
all the possible O-cycles in the structure can be generated by
writing

zg = mﬁo + 3(some 1-chain) ,
and 20, consisting of a single point, cannot be the boundary of
any 1-chain. Hence 20 4 BO and so HO # 0; in fact HO contains
a single generator and, being an additive group, it is iscmorphic
therefore to the additive group J (which is generated by a single
symbol, viz., 1). Thus we see that for the complex represented

in Figure 1,

or, preferably, we should use the symbol for isomorphism and

write HO = J.

The above argument shows that this structure is character-
istic of the complex being arc-wise connected and we can there-
fore generalize it to give the result:

if K possesses k connected components then

H(K) =J8&J8...06J



-12-

with k summands. This number k is also known as the zero-order

Betti number of K and then it is written as BO.

Betti Numbers and Torsion

The groups Cp’ Zp’ Bp already discussed are examples of
finitely generated free groups, there being no linear dependencies
between the generators of any of them. But this property of being
'free' is not necessarily true of the factor group Hp' Indeed,

in general, we find that Hp can be written as the direct sum of
two parts, of which one is a free group and the other is not.

To explain this idea, and to illustrate it by a practical ex-

ample, we write our general Hp in the form

Hp = Gg @ Toer ’
where Gg is to be a free group and Tor Hp is to be called the
torsion subgroup of Hp. Any element of Tor Hp’ say h, is such
that nh = O for some finite integer n (with O being the additive
identity of the group Hp). In the context of boundaries and
cycles this means that h can be written in the form h = zpd—Bp,
because h er, and that there is an n such that

nh = nz_+ nB ;
p p
this element must be in B_ (the zero of the factor group). But
this means that, although zp £ Bp, it must be that nzp € Bp for
this particular value of n. This rather strange behavior of
certain torsion cycles is the property which the subgroup Tor H

P
characterizes.

Members of the free group Gg cannot behave in this way; if
zZ_€ @ and z_¢ B_ then nz_ ¢B_ for any non-zero value of n. For
p p p p p p )
this reason a free group is often called an infinite cyclic group,
in contrast to the finite cyclic groups which go to make up Tor Hp.
Thus GS will consist of summands of type J (the number of summands
will equal the number of distinct generators of Gg) while Tor HD

will consist of summands of type I (the additive integers modulo m
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if J = integers) for some choices of m. This must be so because
a group like Jm is an additive Abelian group with the property
that if he:Jm then mh = 0. If Tor Hp contains a number of sub-
groups then each one will be isomorphic to some Jm' for a suit-

able m.

The number of generators of Gg (the number of free genera-

tors of Hp) is called the pth Betti number of the complex K,

sometimes written as Bp.

p-Holes

We have seen (cf. Figure 1) the case of a complex K posses-
sing a trivial homological structure; in that example H1 = O be-
cause the triangle 05 is filled in. If we cut out the inside

of this © leaving only the edges, then we find that Hy = J,

2'
because there is now a single generator in the shape of

which is not the boundary of a Oy the g, having been removed.
Thus the single generator of H1 represents the presence in K of
a hole, bounded by l1-simplices (edges), what we shall call a
1-dimensional hole. If the complex K contained two hollowed-
out triangles then H, would be isomorphic to the direct sum of

J and J, written H, = J ® J. In a similar vein, if a geometrical

representation of lhe complex K possessed a spherical hole
(bounded by the surface of a sphere} we would find that H, would
contain a single generator 226 Byi and if we found that H, =

J ® J we could interpret it as meaning that K possessed two 2-

dimensional holes.

In general then we wish to stress the interpretation of the
free group Gg as an algebraic representation of the occurrence

of p-dimensional holes in the complex K; the precise number of

these holes is given by the pth Betti number Bp. A geometrical
representation of the complex - as far as Gg is concerned -

therefore looks like a sort of multi-dimensional Swiss cheese.
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The g-connectivity analysis discussed in the next section is
dedicated to showing us the structure of the "cheese" in between
the holes. The possible interpretation of the torsion subgroup
Tor Hp is more elusive in this cheese-like context, but the
following example [1] shows that it can have a very practical

significance in another.

