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Abstract 

An important criterion in the analysis of climate policy instruments is their ability to stimulate the technological 
change necessary to enable the long-term shift towards a low-carbon global energy system. In this paper, some effects of 
emissions trading on technology deployment when technology learning is endogenized are examined with a multi­
regional "bottom-up" energy-systems optimization MARKAL model of the global energy system. In this framework, 
due to the action of spillovers of learning, imposing emission constraints on a given region may affect the technology 
choice and emissions profiles of other (unconstrained) regions. The effects depend on the geographical scale of the 
learning process but also on the presence of emissions trading, the regions that join the trade system and their timing for 
doing so. Incorporating endogenous technology learning and allowing for spillovers across regions appears as an 
important mechanism for capturing the possibility of induced technological change due to environmental constraints in 
"bottom-up" models. 
© 2003 Elsevier B.V. All rights reserved. 
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1. Introduction 

One of the central factors shaping the future 
path of the global energy system is technology 
dynamics. Cumulative learning processes consti­
tute an important mechanism of technological 
change in energy systems. As a network phenom­
enon (Wright, 1997), technology learning takes 

·Corresponding author. Tel. : +43-2236-807-578; fax: +43-
2236-807-488. 

E-mail address: barreto@iiasa.ac.at (L. Barreto). 

place through interactions at local, regional and 
global levels. Learning networks are created 
around a given technology or technology cluster. 
The (changing) geographical configuration of 
those learning networks plays a significant role in 
the diffusion of technologies. 

Emission trading has been proposed as one 
of the "geographical-flexibility" mechanisms to 
comply with greenhouse gases (GHG) emissions 
reductions. It gives parties with expensive in-house 
mitigation options the possibility of profiting from 
cheaper alternatives available somewhere else by 
buying emission permits. Many analyses have 

0377-2217/$ - see front matter © 2003 Elsevier B.V. All rights reserved. 
doi: l 0.1016/S0377-2217(03)00350-3 
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shown that implementing trade could help to 
achieve mitigation goals at lower costs (see e.g. 
Weyant, 1999). 

In the same way as the learning process, emis­
sions trading can also be seen as a time-evolving 
network of interactions between regions. The 
spatial configuration of the trade network would 
change as parties join (or leave) the permits mar­
ket. Both technology learning and trade networks 
could play a significant role in shaping the tech­
nology choices in a COrconstrained global energy 
system. Emissions trading may have an effect on 
policies for promoting technology development 
and diffusion. Also, the stimulation (or discour­
agement) of the learning processes of emerging 
low-carbon and more efficient technologies would 
affect their deployment in a region and, therefore, 
its ability to participate in an emissions trading 
system, particularly in the long-term. 

The effects of emissions trading on energy 
technology innovation and deployment are com­
plex and many different factors intervene. None­
theless, our understanding of the forces involved 
must be improved. In this paper, using a five­
region "bottom-up", energy-systems optimisation 
MARK.AL model (Fishbone and Abilock, 1981) 
of the global energy system that endogenizes 
technology learning, some insights are gained into 
the influence of emissions trading on the diffusion 
of emerging technologies. For such purpose, the 
deployment of energy technologies, whose invest­
ment costs follow learning curves, is analyzed 
under different C02 constraints and emissions 
trading modalities. 

We highlight the role of spillovers of learning 
across regions as an important mechanism to be 
considered when modeling the interaction between 
climate policies and technological change. Includ­
ing the spatial spillovers of learning in our 
"bottom-up" framework allows capturing the 
possibility that the imposition of emission con­
straints in a given region may induce technological 
change in other regions, even when they do not 
face emission constraints and, therefore, it alters 
the effects of emissions trading on technology de­
ployment in the "bottom-up" context. 

It must be noticed that we do not attempt here a 
comprehensive modeling of all the very complex 

aspects of technological change and, specifically, 
we do not address it outside the context of the 
energy system. Neither we do address energy­
economy-environment interactions that are rele­
vant when examining the role of climate policy 
mechanisms in inducing technological change. 
Although we recognize that such treatment would 
be desirable and necessary to fully evaluate the 
interaction between emissions trading and tech­
nological change, it lies outside of the scope of 
this paper. We concentrate and restrain ourselves 
solely to the possibilities of the "bottom-up" 
framework outlined here. Moreover, endogenous 
learning curves are considered only for one specific 
performance indicator of technologies, namely 
their investment costs, and only in the electricity 
generation sector. Thus, results only intend to il­
lustrate the dynamics of the intervening mecha­
msms. 

