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PREFACE

The problem of how to make a “fair division” of resources among competing interests
arises in many areas of application at IIASA. One of the tasks in the System and Decision
Sciences Area is the systematic investigation of different criteria of fairness and the formu-
lation of allocation procedures satisfying them.

A particular problem of fair division having wide application in governmental decision-
making is the apportionment problem. An application has recently arisen in the debate over
how many seats in the European Parliament to allocate to the different member countries.
Discussions swirled around particular numbers, over which agreement was difficult to achieve.
A systematic approach that seeks to formulate principles or criteria of fair division should
stand a better chance of acceptance in that it represents a scientific or system analytic ap-
proach to the problem.
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ABSTRACT

A (generalized) Huntington method for apportioning representatives among states,
or seats among parties, is one which distributes seats one by one by using a rank index that
determines how deserving a state, or party, is to receive the next available seat. A charac-
terization of these methods is given by two basic properties: consistency and house mono-
tonicity.

The arguments used to establish this result are combinatorial in nature and use classi-
cal theorems concerning partial orders and their representation by a real-valued function.
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On Huntington Methods of Apportionment

INTRODUCTION AND BRIEF HISTORY

The apportionment problem is the problem of determining how
to divide a given integer number of representatives or delegates
proportionally among given constituencies according to their re-
spective sizes. The problem arises in deciding how to distribute
a given number of delegates in a legislature among the component
states of a country and also in determining how to divide a given
number of candidates among the various political parties receiving
votes in an election. In the latter guise this is the proportional
representation problem.

In the United States the apportionment problem has a long and
interesting history stemming from the Constitutional mandate,
"Representatives and direct taxes shall be apportioned among the
several States ... according to their respective numbers" (Article
I, Section 2). This stipulation led to an early consideration of
various methods by which apportionments might be computed.
Jefferson, Hamilton, and Webster all actually proposed methods,
and many important political figures in United States history con-
cerned themselves with the apportionment problem at regular ten-
year intervals following each census, thus testifying both to its
political importance and its mathematical nontriviality. (For an
historical account of the problem in the United States see [4,14].)
In Europe, the question of apportionment methods does not seem to

have been debated until the second half of the nineteenth century,



and then in the context of proportional representation (see, e.g.,
[121).

Formally, the apportionment problem may be stated as follows.
Let p = (p1,p2,...,ps) be the populations of s states, where each
p; O is integer, and let h 2 O be the number of seats in the
house to be distributed. The problem is to find, for any p and
all house sizes h 2 O, an apportionment for h: an s-tuple of non-
negative integers a = (a1,...,as) whose sum is h. A solution of
the apportionment problem:-is a function £ which to every p and h
associates a unique apportionment for h, a; = fi(g,h) 2 O where

D) a, = h. A specific apportionment method may give several differ-
;nt solutions, for "ties" may occur when using it -- for example
when two states have identical populations and must share an odd
number of seats. It is useful, for this reason, to define an
apportionment method M as a non-empty set of solutions. Two dif-
ferent apportionment solutions f and g of a method M may be iden-
tical up to some house h and then branch, depending on how a
particular tie is resolved. The restriction of f to the domain
(p,sh'), 0 2 h' £h, will be called a solution up to h, £, and £
will be called an extension of gh.
As early as 1792 Thomas Jefferson [10], then Secretary of
State, pointed to the advantages of using a method of apportion-
ment after each census, as opposed to relying on ad hoc procedures
which are susceptible of endless political argument and manipula-
tion. Moreover, he proposed a general and important method known
today as Jefferson's method (g) [4]. This method, later redis-
covered by the Belgian mathematician Victor d'Hondt, has been

widely used for the proportional representation problem in Europe

[12]. The United States apportionments based on the censuses of



1790 through 1830 were Jefferson's.
In 1792 Alexander Hamilton, then Secretary of the Treasury,
proposed the following method [7]. Given the populations (p1,p2,
.,ps) and h, first compute the exact quota for each state i,

pih/(ijj) = d;. and consider the fractional remainders di =4q;-

lqu (where |x| represents the largest integer less than or equal
to x) arranged in descending order, say di 2 d 2 e 2 di .