Example
' . 1 2 3
Denote the faces of a gambler's die by the symbols v , v7, v7,
4 5 6

v, vo, v . Let these be the vertices of a 5-simplex and let K
be this simplex together with all its faces; for example, a
typical l1-simplex is the pair <vi Vj> with 1 # j. Impose the
induced orientation on K, induced by the natural ordering of the
vertices. Now conduct a series of experiments in which the die
is successively thrown until there is a repetition of a die-face:
in this, interpret the sequence {v',v)} as the negative of the
sequence {vj,vi}. The result of a series of successive throws
is to observe an element in the graded chain group

C- = Cqy ®C, ® C, @ C, ®C, @ Cg -

3 4

Notice that the boundary of the run <123> is the 1-chain <12>,
<23>, <31>.

In the first place we expect the experimenter to be able to
observe every possible distinct run and series of runs. It would
then follow that in the graded chain group every cycle is a

boundary and so

Hp =0 for p=1,2,3,4 ;

thus the homology is trivial.

But now let us alter the arrangement so that the experimenter
suffers the handicap of working with a laboratory assistant who
sees to it (by doctoring the records) that, let us say, the run

<123> never occurs - either by itself or as a face of any other
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run. This results in a drastic alteration of the complex K and
its associated chain group. For example, the sequence <123456>
never occurs, since it contains <123>. Furthermore, in the new

complex K', there exists a cycle
z, = <12> + <23> + <31°>

which is not a boundary. Hence the intervention of the assistant
is reflected in an increase in the 1st Betti number 81 from the
value O to the value 1. The assistant is responsible for punch-
ing a hole in the complex; the homology group H1 is now iso-
morphic to J.

Let us go further and alter the arrangements yet again.
Suppose that the experiment is conducted by two fair-minded
gamblers. They begin by noticing that the probabilities of dis-
tinct runs corresponding to typical simplices Oqr Opr O34 Oy Og
are 5/6, 5/9, 5/18, 5/54 and 5/324. Since they intend to bet on
the experiment, our two gamblers agree to weight the simplices
SO as to even up the chances. They do this by introducing new
(weighted) simplices as generators for the new chain group C'.
These generators 0; are related to the old generators 95 by the
formulae

'

. - ) — - 1
oy = 5uo1, g, = 3602, a

3= 1803; ¢}

| - . '
y = 09y 9g

Now the homology has been altered yet again; for example,

54{<12> + <23> + <31>}

is in Z% but not in B!, because the latter consists of multiples

of 108 & ol, 108 being the lowest common multiple of 36 and 54.
i

Hence there exists a cycle z, such that 221E:B'. This makes a

1 1

1 of the summand J2; H1 now contains a torsion

subgroup Tor H1. In fact

contribution to H

H1 = J2 ® J2 e...8 J2 ’
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there being 10 summands in all. The other Hp are not affected
and Hp = O for p= 2,3,4.

The gamblers' complex therefore possesses torsion which is
expressed in Hl' It is thereby clear that the torsion can be
introduced into H (K) in different ways, which give different
summands Jm’ by aitering the odds on the outcome of the experi-

ments. Thus oa = Ll801 leads to 10 summands J with

3

H1 =J,®J, ®6...0 3

3 3 30

Cochains and Coboundaries

We can associate with a chain group C (with coefficients
in J) a dual concept, namely that of mappings from C into J.
In doing this we introduce the concept of a cochain, dual to that

of a chain; every such cochain is a mapping from C 1into J:

cc «+ C_~>»J .
p
Precisely, we denote a p-cochain by cp, and we also demand addi-
tivity
P ' - P P~
cFlc. + cC = c + ct(c') .
( D p) ct ( p) ( p

We can build up any particular p-cochain c® in terms of a set of
mappings from the p-simplices Op into J. Hence, prior to the
notion of a cochain we can have the notion of a cosimplex oP
which is simply a mapping
/
oP : {Ol} - J
P

without any additive structure assumed. If there are hp p-

simplices in K we can define a basis for the cosimplices as the

set of h_ mappings {of, i = 1,2,...,h_} where
p mappings {0} o

0 if i # 3

]
Oi(op)