2. Description of the modeling approach 

For this analysis, a compact multi-regional 
MARK.AL model of the global energy system has 
been developed (Barreto, 2001). MARKAL is a 
dynamic process-oriented, linear programming 
model of the energy system, which allows a de­
tailed representation of supply and demand energy 
technologies (Fishbone and Abilock, 1981). In the 
global model built for this analysis, five regions are 
considered. Two regions represent industrialised 
countries: North America (NAM) and the rest of 
the OECD (OOECD). One region brings together 
economies-in-transition in the Former Soviet 
Union and Eastern Europe (EEFSU). Two addi­
tional regions portray the developing world: One 
of them groups the developing countries in Asia 
(ASIA) and the other comprises Latin America, 
Africa and the Middle East (LAFM). The number 
of regions chosen was influenced by the size of 
model that could be solved in a computationally 
efficient way. Such aggregate regionalisation does 
not allow differentiating the behavior of some 
regions that are important players in climate issues 
(such as Europe and Japan), but it is considered 
sufficient for the illustrative purpose of the exercise 
discussed here. 
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The results correspond to a scenario of gradual 
developments in population, economic growth and 
energy requirements. To build such a scenario, 
assumptions on end-use demands as well as po­
tentials for fossil (Rogner, 1997) and renewable 
resources were made consistent with the B2 sce­
nario quantification carried out with the MES­
SAGE model (Riahi and Roehr!, 2000) for SRES 
(2000). It must be noticed, however, that no at­
tempt is made here to reproduce or emulate the B2 
developments. 

Energy needs for industrial, residential, com­
mercial and transportation sectors are considered. 
Industrial, residential and commercial energy de­
mands are considered at the useful-energy level. A 
simplified transportation sector aggregates both 
freight and passengers transport demands (at the 
final-energy level). Additional categories represent 
non-commercial uses of biomass and non-energy 
feedstocks. Demands are exogenously given but 
their projection takes into account some stylized 
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facts concerning structural changes in the econ­
omy of the different regions. 

Fig. 1 presents the standard reference energy 
system (RES) applied in all regions. Although not 
shown in the RES, in all demand categories ge­
neric end-use devices are considered. The time 
horizon is 1990-2050 with 10-year time steps. A 
discount rate of 5% is applied in all the calcula­
tions. A more detailed description of the model 
can be found in Barreto (2001). 

Addressing the question of the interaction be­
tween emissions trading and energy technology 
innovation requires an adequate treatment of 
technology dynamics in energy-systems models. 
Here, the attention focuses on a particular aspect, 
namely technological learning. Learning is a key 
driving force of technological change and plays an 
important role in cost/performance improvement 
of technologies, stimulating the competition and 
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marketplace. 
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Fig. 1. Reference energy system applied in our multi-regional global MARKAL model. 
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A typical learning curve describes the specific 
cost of a given technology as a function of the 
cumulative capacity, a proxy for the accumulated 
experience (Argote and Epple, 1990). It reflects 
the fact that some technologies may experience 
declining costs as a result of their increasing 
adoption, due to the accumulation of knowledge 
through, among others, learning-by-doing pro­
cesses. The specific investment cost (SC) is for­
mulated as 

SC(CC) =a* cc-b, 
where CC is the cumulative capacity, b the learn­
ing index, a the specific cost at unit CC. 

Usually, instead of the learning index b the 
progress ratio (PR), i.e. the rate at which the cost 
declines each time the cumulative production 
doubles, is specified. The progress ratio can be 
expressed as 

PR= 2-b. 

Endogenizing technology learning represents an 
advance towards a more comprehensive treatment 
of technological change in energy optimization 
models, capturing the early investments (i.e. early 
accumulation of experience) required for a tech­
nology to progress and achieve long-term cost 
competitiveness. More importantly, it also pro­
vides a mechanism that makes an important aspect 
of technological change (i.e. cost development) 
dependent upon parameters and variables in the 
model (e.g. on the imposition of emissions con­
straints). 