1 2 S
Then Hamilton's method is to first give each state i [qij seats,

i

and if di is among the first 4 = ;di terms of the above list then
it is given one more, or [qu + 1lseats. This method was proposed
again after the 1850 census by Representative Samuel F. Vinton of
Ohio, and was used (subject to politically motivated amendments)
for the censuses of 1850 through 1900 under the name "Vinton's
Method of 1850."

A serious difficulty with this method came to light in 1881
when C.W. Seaton, the Chief Clerk of the United States Census
Office, discovered that, whereas the Hamilton method, in appor-
tioning 299 seats among the states, gave Alabama 8, it gave her
only 7 in a house of 300 seats. This phenomenon (which is no
isolated quirk of the Hamilton method but in fact occurs frequent-
ly) was dubbed the Alabama paradox, and was immediately recognized
as a critical flaw in the Hamilton method.

Beginning early in this century attention was therefore fo-
cused on developing methods that do not admit the Alabama paradox,
that is, methods that are kZouse monotone in the sense that f(g,h+1)
> f£(p,h) for every p and h. W.F. Willcox [17] generalized an
earlier proposal of Webster [16] to obtain a house monotone method,
known alternately as the method of major fractions or Webster's

method (W), which was used in 1911. This method was proposed



independently by Sainte-Lagie in 1910 [13] and has been used in
proportional representation systems in Europe. Beginning at about
this time E.V. Huntington [9], Professor of Mathematics at Harvard,
undertook a formal investigation of house monotone methods.

From a computational point of view Huntington's approach may
be summarized as follows. Let r(p,a) be any real-valued function
of two variables, called a rank index. Then a house monotone
apportionment method M is obtained by taking all apportionment

solutions f defined recursively as follows:

(i) fi(g,O) =0 , 1<is<s ,
(ii) if a;, = fi(pi,h) is an M-apportionment for h, and
k is some one state for which r(pk,ak) 2 r(pi,ai)

for 1 £ 1 £ s, then

fk(g,h+1) a, + 1, and fi(E’h+1) = a; for i # k.

k

The method obtained in this way will be called the Huntington
method based on r(p,a), and as a class such methods will be called
Huntinaton methods (see [#]). It is obvious that all Huntington
methods are house monotone. But Huntington himself only consid-
ered five particular choices of ranking function -- these are
listed in Table 1. As an example of a Huntington method Table 2
gives the Webster allocations (r(p,a) = p/(a+i)) for a house
ranging from 5 to 17 seats. That the five methods discussed by
Huntington are, in fact, all different is shown in Table 3 by the
apportionments obtained for a house of 36 seats for the same six-~

state example as that of Table 2.



Table 1. The five methods of Huntington.

Method Rank Index Test of Inequality (pi/ai;pj/aj)
Smallest Divisors (SD) p/a aj - ai(pj"/pi)
Harmonic Mean (HM) p/{2ata+1) /(2a+1)} pi/ai - pj/aj
i | 1/2
Equal Proportions (EP) p/lala+r1) ! piaj/pjai -1

Webster (W) p/ (a+1/2) a,/p. - a;/py
{also known as Major 3
Fractions and Sainte-

Laglle)

Jefferson (J) p/ (a+1) a.(p,/p.} - a
(also known as Greatest J J
Divisors or d'Hondt)

Table 2. Sample Webster apportionments.

A B C D E F
State Population | 27,744 25,178 19,947 14,614 9,225 3,292
House Size
5 2 1 1 1 0 0
6 2 1 1 1 1 0
7 2 2 1 1 1 0
8 2 2 2 1 1 0
9 3 2 2 1 1 0
10 3 3 2 1 1 0
1 3 3 2 2 1 0
12 3 3 3 2 1 0
13 4 3 3 2 1 0
14 4 4 3 2 1 0
15 4 4 3 2 1 1
16 5 4 3 2 1 1
17 5 4 3 2 2 1
36 10 9 8 5 3 1




Table 3.
Apportionment for 36
Party Votes Received Exact Quota SO HM EP W Jd
A 27,744 9.988 0 10 10 10 N
B 25,178 9.064 9 9 9 9 9
C 19,947 7.181 7 7 7 8 7
D 14,614 5.261 5 5 6 5 S
E 9,225 3.321 3 4 3 3 3
F 3,292 1.185 2 1 1 1 1
100,000 36.000 36 36 36 36 36