=1 if i=3 .
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p

p is the sum of the oy that is

Then every cosimplex o
p p
o = at
Z i '
i
and every p-cochain is a linear combination
p _ p
ct = m, o
g ii

together with the linearity condition. The zero cochain map

(for any p) is the one defined by m;, =0, for all values of i,
and the whole set of p-cochains form an additive group cP. Hence
the graded cochain group is the direct sum

cc=cPeocle...0 ™ ,

where n = dim K. To complete the duality, we can define a co-
boundary operator ¢ which is the adjoint of 3. Adopting the
P

inner product notation (cp,c for the value (in J) of cp(cp),

we define § by

Py _ P
(Bcp+1,c ) = (cp+1,6c )

which shows that 6: cP - Cp+1. It is also clear that § is nil-

potent, 62 = 0, since
0= (0,cP) = (3%_,.,cP)
p+2
= (3cp+2,6cp)
= (cp+2,620p) for all choices of cp+2,

p

2
and so 8§ ¢ must be the zero map. We now have the dual cohomology

groups, #P (K;J) defined by

gP = Zp/Bp = ker §/im 68
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POLYHEDRAL DYNAMICS

The previous section briefly reviewed a number of classical
concepts from algebraic topology and their use in analyzing some
features of the global connectivity of a simplicial complex K.
In particular, we saw that knowledge of the homology groups en-
ables us to determine the multidimensional holes of K. In ad-
dition, the torsion subgroups give information concerning the

"twists" of the cycles of K and their dimensions.

Now we turn the focus of our attention to some non-classical
aspects of the connective structure of K. Rather than studying
the holes of the complex which, in essence, is the study of what
is absent from K, we investigate the "material" which is actually
present. In other words, we shall look at the chains of connec-
tion which form the fabric of the complex. In addition, we in-
troduce measures which allow us to study how well any individual
simplex is "integrated" into the total complex, thereby providing
means for local analysis to complement the global picture obtained
from the connectivity patterns. Finally, we inject a note of
dynamism into the picture by means of the notion of a pattern on
a complex. A pattern is basically a map which assigns a numerical
value to each simplex of K. Pattern measures "traffic" which must
be (i) determined by a vertex set and (ii) be graded on the simplices
of K. Thus, we will see that a dynamical system can be mathe-
matically structured as a complex in which there is a continual
"flow" of numbers among the simplices. The connective structure
of K then gives information as to various geometrical obstacles
preventing free flow throughout the complex, as well as the dimension
and nature of the various obstacles preventing such a flow. The
concepts of Newtonian and Einsteinian forces will then make their
natural appearance in order to explain the flow of patterns in

any given situation.
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Chains of Connection

Given two simplices o; and Oj in a complex K, we say they

are joined by a chain of connection if there exists a finite

seguence of simplices Og. 10q 119y v in K, such that
1 2 n
i o i o,
1) o is a face of i
1
ii) o is a face of o, ,
a 3
n
iii) % and Oa share a common face, s =
s s+1

Such a chain is said to be of length n-1. If

g = min {i,u1,a2,...,a 3

n

then we say the chain is a g-connectivity.

1,2,.+.,n-1.

It is trivial to verify that the notion of g-connectivity

is an equivalence relation upon the simplices of K.

Thus, it is

of interest to study the equivalence classes generated by this

relation.

As a measure of the global connectivity pattern of the com-

plex K, we introduce the first structure vector Q, whose entries

are non-negative integers indicating the number of equivalence

classes in K for each q, g = 0,1,...,dim K, i.e.

Qi = the number of i-connected components in K,

i=0,1,...,dim K.