However, when the original formulation of the 
learning curves is included in standard linear 
programming models, the result is a non-linear 
and non-convex optimisation problem. Such kind 
of problems possesses several local optima, and a 
global optimal solution cannot be guaranteed with 
the normal non-linear optimisation solvers. 

The existence of local optima is of interest to 
the policy analyst, as it illustrates how, under the 
presence of increasing returns, a system may 
evolve in significantly different directions. Ana­
lyses by Mattsson and Wene (1997), with the non­
linear, non-convex version of the GENIE model, 
illustrate that different local optimal solutions can 
exhibit very different technology dynamics but 

very similar system costs. Such local minima rep­
resent situations where the system has followed a 
trajectory that drives to its "lock-in" to a certain 
technology or group of technologies and highlight 
the fact that diverging technological configura­
tions of the energy system and associated envi­
ronmental impacts can be reached depending on 
the (path-dependent) direction that technological 
change follows. Here, however, we do not examine 
or compare those different local optimal solutions. 

It is possible to identify a globally optimal so­
lution for this non-linear, non-convex program 
through the application of global optimization 
algorithms (see e.g. Manne and Barreto, 2001 1

) or 
by resorting to heuristics, for instance using dif­
ferent conventional nonlinear programming algo­
rithms and several different starting points for each 
of them and/or imposing alternative terminal 
conditions for the problem (for an application of 
the latter option see e.g. Manne and Richels, 
2002). Heuristics, however, cannot fully guarantee 
that a global optimum has been reached. 

Making use of these techniques, however, be­
comes more difficult for large-scale models or 
when the number of learning technologies in­
creases. Thus, here we do not solve the original 
non-linear, non-convex optimization program, but 
resort to a linearisation of the problem applying 
Mixed Integer Programming (MIP) techniques. 
The MIP approach provides such linearisation 
by a piecewise interpolation of the cost curve. Bi­
nary variables are used to control the sequence of 
segments along the curve. Although more com­
putational intensive, an optimal solution can be 
identified for this linear approximation. 

Following the pioneering work of Messner 
(1997) for the MESSAGE model and Mattsson 
and Wene (1997) for the GENIE model, 2 Barreto 
and Kypreos (1999) incorporated experience 
curves in the MARKAL model using MIP tech­
niques. A summary of the MIP approach used in 
MARKAL is presented in Box 1. A detailed de-

1 Manne and Barreto (2001) have applied the global optimi­
sation BARON algorithm (Sahinidis, 2000) to a similar small­
scale problem. 

2 See also Mattsson (1997). 
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scription can be found in Barreto (2001). For other 
analysis using MARK.AL with experience curves 
see Seebregts et al. (2000). 

Box 1. Description of the Mixed Integer Pro­
gramming approach 

• The cumulative capacity of a given technology k 
in the period t is defined as 

I 

eek,, = cck,o + L INV k,,, 
T=l 

k E {l,. . .,K}, t E {l ,. . ., T} . 

The parameter Ck,o is the initial cumulative ca­
pacity (the corresponding cumulative cost TCk,o 
is also defined). The variable INVk,i represents 
the investments made on this technology in a 
particular period t . 

• The cumulative capacity is expressed as a sum­
mation of continuous lambda variables: 

N 

eek,, = L Ak,i,I· 
i=l 

• The cumulative cost is expressed as a linear 
combination of segments expressed in terms of 
the continuous lambda and binary delta vari­
ables: 

N 

TCk, = ~ rt.;k * bk;1 + (J,.k * Ak;1, 1 ~ 1 I! l I ! 

i=I 

bk,i,t E {0, 1} 

with: fJ; ,k = (TC;,k - TC;-1 ,k )/(CC;,k - CC;-1 ,k) 
and rt.; ,k = TC;-1,k - fJ; ,kCC;-1 ,k· 

• The logical conditions to control the active seg­
ment of the cumulative curve are: 

• The sum of delta binary variables is forced to 
one: 

N 

~bk it= 1. ~ ,, 
i=l 

• Using the fact that experience must grow or at 
least remain at the same level, additional con­
straints are added to the basic formulation, 

helping to reduce the solution time. For t = 
1, . .. , T, k = 1, . . . ,K, i = 1, .,. ,N, 

i i N N 

L bk,P,t > L bk,P,t+I) L bk,P,t ~ L bk,P,t+I · 
P=l P=I P=i P=i 

• The investment cost ICk ,t associated to the in­
vestments in learning technologies is computed 
as 

ICk,1 = TCk ,1 - TCk,1-1 · 

The discounted investment cost is included in 
the objective function. 