Huntington derived these five particular methods from certain
binary-comparison "tests of inequality." Given an apportionment
a = (a1,a2,...,as) for h and populations p = (p1,p2,...,ps), con-
sider any pair of states i, j and the numbers pi/ai and pj/aj,
which represent the average district sizes in states i and j re-
spectively. Huntington then argued: "Now in a perfect apportion-
ment, these two numbers would be exactly equal ... hence, in any
practical case, ... if [the] inequality can be reduced by a trans-
fer of a representative from one state to the other then ... the
transfer should be made.... The question then comes down to this:
what shall be meant by the inequality between these two numbers?"

[9, p. 86]. Huntington then goes on to consider the absolute

difference, |pi/ai-pj/aj|, versus the relative difference,



|pi/ai - Pj/ajl
min {pi/ai,pj/aj}

Assume that i and j are chosen so that p,/a; 2 pj/aj; then
the relative difference is piaj/pjai - 1. Suppose the relative
difference is chosen as the "right" measure of inequality. Then
it is easily shown that a = (a1,...,as) is an apportionment such

that no transfer can be made between two states that reduces the

amount of inequality if and only if, for all i and j,

N—
N

which holds if and only if (a1,a2,...,as) is obtained as a

1
Huntington method solution with r(p,a) = p/{a(a+1)}?, that is, EP
[4]1. Similarly, the test pi/ai--pj/aj leads to the Harmonic Mean

method. On the other hand, one could just as well begin by com-
paring the numbers aj/pj and ai/pi, or aj and ai(pj/pi) or aj(pi/
pj) and aj. whose differences lead to W, Qp, and g respectively,
and whose relative differences all result in EP [9]. It is inter-
esting to note in this context that Huntington's approach to J was
quite different from Jefferson's; moreover Huntington was apparent-
ly not aware of Jefferson's proposal.

Huntington's goal was to show that EP is the best of the five
methods, because it is based on what he felt was the most natural
measure of difference -- namely, the relative difference. 1In this
he was supported by two select committees which reported to the
President of the National Academy of Sciences, one in 1929 [5] and
one in 1948 [11]. These reports both argued for EP because, of

the "now known" methods which are "unambiguous" and house mono-

tone, EP satisfies a test that seems to be preferable to others



and yields apportionments that are "neutral ... with respect to
emphasis on larger and smaller states" [5]. The existence of
house monotone methods based on rank indices other than

Huntington's five had apparently escaped observation.

THE TWO BASIC PROPERTIES

By his tests of inequality Huntington restricted the field
to five particular methods, but did not convincingly single out
any one method as unequivocally "best." Here we ask, what are
the essential properties that distinguish the class of Huntington
methods from all others? The answer is surprisingly simple.

The first basic property of Huntington methods -~ house mono-
tonicity -- has already been mentioned: it was, indeed, the fun-
damental motivation for these methods. But the Huntington methods
are not the only house monotone methods -- for example the Quota
Method is a house monotone method that is not a Huntington
method {[1,4].

A further consideration of house monotonicity reveals a sec-
ond basic property that we call in this context consistency. If
M is any house monotone method, and f is a solution of M, then
for any given populations p the operation of f can be fully de-
scribed by specifying, for each h, which state gets the "next"
(i.e., (h+1)St) seat. For in going from f(g,h) to £(p,h+1),
exactly one state must get one more seat while all the others stay
the same. Why does some state i, having population 1 and cur-
rent apportionment a; = fi(g,h), get the (h+1)St seat instead of
some other state j with population pj and apportionment aj =
f.(p,h)? Evidently because state i "deserves" it more than j.

J =
In comparing the relative claims to an extra seat between any
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two states i1 and j, the only relevant data should be their pop-
ulations p; and pj, and their current numbers of seats a; and aj.
That 1is, M defines a partial relation > on the set X of pairs of

integers (p,a), p > 0, a > 0, as follows:

(p,a) % (q,b) if and only if there is some p, h

(1) and some i, j such that P, = Ps Py = Q fi(g,h) = a,

3
fj(g,h) = b and f;(p,h+1) = a + 1, fj(g,h+1) = b.