Intuitively, one could imagine looking at the complex K through

special glasses which only enable the viewer to see i-dimensional

objects. With such glasses, the viewer would then see the com-

plex K split into Q; disjoint pieces. Consequently,

connectivity vector

the g-
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Q= (Qgimg r---r91:9)

gives valuable information as to how the "pieces" comprising the
relation A are connected to each other and at what dimensional
levels these connections take place. One should note that all
the simplices in a particular component need not have g-simplex
interfaces in a pairwise fashion, but rather there will be multi-
dimensional "tubes" of simplices which join the members of the
component. These tubes embody the local structure of the complex

and, therefore, of the relation A.

A simple algorithm suitable for computing Q from the inci-

dence matrix of A is given in Appendix A.

Eccentricity

While the structure vector Q provides valuable information
concerning the global connectivity structure in K, it gives very
limited information about the individual simplices comprising
the complex. Since the simplices and vertices are identified
with the elements of the sets X and Y, they are the items of
primary physical concern and, as a result, it is of some impor-
tance to attempt to develop some measures indicating the degree
to which each individual simplex integrates into the entire

complex K.

Such a measure for a given simplex ¢ should clearly take

account of two important factors:

i) the dimension of 0, i.e. to how many distinct elements

is the simplex A-related; and

ii) the degree to which 0 is connected to the remainder of

the complex, i.e. how well integrated o is into K.

It is fairly obvious that a high-dimensional ¢ is, in some
sense, more important to the understanding of K than is a low-
dimensional simplex. However, for understanding the total

complex, even if ¢ is high-dimensional, it may still not be too
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important if it is only weakly-connected with the remainder of
K. Thus, both of the requirements above must be taken into
account in devising a measure of the importance of ¢ to the

entire complex.

A measure which satisfies both of the points discussed

above is the eccentricity of o, denoted ecc(u). If we denote
g = dimension of g ,
g = dimension of the highest-dimensional simplex with

which ¢ shares a face, i.e.  is the largest g
value for which ¢ is in a component containing

some other simplex,

then we define

ecc (o) = 974

Clearly, §-gd is a measure of the unusual, "non-conforming"
nature of o¢; however, §~- g = 2 is presumably more revealing if
g = 1 than if § = 10. Hence, we use the ratio above as the

measure of eccentricity, rather than the absolute difference
d-dg.

As an example of the ideas of g-connectivity and eccentrici-
ty, consider the following hypothetical predator-prey ecosystem.

Let the predator set be given by

Y = {Man, Lions, Elephants, Birds, Fish, Horses},

{Y1lYZly3’YQIYSIYS}
while the set of prey is

_ {mAntelopes, Grains, Pigs, Cattle,l
1Grass, Leaves, Insects, Reptiles |

{x1,x2,x3,xu,xs,x6,x7,xg}
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We define a relation X on Y x X by saying that (yi,xj)g X
if and only if predator Yi feeds on prey xj. A plausible inci-

dence matrix for this relation is

A Xy Xy, Xy X

[%2)

¥ 1 1 1 1 0 0] 0 0

Thus, if we consider the complex K, (X;)), we have

Y

<x1x2x3xu> is a 03 whose name is Yqo

<X > i ol o m i
1%3 is a o, whose name is Yo

and so on.

The geometrical representation of KY(X;A) is

X3 X7
& ‘h X6
" X2 Xs

Already, the geometry suggests that the vertex <x2>, consisting

of Grains, is going to be critical in the analysis of this eco-
structure.

Referring to the algorithm given in Appendix A, the con-
nectivity vector Q is formed. We have
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at g =3 , Q=2 , {y1}, {Yu}
q=2 ’ Q2 = 2 ’ {Y1}r {yu}
a=1 ., 9 =3, lypgy,h {ygh ly,y,)
qQ=0 , Qy = 1, {all}

Thus

3 o)

Q= (2231)

The eccentricities of the simplices Y, = Yg are
ecc y, = 1, ecc y, = o , ecc yy = 1 ’
ecc y, = 1, ecc yg = o , ecc y = o .

Hence, we see that there is a great deal of homogeneity in K, no
simplex exhibiting a significant degree of eccentricity. 1In other

words, all of the predators are well integrated into the ecosystem.