In the MARK.AL model with multi-regional 
learning, the cumulative capacities of the regional 
technologies are added up to obtain the cumula­
tive capacity of an aggregate "dummy" learning 
technology, which is used for the computation of 
the corresponding investment costs. The approach 
implicitly assumes that the investment costs of a 
given learning technology are the same for all the 
regions that conform a given spatial learning do­
main. As cumulative capacities are added up 
across regions in order to compute the investment 
costs, installations of a given technology in one 
region will affect the uniquely defined investment 
cost and can make the technology cost-effective in 
another region(s) that belong(s) to the same spatial 
learning domain (Barreto and Kypreos, 2002). 

We now turn to discuss the assumptions on the 
learning technologies. Within the electricity gen­
eration sector of the model 13 technologies are 
considered. Learning curves are specified for their 
investment costs. Six of them are assumed to ex­
hibit progress ratios lower than one (see Fig. 2). 
The deployment of the learning technologies is 
examined under different C02 constraints, differ­
ent modalities of emissions trading and different 
configurations of learning spillover. The role of 
these technologies is analyzed within the context of 
the evolution of the full energy system, represented 
in our MARK.AL model. However, the treatment 
of investment costs through learning curves is 
limited only to the electricity generation sector. 
For the rest of the energy supply and demand 
technologies considered investment costs are trea­
ted exogenously. Thus, no attempt is made here to 
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Investment Costs (US$/kW) 
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Fig. 2. Leaming curves assumed for electricity generation 
technologies. Markers are used only to distinguish different 
curves. No allusion to historical trends is intended. 

provide a comprehensive modeling of endogenous 
technological change neither inside nor outside the 
energy system. Therefore, results are only illus­
trative but they allow us to examine some effects 
of emissions trading on technology deployment 
in our multi-regional "bottom-up" context when 
endogenous learning is considered. 

We do not offer a full justification of the pro­
gress ratios assumed here, but they lie within the 
ranges reported in the literature. For solar photo­
voltaics the value applied here is based on Harmon 
(2000), who assembled data for the world market 
between 1968 and 1998, finding a progress ratio 
of 80%. 

For wind turbines, which have also experienced 
significant cost reductions in the past, our value is 
based on Neij (1999), who presents a detailed 
analysis of learning within the Danish wind in­
dustry, reporting a progress ratio of 92% for all 
Danish wind turbines in the period 1982-1997. 

As for the fuel cell, although a significant po­
tential for cost reductions exist, there is uncer­
tainty about future cost levels. Being the 
technology still in the R&D phase, little informa­
tion about learning curves is available. Thomas 
et al. (1998) conducted analyses for penetration 
of fuel cell vehicles using an estimated PR of 82%, 
which is also the value assumed here. 

Some evidence of learning has been found for 
the construction costs of conventional coal power 
plants, when leaving aside the costs incurred as 

response to environmental regulations (Joskow 
and Rose, 1985). However, besides the analysis of 
MacGregor et al. (1991), which found a progress 
ratio of 83 .6% for the early phase of development 
of the Integrated Gasification Combined Cycle 
power plant, no additional learning curve analyses 
appear to be available for clean coal technologies 
in the literature. This may be due, among other 
factors, to the uncertainty in installed capacities as 
the technologies are still in an early stage of de­
ployment. However, analyses have been reported 
with a moderate PR of94% for a generic advanced 
coal technology (Messner, 1997). Such value is 
adopted here. 