In this case we say (p,a) has weak priority over (q,b).
It should be noted that if (p,a) % (q,b) by some M then this
implies there is a problem with populations p = (ves s PrecesGsess)
and some h at which M gives a seats to the state with population
p and b seats to the state with population gq. If (p,a) % (g,b)
and not (q,b) % (p,a) we write {(p,a) > (q,b), whereas if (p,a) z
(q,b) and (q,b) % (p,a) we write (p,a) ~ (g,b) and say (p,a) and
(a,b) are tied.

It is natural, from the context of apportionment itself, to

require that the relation X satisfy:

if (p,a) and (q,b) are tied, then M should be
"indifferent" between them; that is, whenever

for some p and h, fi(p,h) = a, fj(p,h) = b,
st
(2) p; =P and pj ) seat

to state i then there should be an alternate

= q, if f gives the (h+1

solution ge M that is identical with f up to h

(i.e. g = ), but that gives the (h+1

st
)
seat instead to state j.

Any method M having property (2) will be said to be consis-
tent. Basically, consistency means that if (p,a) ~ (q,b), then

any two states with populations p and g and apportionments a and
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b are equally deserving in terms of the operation of the method
g.

Of course, there are other very natural properties that we
might wish the priority relation to satisfy, e.g., transitivity.
Remarkably enough, however, it turns out that something suffi-
ciently close to transitivity -- namely, acyclicity --is implied
by the two conditions of house monotonicity and consistency.

Indeed, these two properties precisely characterize the class of

Huntington methods.

THE CHARACTERIZATION

Theorem. An apportionment method M <s house monotone and

consistent i1f and only if it is a Huntington method.

The proof of this theorem needs two key lemmas concerning
the relation %#. The first, which contains the meat of the

argument, is established in the next section.

Lemma 1. Let 2 be the priority relation of a house monotone
and consistent apportionment method M. If (p1,a1) Z...Z (pk,ak)
then not (pk,ak) > (p1,a1).

Recall that if wm is any binary relation on some set S, then
t

the transitive closure of =, nt, is defined by (x,y) e m~ if and

only if (x,x1),(x1,x2),...,(xm,y) are all in m for some seguence
1 .2 - .

X ,X ,...,xme:S. Clearly ﬂt is always transitive; and nt is

irreflexive and transitive if 7 is irreflexive and acyclic.

Let ~ be the transitive closure of the relation ~ in Lemma
1; then ~ is symmetric and transitive. Define (p,a) = (p,a) for
all pairs (p,a) € X, so that = is an equivalence relation. Let

X = X/~ be the quotient set of X by =. Now define the binary
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relation p on XxX by (y,z) ey if and only if (p,a) > (gq,b) for
some (p,a) ey and some (q,b) € z.

We claim that u is acyclic. If not, then there is a sequence
y1,y2,...,yk€ X, k 2 2, such that (y1,y2)€ u,(yz,y3)e U penny

(yk,y1)€ Y. Hence there are equivalence class representatives

(pl,al)s yl and (ql,bl)s yl such that

(3)  (phah > @b, 0%ad) > (@b, B35, > @' ,bh

(pt,at) ~ (qt,bd) for each i, 1 £ i < k, so that either (p ,a") =
(ql,bl) or else there is a chain in X such that (pl,al) = (p%,a?)
T (P;,a;) = (q',b'). From these and (3) we immediately de-

rive a chain that contradicts Lemma 1. Hence p is acyclic, and
in particular asymmetric and irreflexive.
Let ut be the transitive closure of yu; pt is then a strict

partial order on X. We now need

Lemma 2. If m is a strict partial order on a countable set
S, then there exists a real-valued, order-preserving function ¢:

S +R; that is, (x,y) e 7 if and only if ¢(x) > ¢ (y) .