Patterns and Dynamics

An essential feature characterizing most of modern system
theory is the notion of a dynamic. Interesting as they are for
some purposes, static processes are of limited utility when it
comes to modelling most situations in economics, sociology, bi-
ology, and so on. Consequently, we now turn our attention to
the development of concepts which inject a note of dynamism into

the heretofore static geometric picture of a system given above.

The basic device used to incorporate a system dynamic into
the structural analysis already developed is the idea of a pattern.
We conceive of a pattern as being a mapping which assigns a num-

ber to each simplex of the complex K at each moment in time, i.e.
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where N = dim K, k being a suitable number field. We also note
that since the complex K is graded by the dimensionality of its

component simplices, the pattern Il is also graded. Thus, we
may write

I = HO + H1 ®...8 HN

r

with each Hi being a map defined only upon simplices of dimen-
sion i. Thus, the numbers themselves acquire a "dimension" de-
fined by the dimension of the simplex with which they are asso-
ciated by 1.

The system dynamics is now identified with a change of

pattern 81, i.e. with a distribution of the numbers among the
simplices,

8 = Gno ® 6H1 6...9 GHN .
The existence of the complex K induces the notion of a basic
pattern on K, namely that which associates a "1" with every sim-
plex in K. Changes in this basic pattern are then interpreted
in one of two ways:
i) Newtonian - we regard the complex K, itself, as being
fixed. Then changes in the pattern, 61, are interoreted

as stresses or forces on the simplices of K. Thus, if

GHt # 0, we have a t-force in K with GHt > O being a
force of attraction, while GHt < 0 is regarded as a
force of repulsion. From the Newtonian point of view,

K is regarded as a static framework under stress.

ii) Einsteinian - an alternate approach to interpreting &I
is to regard &I as defining a new complex backcloth by
addition or deletion of vertices. 1In other words, the
original geometry of K is changed to accommodate the
change of pattern 8l or, conversely, a change in the

geometry may induce a pattern change §II.

Let us explore the Einsteinian interpretation a bit further.
Since the numbers associated with each simplex have a "natural"

dimension equal to that of its simplex, a free change of pattern
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at level g is possible only if: (i) another simplex of dimension
> g exists in K and (ii) the two simplices in question belong to
the same g-connected component of K.

Point (ii) explicitly indicates the relevance of our previous
g-analysis to the dynamics of the process. If we define the unit

vector
u= (1,1,...,1)

then the system obstruction vector is defined as

Thus the non-zero components of § indicate those g-levels in K
for which a free change of pattern is not always possible, i.e.
ﬁq > 0 implies the existence of a geometrical obstruction to the
free change of II. For a detailed mathematical discussion of this

point, see [3].

Returning now to the Einsteinian interpretation of &I, we
see that it amounts to saying that the only changes of II that
can arise are those which the geometry of the system permits.
In other words, the geometry of the complex is altered from stage
to stage so that all pattern changes are free. Thus, the only
allowable pattern changes are those free changes which the geo-

metry permits.

LINEAR SYSTEMS

With the previous pages as prologue, we now turn to the gues-
tion how the polyhedral dynamics methodology interfaces with
more traditional concepts of mathematical system theory. In
particular, we shall be concerned in this section with illustra-
ting the use of polyhedral dynamics for analyzing the geometrical
structure of linear systems. It will be seen that the severe
restriction of linearity enables us to gain a number of new in-
sights into important aspects of linear system theory and that
the polyhedral dynamics concept suggests a number of new directions

for future research.
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To fix our notations, we regard a linear dynamical system
I as being equivalent to a triple of constant matrices I = (F,G,

H), connected through the dynamical equations

dx/dt

Fx(t) + Gu(t) ,

&~
.

y(t) Hx(t) .

Here x is the n-dimensional state vector, u is an m-dimensional
input vector, and y is a p-dimensional output vector. The ma-
trices F,G,H, are of sizes nxn, nxm, pxn, respectively, with
entries in some field k. Further mathematical details arising
from such a set-up may be found in the texts [7,8]; for present
purposes, it suffices to think of I as being a "machine" which
transforms the inputs u(t) into the outputs y(t) by means of the
intermediate "internal" variable x(t). The matrices F,G,H, then
prescribe the internal structure of I, together with the resrtric-

tions upon how I is allowed to interact with the outside world.