Although there is evidence of cost reductions 
due to learning effects in the very early stages of 
introduction of nuclear power units (Zimmer­
mann, 1982), conventional nuclear power plants 
have not shown capital cost reductions as a result 
of cumulative experience, among other factors due 
to ever-increasing safety regulations. Learning ef­
fects may have manifested in other performance 
indicators such as increased safety and reliability 
of operation. Nonetheless, new technologies could 
exhibit a different dynamics. First-of-a-kind units 
of the newly designed plants would certainly be 
expensive, but there are expectations that experi­
ence with them may lower construction and op­
eration costs (EIA, 1998). Here, a conservative 
progress ratio of 96% is considered for a generic 
advanced nuclear power plant. 

Gas turbines have experienced significant cost 
reductions along their history. MacGregor et al. 
(1991) presented a learning curve of simple cycle 
gas turbines using data for the period 1958- 1980. 
The technology exhibited a rapid learning (PR = 
80%) in the R&D and demonstration phase (1958-
1963), but learning slowed down (PR= 90%) once 
it went into the commercialisation phase (1963-
1980). Claeson and Cornland (2002) carried out 
another analysis. The learning curve of the com­
bined cycle gas turbine was examined using in­
vestment prices (not costs) from 1983 to 1997. 
According to such analysis, the technology actu­
ally experienced price increases with accumulation 
of experience (i.e. PR > 100%) during the period 
1983-1990 and experienced again decreases in the 
period 1991-1997 (PR= 75%), probably due to 
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increasing competition among manufacturers to 
gain market share in that period (market "shake­
out" phase). Although a cost trend is difficult to 
establish out of price trends, Claeson and Corn­
land (2002) estimate that a likely future progress 
ratio for investment costs could be around 90% 
once the market stabilises. This is the value con­
sidered here for the combined cycle gas turbine. 

It must be recognized, however, that progress 
ratios are highly uncertain and, even if estimated 
accurately from the historical data, it is difficult to 
extrapolate those values into the future. 

Regarding C02 emissions, two scenarios have 
been considered. The first is an unconstrained 
reference scenario. In the second, labeled Kyoto­
trend scenario, Annex I regions (i.e. NAM, 00-
ECD, EEFSU) are compelled to reach their Kyoto 
targets by 2010 and to follow, from this target, a 
linear reduction of 5% per decade until the end of 
the horizon. The C02 constraint considered here, 
however, is only illustrative. 

In the Kyoto-trend scenario three variants of 
emissions trading are contemplated. In the first 
case, no trade is allowed. In the second, trade is 
allowed only between Annex I regions, starting in 
the year 2010. In the third case, non-Annex I re­
gions join the trade of permits from the outset in 
2010. 

In the constrained scenario non-Annex I re­
gions are bounded to their baseline emissions. 
That is, they are endowed to their reference emis­
sions and, when allowed, they can trade any 
emission reductions below them. The emission 
trading mechanism considered here refers to all 
trade of emission permits generally and does not 
distinguish particularities of the Emissions Trad­
ing, Joint Implementation and Clean Development 
Mechanism considered under the Kyoto protocol. 

The multi-regional MARKAL model takes 
emissions trading between regions into account by 
the following constraints: 

EMC02rg,I + NTXC02rg,I ~ IEC02rg,11 

L NTXC02rg,t = 0, 
rg 

where EMC02rg,1 is the C02 emissions in the re­
gion rg for the time period t (a variable). 

NTXC02rg,1 the net export of C02 emissions from 
the region rg in the time period t (a variable). 
IEC02rg,1 the initial endowments of C02 emissions 
for the region rg in the time period t (a parameter). 

It should be clarified how the emissions trading 
mechanism operates in this "bottom-up" context. 
Emissions trading basically allows the reallocation 
of the carbon reduction targets and, therefore, of 
the incentives to deploy low-carbon technologies 
among the regions participating in the trade sys­
tem. Carbon emissions reductions are distributed 
across regions such that their marginal reduction 
costs are equalized and the most cost-effective 
emission reduction options are selected. Also, 
since buying expenses and sales revenues of emis­
sion permits are not endogenous to the model but 
can only be computed ex-post, our approach 
cannot measure the benefits of trading, which can 
be particularly significant for the selling regions. 