Proof. First we show that 7 is contained in a complete order
m* on S. Let x1,x2,... be a correspondence of S with the positive
integers, and let Z be the set of all ordered pairs (xi,xj), where
i < j and xi,xje S. Z is also countable. Let z1,22,... be a
correspondence between Z and the positive integers. Let (xi,xj)=
z% be the first in this sequence such that neither (xi,xj)e T nor
(xj,xi)e m. (If there is no such za, T itself is complete.)
Since m is transitive, mU{z%} is acyclic, hence nl = (nu{za})t is

a partial order containing m. Beginning with n1, construct nz,

© Iy
and so forth. Then U wl=1*is a complete order containing .
i=1
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. k
By induction on k define, for each k 2 1, a function ¢

{x1,x2,...,xk}<>R such that ¢k(xl) > ¢k(xj) if and only if (x*,x7)
e T*, and such that ¢k+1(xl) = ¢k(xl) when 1 £ i £ k. The union
of all these ¢k's is the desired ¢ : S~ R. @)

That 7 is contained in a complete order is a special case of
a result known as Szpilrajn's Theorem (which Szpilrajn attributes
to Banach, Kuratowski and Tarski [15]). The existence of a real
representation of a complete order on a countable set is a special
case of a result of Debreu [6].

The proof of the theorem is now completed as follows. Since
the set X of all pairs (p,a) is countable, X = X/> is also count-
able. Let ¢ : X+ R be an order-preserving function relative to ut
as guaranteed by Lemma 2. From ¢ we then define r : X+ R such that
r(p,a) = ¢(y) if and only if y is the equivalence class of = con-
taining (p,a).

We claim that @, the house monotone, consistent method of
Lemma 1, is the Huntington method based on r(p,a). Indeed let
feM. For any p suppose there is a first h such that f(p,h) =
(a1,a2,...,as) is a Huntington apportionment for h (based on r)
but g(g,h+1) is not. Then there must be distinct states i and j
such that r(pi,ai) > r(pj,aj) but f gives state j the (h+1)St
seat. Thus (pj,aj) 2 (pi,ai); but by the definition of r, we would
have r(pj,aj) 2 r(pi,ai), a contradiction. Thus every M-solution
is also a Huntington solution. The converse is established sim-
ilarly.

This completes the proof of the theorem and leaves only the

proof of Lemma 1. s
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ESTABLISHING ACYCLICITY

In effect, given a sequence (p,,a;) z (pz,az)z-.-Z (pyray)
what we would like to do is construct a solution £ such that for
1 <12k, fi((p1""'pk)’h) = a; where h = Ziai. This turns out
to be technically quite involved. A particular stumbling block
is that * is only a partial relation, so that not every two pairs
(p,a}) and (g,b) are comparable.

Let us say that a sequence 8§ =((p1,a1),(pz,az),...,(pk,ak))
is constructible,writtenC((p1,a1),(pz,az),...,(pk,ak)), if there
exists f ¢ M such that, for some q = (q1,...,qs), s > k, satisfying
qi] = p1,qi2= p2,...,qik= Py and some h, we have fij(g,h) = aj
for 1 < j < k. It follows that if S is constructible, then it is
constructible for the population vector (p1,p2,...,pk) since con-
sistency permits one to imitate the solution for q restricted to
these populations. Also, if it is known that (p,a) £ (gq,b) by
some M then, of course, we have C((p,a),(q,b)).

Suppose that C((p,a),(g,b)), and let feM, p and h be such
that P; = P fi(g,h) = a and pj = q, fj(g,h) = b. Consider the
sequence of pairs (fi(g,o),fj(g,o)),(fi,(g,1),(fj(g,1))u---, (f;

(g,h),fj(g,h))-"-that is, the record of how states i and j went
from zero seats each to an apportionment of a and b respectively.
After eliminating redundant elements from this sequence we obtain
the history H(a,b) for p, q. Evidently, since f is house monotone,
any element (x,,X,) ¢H(a,b) satisfies 0 < x; < a, 0 £ x, < b, and
if (x1,x2) # (a,b) the successor of (x1,x2) is either (x1+1,x2)

or (x1,x2+1). Note that if (x1+1,x follows (x1,x2) then (p,x1)

5)
z (q,xz) and if (x1,x2+1) follows (x1,x2) then (q,xz) 2 (p,x1).

We represent H(a,b) by a tableau of form:
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P O ... X a
! H(a,b) .
g o .. X5 b
(e} x1+x2 a+b
Any sequence S = ((pi1,ai1),...,(pik,aik)) such that (pi1,ai1)
z x (p., ,a. i , d
2 (piz, ai2) e (pik ,aik) (p11 al1) is called a cycle, and S

is a strict cycle if at least one of the relations *» is satisfied
as > .
The proof of Lemma 1 now proceeds by several sublemmas.