Our first task in attempting to interpret the above set-up
in the context of polyhedral dynamics is to identify appropri-
ate sets X and Y. To make headway on this problem, we take our
cue from the approach used in the theory of differential forms
to treat ordinary differential equations of the above type [9].
The differential forms analysis makes a sharp distinction be-
tween the "state” or "position" at a given instant and the in-
stantaneous "change" or "velocity" at the point. 1In fact, they
are regarded as conjugate objects. Since our earlier discussion
has stressed the role of conjugate relations obtained from a
given relation X by interchanging the roles of the sets X and Y,
it seems reasonable to consider choosing the sets X and Y to
consist of the states {xi} and the differentials or co-states
{dx’}. For the sake of definiteness,

>
]

{x1,x2,...,xn} = simplices ,

{dx1,dx2,...,dxn} = vertices .

[
It
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Having selected X and Y in the above manner, we turn to the
definition of the relation A c Y x X. Since the elements of X and
Y both refer only to the internal variable x, it is evident that
the definition of )} will not involve the external interaction
matrices G and H, but will be confined to the internal coupling

structure present in F. Thus, we define ) by the rule
i3
(dx™,x”) € XA = fij #0 .

Reversing the roles of X and Y, we immediately obtain the defin-

ing rule for the conjugate relation A—1 as

(x*,dx7) ¢ 277 “E # 0

Thus, we see that the incidence matrix A (or A_1) is obtained from
F by the rules

_ 1 , flJ # 0
Y. =
J o , £.. =0
1]
and
i o £5; # 0
"y = .
J o , £..=0
Jl

(Recall: /\.1 denotes the incidence matrix for the conjugate re-

lations and does not mean the inverse of A in the usual sense.)

The foregoing definitions have been introduced to make it
particularly simple to make contact with the usual system dynam-
ics. Since we have already defined the pattern to be a mapping
assigning a number from some field k to each simplex at each
time, we now see that in the above linear system set-up, the
general notion of a pattern is nothing more than the actual nu-
merical realization of the state vector at each instant in time,

i.e.

nrn : X - kn

Mmxhy1e) » xte) .
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as discussed above in a more abstract context,

the dynamics

of the process are contained in the pattern I and how it changes

over the complex and not in the underlying geometrical structure

of the complex itself, although the geometry does determine how

the pattern I can change.

must be clearly kept in mind.

In order to fix the basic notions,

example.

onical form,

Assume that all a.

while that for the

A

-1

i.e.

m =
0] 1
0 0
0 9]

-a_ -0
n
# 0.

i
matrix for the relation )\ is

1,

It is easily

G

we consider

Consider a single-input system I given in

This is an important distinction which

a prototypical

control can-

seen that the incidence

— Al

dx1 dx dx~ . . . dxD

0 1 o .. . O

0 o] 1 . .. O

n-1

6] 6] o . . . 1

1 1 I

. . -1 .
conjugate relation X is
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Geometrically, we may visualize (for n=4) the relation A

dx3

as

dx dxb

a tetrahedron representing the 3-simplex qu together with the

three O-simplices x1, x2, and x3

The structure vector Q is easily computed for this complex

form A. We have

at level g=n-1, Q4 =1 =,

g=n-2 , Q. ,=1 (x} |,

gq= .1 ’ Q1 =1 {Xn} ’

g=0 , QO =1 {al1}
Thus,

n-1 0

The conjugate complex, generated by the incidence matrix A',

has the following connectivity structure:

-1

at level qg>2 , Q>2 =0 ,
a=1, @'=n-1, (& iad),. .,
- -1 _
g=0 , B =1, {all}

Hence,
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and we have the geometrical representation

xn"l :

. 1
consisting of (n-1) 1-simplices dxz,...,dxn, and the O-simplex dx .