The spatial scale of the learning process has a 
significant influence on the outcome. In this anal­
ysis it is assumed that all technologies exhibit the 
same spatial scale of learning, and that such scale 
remains unchanged along the time horizon. The 
attention has primarily been concentrated in a 
global learning scenario. That is, when a single 
learning curve is specified at the global level. Ca­
pacities deployed across all regions are added up 
to obtain the global cumulative capacity, which is 
used for the computation of the corresponding 
investment costs. Assuming global learning has an 
important implication for the diffusion of the 
learning technologies. With all regions contribut­
ing to the cost reduction, deploying the technology 
in one of them traduces in a reduction of the 
specific cost common to all of them. Thus, instal­
lations in a given region will contribute to render a 
learning technology more cost-effective also in 
other regions. 

The scale of the learning process, however, de­
pends on the degree of technology spillover be­
tween different regions. A global learning scenario, 
of the kind applied here, implies the existence of 
full spillover oflearning at the global level. That is, 
different regions are able to fully profit from cost 
reductions induced by capacity installed some­
where else. Although this portrays a situation 
consistent with global manufacturing and energy 
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services companies operating in a borderless 
world, global learning should not be taken for 
granted for all technologies, particularly when 
taking into account the spatial dynamics of the 
process of diffusion of innovations and the fact 
that local science and technology capacity building 
is necessary for the successful penetration of a 
technology into the marketplace. 

As a complement to the global learning case, an 
example in Section 6 illustrates the response of the 
model under three additional scales of learning. 
Compared to the global learning scenario, they 
represent a geographical fragmentation of the 
process into Annex I/non-Annex I, IND/EIT/DEV 
(industrialised, economies-in-transition and devel­
oping groups) and single-region learning domains, 
respectively. 

3. Reference case 

In order to provide an appropriated context, 
the structure of primary energy consumption and 
electricity generation in the unconstrained baseline 
case (labeled as reference) is briefly described at 
first. It should be borne in mind here that a sce­
nario does not constitute a projection of the future 
of the energy system, which is highly uncertain, 
but only a picture of the possible development 
under a particular combination of driving forces 
(for a definition see e.g. SRES, 2000). Therefore, 
no attempt is made here to present our figures as 
projections or predictions of the future trajectory 
of the global energy system, which is highly un­
certain and no model or modeler is in a position to 
predict. 

Under this scenario, global primary energy 
consumption, as computed by the model, experi­
ences a significant increase, growing at an average 
rate of 1.5% per year. It is still largely dominated 
by fossil fuels (see Fig. 3). 

Both coal and natural gas experience a sub­
stantial growth, with gas becoming the predomi­
nant source by the end of the horizon. Growth 
of oil remains modest, but it still continues to hold 
a significant contribution. Non-fossil resources 
slowly gain market share. According to our as­
sumptions in this scenario, demands for energy 
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Fig. 3. Global primary energy consumption per energy carrier 
(reference scenario). 

services grow substantially more in developing 
regions than in developed regions. This seems, 
from our perspective, a plausible assumption, 
which is consistent with recent historic trends and 
other scenarios of the future global energy sys­
tem (IEA, 2002) which depict developing regions 
steadily approaching industrialized regions as the 
largest energy consumers. 

Fig. 4 presents the corresponding C02 emissions 
per region. Global emissions grow at an average 
rate of 1.5% per annum for the period 1990-2050, 
reaching 2.5 times their value in 1990 at the end of 
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Fig. 4. Global energy-related C02 emissions per region in the 
reference scenario. 
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the horizon. As the center of gravity of energy 
consumption is displaced toward developing re­
gions, their weight in global C02 emissions aug­
ments substantially along the time horizon. 
Specifically, developing ASIA becomes the most 
important emitter in the very long run. On the 
other hand, emissions in the Annex I group follow 
a moderate growth until 2030, stagnating in the 
subsequent period. 

At the global level, electricity generation expe­
riences a vigorous growth, with an average rate of 
2.8% per annum for the period 1990-2050. The 
technology mix of the global electricity genera­
tion system in the reference scenario is shown in 
Fig. 5. 

Coal continues to be the main primary fuel for 
electricity production, but it is the clean coal 
technology that becomes predominant at the end 
of the time horizon. The gas combined cycle and 
wind turbines experience a vigorous growth. The 
gas fuel cell also penetrates. Co-generation be­
comes an attractive option. Nuclear power essen­
tially does not grow, but a substitution of 
conventional plants by new designs takes place. 
The amount of hydroelectric production grows 
only slightly. Solar photovoltaics penetrates only 
very marginally, remaining in essence "locked­
out". 