Throughout, the relation % is that given to us by the method M.

Lemma la. No strict cycle is constructible.

> z > >
Proof. Suppose that (p1,a1) z (p2,a2)~...~ (pk’ak) (p1,a1)
is a strict cycle and constructible. Then for some f e M we would
have a; = fi(p1,...,pk,h) where h = Ei_ai' Let i be such that
fi((p1,...,pk),h+1) = a; + 1. Then (p;,a;) z (pi_1,ai_1) whereas
by assumption (pi_1,ai_1) 2 (pi,ai), hence (pi,ai) ~ (pi_1,ai_1)

(if i = 1 let i - 1 always mean k). Therefore, by consistency

there exists an extension g of fh such that g gives the (h+1)St

seat to state i - 1. Continuing in this manner we establish that

(p,

1’ai) ~ (pi_1,ai_1), 1 £ i £ k. But this contradicts the as-

sumption that for some i, (pi_1,ai_1) > (pi,ai). Hence S is not

constructible.
Lemma 1b. If (p,a) % (q,b) then C((q,b),{(q,b)).

Proof. Since (p,a) ¥ (q,b) we must have C((p,a), (q,b)).
Let H{a,b) be a particular history for p, g. Define p =
(p,9,9). Consider the largest house h £ a + b + b = hO for which

there exists an @—apportionment X = (x1,x2,x3) satisfying
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(4) Xy fa , X, fp , X3 b ,
(5) (x1,x2)e H(a,b) and (x1,x3)€ H(a,b)
P 0 . x1 .o
q o . X,
q o} x3 .
0 . h= x1+x2+x3
Without loss of generality take Xq 2 %5
Case 1, X3 > Xy Then H(a,b) has form

H(a,b)

In particular (x1,x2+1)e H(a,b) so

(6) (@rxy) 2 (Prxq) .

If also (q,xz) z (q,x3), then there exists an apportionment for

h+1
P o .. X4 X4 .
q o ... X, x2+1 v
q o ... X3 X3 ..
h h+1

and since x, < Xq < b, (4) and (5) are satisfied for the larger
house h+1, a contradiction.

Otherwise (q,X3) > (d,%,), so by Lemma la

(7) (a,x3) > (p.xy) .
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Case la. If also X3 < b, then (x1,x3+1)€ H(a1,a2) and
P o .. X4 x1
q o ... Xy X,
q o ... X4 x3+1
h h+1

is an M-apportionment for h+1 satisfying (4) and (5), a contra-
diction.

Hence Xy = b. We cannot also have Xy < a, because then the

history H(a,b) would imply that (x1+1,b)e H(a,b), so that (p,x1)

z (q,X3) = (gq,b) contrary to (7).

Case 1b. = b and x, = a. Then we have (q,xz) > (p,a) by

%3 1
(6) and (p,a) % (q,b) by the hypothesis of the lemma, so

P O ... a a
q 0 ... %, x2+1
q 0O ... b*b

h h+1

is an apportionment for h+1 satisfying (4#) and (5), a contradiction.

Case 2. X3 = X, If x4 < a and Xy = X < b, then the suc-
cessor of (x1,x2) in the history H(a,b) determines whether state

1 or state 2 gets the (h+1)St

seat and in either case (4) and (5)
are satisfied, a contradiction. If X, < a and Xy = X3 = b then
(p,x1) ¢ (q,b) by the history and (x,+1,b,b) is an M-apportionment
for h+1 satisfying (4) and (5), again a contradiction. Finally,

if X, = a and Xy = X4 < b then (a,x2+1,x2) is an @—apportionment

3

for h+1 satisfying (4) and (5), which is a contradiction once again.
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It follows that we must have h = a+b+b, proving the lemma. 0O

Lemma lc. 1If C({(g,b),(q,b}) then for any b', 0 £ b' < b,
there exists a sequence b' = b, < b <..._§bk = b such that