The eccentricities for the two complexes are easily seen to

. o , i#n
ecc(xl) = {

{1, i# 1
o , i=1,

indicating that only the simplex x" "stands out" in the complex

]

ecc(dxl)

KX(Y;A), while only the simplex dx1 is "antisocial" in the con-

jugate complex.

The preceding discussion shows that the system matrix F de-
termines the geometry of the internal structure of I. We now
investigate that of the role of the input matrix G and the ouput

matrix H.

From the standpoint of "Newtonian" inputs, or forces, it is
easy to see from the systems dynamics that an applied input u(t)
will directly influence the vertex dxi if and only if at least
one entry in the ith row if G is non-zero. In geometrical terms,
we regard an open-loop input u(t) as being a force which is ex-
erted upon the vertices of the complex KX(Y;A), with the entries
of G determining which vertices are affected directly by u(t),

and by what magnitude.

The situation becomes far more interesting, however, if we
consider feedback inputs of the type u(t) = -Kx(t), K being a fixed

matrix. 1In this case, we see that the new system dynamics become
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)‘( = (F"GK)X ’

which, by the above rule for generating the relations ), defines
a new complex. Consequently, we are justified in interpreting
feedback as being an "Einsteinian" input, in the sense that it
changes the actual geometry of the problem. In this context, we
see that the system input matrix G plays a far more central role
in that its entries determine how the internal geometry of I may
be altered by means of feedback, or Einsteinian, inputs. Thus,

we have the interpretations

feedback input <+ changes of system geometry

open-loop inputs ++> induced forces on a fixed geometry.

Turning now to the consideration of the observation matrix

H, we have

y; (8) = h,

;1% (t) + hizxz(t) 4.+ hj_nxn(t) , i=1,2,...,p

However, by virtue of our definition of the xi‘s as simplices of the
complex, together with the discussion given earlier of chains and
the chain group, we see that each system output yi(') is an ele-
ment of the chain group C,, i.e. each yi(-) is a linear combina-

tion (over the field k) of simplices (the xl) of various dimensions.

Our previous interpretations of the pattern II as being the
mapping which "evaluates" the argument at time t show that the
actual numerical output, yi(t), is an element of the co-chain
group, i.e.

(Moy; ()] e c” .
Thus,

[MToy] (x)

Hx (t)

y(t) .
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These considerations show that the elements of H determine the
specific co-chain used to generate the systems output. Another
way of looking at this is to regard H as determining the sub-

group of the chain group which is used to generate the output

co-chain.

In geometrical terms, H determines which "pieces" of the
internal geometry are reflected in the system output, an intu-

itively satisfying role for the observation matrix to play.

DISCUSSION

The preceding results give rise to a number of important
(and non-standard) questions regarding the geometric structure
of linear systems. Some of the issues which come to mind im-

mediately are:

i) Given fixed F and G, what geometric changes are possible
by application of feedback? Such a question is inti-
mately related to standard controllability and pole-
shifting results. For some preliminary work in a re-
lated direction we recommend [10] which treats the con-
trollability problem from the structural rather than
numerical point of view, i.e. utilizing only the zero/
non-zero structure of F and G rather than their precise

numerical entries.

ii) Given the structure vectors Q and Q-1, is it possible
to reconstruct a system matrix F giving rise to this
structure? 1If so, is F unique, and if not, how can we

. . -1
characterize all possible F generating Q and Q '?

iii) How may we generalize classical stability concepts to
apply to the structural setting? Some of the work on
"connective" stability, as reported in [11], provides

preliminary results in this direction.

iv) What is the meaning of cycles in the system-theoretic
context and how should one interpret the homology groups

and the Betti numbers? Clearly, these important
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iv)

vii)
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topological invariants provide vital information con-
cerning the geometric obstructions to a free flow of
patterns throughout a given complex. However, more

work is needed to make the notions precise.