4. Imposing a Kyoto-trend constraint 

Imposing a Kyoto-trend C02 constraint on the 
Annex I regions does not imply radical changes in 
the structure of the global energy system. Still, the 
system weans away from a carbon-intensive energy 
production. But, although industrialized and 
economies-in-transition regions reduce their emis­
sions, global emissions continue to grow consid­
erably driven by the dynamic growth of developing 
regions. Fig. 6 depicts the emissions in each region 
for the year 2050. At the global level the Kyoto­
trend target entails a reduction of approximately 
15% from the reference emissions in 2050. With 
Annex I trade, NAM and OOECD regions in­
crease their emissions, as they buy permits from 
the EEFSU, which in its turn reduces further the 
level of emissions in order to sell. The allowance of 
full trade enables Annex I regions to emit more, as 
the developing ones assume part of their mitiga­
tion targets. 

A comparison of the electricity generation mix 
in 2050 for the different variants of the Kyoto­
trend scenario is shown in Fig. 7. The reference 
scenario is also shown. 

The contribution of the electricity system to the 
emissions reduction is achieved mainly through 
fuel switching from coal to natural gas, the less 
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Fig. 6. Comparison of C02 emissions per region in the refer­
ence and Kyoto-trend scenarios for the year 2050. 

carbon-intensive fossil fuel, and higher penetration 
of zero-carbon alternatives. Thus, coal plays a 
more reduced role as primary fuel for electricity 
generation than in the baseline situation, particu­
larly in the no-trade and Annex I-trade cases. 
Advanced coal technologies dominate the fraction 
of coal-fired generation remaining at the end of the 
horizon. The gas combined cycle, hydro and nu­
clear (both conventional and advanced) power 
plants increase their output. Wind turbines con­
tinue to grow at the maximum allowed rates, co­
generation continues to be an attractive option 
and solar PV begins to make a dent. The gas fuel 
cell, on the other hand, reduces its role in the cases 
where trade is permitted. 

4.1. Mitigation costs 

In a "bottom-up" framework, the mitigation 
costs for a given region have two components. The 
first is the difference between the total discounted 
regional system cost in each of the Kyoto-trend 
cases and the corresponding baseline cost. This 
corresponds to the cost of the changes effected in 
each regional energy system in order to fulfill the 
emissions reduction target, i.e. the domestic miti­
gation cost. The second component is the money 
transferred due to permit sales/purchases to/from 
other regions . The MARKAL model, however, 
only allows computing the second component ex­
post, since sales/revenues of emissions trading are 

not endogenous. Therefore, only the domestic 
abatement costs are examined here. 

Fig. 8 presents the difference between the total 
discounted system costs in each of the Kyoto-trend 
cases and the corresponding baseline cost for each 
region. The global difference, which corresponds 
to the global abatement cost, 3 is also shown. 
There are significant disparities in the costs of 
implementation of the Kyoto-trend target in the 
different variants. If each Annex I region has to 
achieve its target on an isolated basis the abate­
ment costs are high. The allowance of emission 
trade, either between Annex I regions or at the 
global level, substantially improves the cost effec­
tiveness of the abatement efforts. 

The assumption of global learning spillover af­
fects the discounted system costs in the different 
cases, in particular, in the no-trade and Annex !­
trade situations, where only the learning mecha­
nism accounts for interactions between the Annex 
I and non-Annex I groups, the energy system costs 
in ASIA decrease, while those of LAFM increase 
(although the latter only very slightly). 

The reason is that, in the Annex I group, as part 
of the mitigation measures, the gas combined cycle 
substitutes for coal-fired power plants. This stim­
ulates the combined cycle's cost reduction and, 
under full global learning spillover, renders it more 
attractive also in the ASIA region driving to sub­
stitution of conventional coal-fired by gas-fired 
generation also there. This results in a decrease of 
the region's total discounted system cost. In the 
no-trade case lower emissions due to this effect are 
not observed because the model compensates 
emitting more somewhere else in the energy sys­
tem. But, in the Annex I-trade case, the higher 
penetration of the combined cycle drives to an 
effective reduction of emissions below the baseline 
(see Fig. 6 above). 