C((q,b;_4),(q,b;)) for 1 21 2k and (a,by) x (a,by) Z...Z (a,by) -

Proof. The proof is by induction on b - b', the result for
b = b' being trivial. Let H(b,b) be any history for g, gq. Then
there exists a pair (x,y) e H(b,b) such that x = b' or y = b’.
Choose any such pair (x,y) with x + y maximum. Say without loss
of generality that x = b'. Then by choice of (x,y), y > b' and
(g,b'"Y 2 (gq,y). Set b, =y. If b; =b we are done; otherwise
b] < b and we argue as with b' to find a b2 > b1 such that (q,b1)
= (q,bz) and so forth. This completes the proof of Lemma 1c. a

For any sequence S of pairs (pi1,ai1),(pi2,a.2),..., (pi ray )
define bS to be the maximum of the integers a;
define ng to be the number of a; such that ai? = bS. We say that
sequence S precedes T, written SJ<< T if either bS < bT or bS = bT
and ng < Dy

Clearly any sequence other than a trivial one of form § =
((p,0)) has a predecessor.

Suppose, contrary to Lemma 1, that (py,a;) % ... z(pk,ak)b
(p1,a1) is a strict cycle S. By Lemma la S is not constructible,
hence in particular bs > 0. We may therefore assume inductively
that S is the "first" strict cycle; i.e. that T << S for no strict
cycle T. Also, we may assume (by relabelling if necessary) that

a, = bs. We shall now derive a contradiction.

2
i < §i < ke >
For each i, 1 £ i £ k-1, the fact that (pi,ai) (pi+1,ai+1)
implies C((pi,ai),(pi+1,ai+1)); hence for each such i choose a

history H(ai,ai+1) for Pi+r Piyq- Letting p = (p1,p2,...,pk) and
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o
I

I, a; , consider the largest h' < 1O for which there exists

£eM satisfying

(£;(p,h) £, 4(p,h)) e H(ay,a; 4) for all i,

(8) i+1 i
1<1i2<k-1and all h < h' .
Clearly h' exists and h' 2 0. Moreover, if h' = n° then s

is constructible, a contradiction. Therefore, h' < ho. Let X, =

fi(E,h') for each i; in particular, by (8) we have X, =< a,. Let

V be the set of all pairs (pi,xi), 1 £ i 2 k. Any two elements

of V are comparable relative to % because V has actually been con-

structed; for the same reason there are no strict cycles in V.
Second, define E = {(pi,xi)e Vixg = ai}.
We now construct a partial relation R on V as follows: for
< i < 1 s
1242 k-1 4 (x5,%;,,) % (ai,ai+1) and the successor of (x;,X; 4)

in H(ai,ai+]) is (xi+1,xi+1) then (pi,xi)R (p ) whereas if

. X.
i+1771i+1

the successor is (xi,x.+1+1) then (p

i 1) R (py,%;). These are

ir1 %0+
all the relations in R. The significance of R is the following:
if (pi,xi)e V- E is undominated relative to R then the successive

pairs from the sequence (x1,x2,...,xi+1,x .,xk) are again

i+17°
members of the histories H(a1,a2),...,H(ak_1,ak).

Notice that vRw implies v £ w for any v,we V. Further, com-
parable pairs under R form a forest (in fact, a forest in which no
vertex has degree greater than two) on the vertex set V. Since,
by definition, we never have (pi,xi) R(pj,xj) for any (pi,xi)e E
it follows that the set of R-undominated elements in V- E is non-
empty. Let vR = {ve V-E: not wRv for any we V} # 4.

Finally, let v* = (pl,xz) be a maximum element of VR rela-

tive to 2. Notice that v* cannot also be maximum in V relative

to %, for if it were then by consistency there would exist an M-



-19-

apportionment for h'+1 giving the (h'+1)St seat to state . More-
over, this would agree with the given histories, contradicting

our assumption on h'.

We claim
(9) (P1 IX1)l(p21X2) c E .
For any w, € V - E there is a chain wann_1...RwO in

V -E such that wnevR, hence v¥ 2 w_2 ...2w

n p: In particular, E

cannot be empty, else v* would be maximum in V. Suppose (9) is
false, and let (pi,xi) = (pi'ai) be any element of E. First, if

i # 1, let j be the largest index less than i such that (pj,xj) £ E.
(Such a j always exists by the assumption that (9) is false.)