In what manner may the above interpretations of X,Y

and X be extended to non-linear systems? A re-examin-
ation of the basic definitions shows that the linear-
ity assumptions on the system dynamics play a very
minor role in the final results. The only place where
we see linearity entering in any essential fashion is
in the interpretation of the system outputs as elements
of the chain group; however, even here there seems to
be a possibility to allow nonlinearity by defining a
nonlinear analog of the chain group, or alternatively
we might ask whether nonlinearity is eguivalent to
graded linearity via C' = {Cp}. In short, most of the
basic definitions and results seem capable of extension
to broad classes of non-linear systems with modest addi-

tional effort.

Since application of feedback inputs may be used to
change the geometry of I, we are led to pose a new
class of control processes in which the criterion func-
tion is chosen to measure aspects of system structure.
It is of considerable interest to investigate how the
standard "optimal" feedback law associated with qua-
dratic cost functions modifies the geometry of & and

ask whether another law might be preferable if the cri-
teria were modified to include various structural costs.
In addition, we might also consider control processes
for which some of the admissible inputs consist of addi-
tion and/or deletion of vertices from the complex. All

of these questions call for further study.

Passing to the complex KY(X:A_1), we immediately see
the relevance of the preceding set-up to the usual du-
ality results of standard linear system theory [8].

The intriguing question that now arises is whether or
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not the added geometrical insight provided by the sim-
plicial set-up will serve as sufficient mathematical
inspiration to create a duality theory for nonlinear

systems.

What interpretation can be given to the homotopy group

Y(x:x'1)? This

essentially local view of the geometrical structure

elements [2] either in KX(Y;A) or in K

might be relevant to conventional noise in I [3].
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APPENDIX A

Algorithm for Q-Analysis

If the cardinalities of the sets Y and X are m and n, re-
spectively, the incidence matrix A is an (mxn) matrix with entries
O or 1. In the product AA', the number in position (i,j) is the
result of the inner product of row i with row j of A. This num-
ber equals the number of 1's common to rows i and j in A. There-
fore, it is equal to the value (g+1), where g is the dimension of
the shared face of the simplices op, 0. represented by rows i and j.

Thus, the algorithm is:

(1) For AA'" (an mxm matrix),

(2) Evaluate AA'-Q, where Q is an mxm matrix all of whose

entries are 1,

(3) Retain only the upper triangular part {(including the
diagonal) of the symmetric matrix AA'-Q. The integers
on the diagonal are the dimensions of the Y, as sim-

plices. The Q~analysis then follows by inspection.



-36-

REFERENCES

[1] Atkin, R.H., Mathematical Structure in Human Affairs, Heinemann
Publishing Company, London, 1974.

(2] Atkin, R.H., An Approach to Structure in Architectural and
Urban Design-1, Environment and Planning, B, 1 (1974)
51-67.

[31 Atkin, R.H., An Approach to Structure in Architectural and
urban Design-2, Environment and Planning, B, 1 (1974)
173-191.

[4] Atkin, R.H., An Approach to Structure in Architectural and
Urban Design-3, Environment and Planning, B, 2 (1975)
21-57.

[5] Pontryagin, L., Foundations of Combinatorial Topology,
Graylock Press, New York, 1952.

(6] Alexandroff, P., Elementary Concepts of Topology, Dover,
New York, 1961.

[7] Brockett, R., Finite Dimenstonal Linear Systems, John Wiley
and Sons, New York, 1970.

[8] Casti, J., Dynamical Systems and Their Applications: Linear
Theory, Academic Press, New York, to appear 1977.

[9] Flanders, H., Differential Forme, Bcademic Press, New York,
1963.

(10] Shields, R., and J. Pearson, Structural Controllability of
Multiinput Linear Systems, IEEE Tran. Auto. Control,
AC-21 (1976), 203-212.

[11] siljak, D., On the Stability of Large-Scale Systems Under
Structural Perturbations, IEEE Tran. SMC, SMC-3 (1973),
415-417. -

(12] Kalman, R., P. Falb, and M. Arbib, Topics in Mathematical
Systems Theory, McGraw-Hill, New York, 1969.

[13]1 Herman, R., Interdisciplinary Mathematics, Vols. I1-IX,
Mathematical Science Press, Brookline, Massachusetts,
1975.