>
Then (xj,aj+1)e H(aj, ), hence (pj,xj) 2 (pj+1,aj+1). Moreover,

2541
i > > >

by assumption on S, (pj+1,aj+1) 2 (pj+2,aj+2)~ cee 2 (pi,ai). But
(Pj’xj)'(pj+1’aj+1)"" »(p;sa;) has been constructed, so by Lemma
1la it cannot be a strict cycle. Hence (pj,xj) > (pi,ai).
Second, if i = 1 then (p2,a2) ¢ E implies (a1,x2) EH(a1,a2) so
(p2,x2) 2 (p1,a1). Since in the above argument (pi,xi) was arbi-
trary in E, it follows that for all (pi,ai) € E there exists (pj,
xj)‘¢E such that (pj,xj) 2 (pi,ai). But then v* would be maximum
in V, a contradiction. Thus (9) is established.

Since v¥ = (pl,xz) cannot be maximum in V, but v¥ % w5 for
all W€ V- E, there must exist weE, say W = (pj,aj), such that
w > v¥. Suppose that j > 2. Observe that since (p2_1,a2_1) >
(pg,ag), Lemma 1b tells us that C(pz,ag;pz,az). Hence, by Lemma
lc, there exists a sequence x, = al £ aié:...é=a2 = ag such that

1, > 2, > > n 1 s 2
(pzrag) ~ (pgrag) X ... % (py,ay). Then (pj,aj) > (pgray) * (pgsay)
>

Z ... 2(pl,a2) z (Pghqragyq) X e 2 (pj,aj) is a strict cycle T

that does not include the pair (p2,a hence does not contain as

2)!
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many values bs as did the original cycle S. Since a, was chosen
to be the maximum value of a; in 8, T << S, contradicting the in-
ductive hypothesis that no strict cycle precedes S.

Suppose, then, that j < £. Let t be the largest index less

than j (if such exists) such that x, < a,. Then (xt,

t t ) e Hiag,

341
i = z z . .
at+1) since x4 A 4q and so (pt,xt) (pt+1’at+1) R (PJ,aJ)

>(pl,x£). Since this sequence has been constructed we have
(pt,xt) > (pz,xz). But this implies v¥* = (pz,xz) is not a maximum
in V- E, a contradiction. So X, = a; for 1 £ 1 =2 j, and (p1,a1)3
(pyraz) 2.2 (pj,aj) > (pz,xz). But this sequence has been con-
structed so (p1,a1) > (pl,xz). Thus, as before, (p1,a1)> (pz,x2)=
1 n
> > = > > >
(Pgrag) 2 ... 2 (pg.al) (pz,az) z (p2+1’a2+1) 2 eea 2 (Ppsay) % (g,

a1) is a strict cycle T (not necessarily constructed) with T << 8.
This contradiction concludes the proof of Lemma 1 and hence of the

theorem. w]

FURTHER AXIOMATIC CHARACTERIZATIONS

This paper has shown how the five methods discussed by
Huntington find their place in an axiomatic setting which unique-
ly characterizes the class of "generalized" Huntington methods by
two basic properties: house monotonicity and consistency.

Particular Huntington methods may be uniquely characterized
by various additional axioms. A method M is said to be the unique
one satisfying given properties if any other set M' of solutions
having these properties is a set of @-solutions, i.e. @'SE M.

One of the fundamental types of axioms not considered by
Huntington is that an apportionment should not differ from the
exact quotas by one whole integer or more. A method is said to
satisfy quota if any apportionment (a1,a2,...,a ) for (pqiPyrev-.

s
) at house h has the property that lqu = a; b [qi] where q; is

Ps
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the exact quota of state i. A method is said to satisfy upper
quota if ay = fq;1 for all apportionments a; and to satisfy lower
quota if a; 2 lg;J. It may then be shown that J (Jefferson) is the
unique house monotone, consistent method satisfying lower quota [3].
Also, SD (Smallest Divisors) is the unique house monotone, consis-
tent method satisfying upper quota [3]. Since SD and J are not the
same method (e.g. see Table 2) it follows, in particular, that
there is no house monotone, consistent method satisfying gquota.

In view of the desirability of house monotonicity and satis-
fying quota as properties of an apportionment method, it is natural
to ask whether there exists any method that obeys both properties.
There is; moreover, if consistency is weakened to "consistency
satisfying quota," then there exists a unigue method, the Quota

method, satisfying the three properties [1,4].
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