The case of LAFM is somewhat more complex. 
As the gas combined cycle is already penetrating at 

3 At the global level the difference between the discounted 
system cost in the reference scenario and the constrained one 
corresponds to the mitigation cost because the net transfers of 
money due to sales/purchases of emission permits across 
regions are zero. This is also the case at the regional level 
when no emissions trade is considered. 
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its maximum rate in the baseline scenario, no ad­
ditional growth can be observed. However, other 
effects are noticed. The de-stimulation of the 
learning process of the advanced coal power plant 

in Annex I regions, due to the need of curbing 
carbon emissions, also reduces the competitiveness 
of the technology in LAFM, driving to a slightly 
lower output. This is partially compensated by a 
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slightly higher production of the conventional coal 
plant, but results also in an overall reduction of 
the electricity generation. In consequence, changes 
in the mix of final energy carriers are observed. 
Specifically, hydrogen and oil products are now 
favored. Emissions are also slightly reduced below 
the baseline bound. As a final result the system 
cost becomes higher. 

It should be noticed that this effect would not 
have been observed in a model without spillovers 
of learning. In such a model, the discounted sys­
tem costs for the non-trading regions under the 
Kyoto-trend constraint would have remained the 
same as in the baseline case, since there would 
have been no linkage between the cost of tech­
nologies across regions and, therefore, the de­
ployment of a given technology in a region cannot 
be influenced by the deployment actions in other 
regions. 

But, with the possibility of having spillovers of 
learning, abatement efforts in Annex I regions 
stimulate learning, rendering some less carbon­
intensive technologies more cost-effective and, 
therefore, attractive also in other regions, driving 
to positive effects in their discounted system costs 
and emissions profiles. Although the effect is not 
big here, among other reasons because the action 
of the learning mechanism can be observed only in 
electricity generation technologies, it is an indica­
tion of the possible positive effects of induced 
technology spillovers (Grubb et al., 2002a,b). 

4.2. Deployment of learning technologies 

In this section, the deployment of the learning 
electricity generation technologies is examined. 
For the sake of brevity we will discuss only some 
of them, which allow us to illustrate the model 
dynamics. The deployment depends on numerous 
factors and singling out their influence is a difficult 
task. However, one can still try to provide an in­
terpretation of the main mechanisms involved. 
Here, the analysis concentrates on the influence of 
COrtrade and learning spillovers. Fig. 9 presents 
the output of the different learning electricity 
generation technologies in each region for the year 
2050 under the baseline conditions and the differ­
ent variants of the Kyoto-trend scenario. 

In order to understand the results, in particular 
the "abrupt" changes in the penetration of some of 
the technologies from one case to the other, it is 
important to bear in mind the way the learning 
mechanism operates in the model. Although other 
factors also intervene, the potential available for 
cost reductions strongly influences the outcome. 
Learning is an increasing returns phenomenon (i.e. 
the more capacity is accumulated the smaller the 
investment costs become). Due to the underlying 
increasing returns mechanism, the model tends to 
act in an "all-or-nothing" fashion. If enough 
learning potential is at hand (depending on the 
learning rate, the starting point of the learning 
curve, maximum market penetration rates, poten­
tials etc. specified in the model), the model may 
choose to introduce the technology as much as 
possible. But, if the learning potential is not suffi­
cient to render it cost-effective, the technology will 
very likely remain "locked out" or left only with a 
marginal contribution. 

The new nuclear power plant penetrates to 
some extent in the reference scenario, particularly 
in ASIA, the OOECD and NAM. With the im­
position of the Kyoto-trend target its role becomes 
more significant. Without trade the technology 
grows substantially in Annex I regions. Its share in 
the EEFSU electricity mix diminishes again under 
the Annex I-trade case, as it recedes in the com­
petition with conventional nuclear, but increases in 
NAM and OOECD. 

In the full-trade-2010 case, two counterbalanc­
ing factors play a role in the diffusion of this 
technology, namely the lack of incentives to de­
ploy it in Annex I regions, which can now acquire 
permits from the developing world, and the in­
centive to do so in non-Annex I regions that may 
sell them. As a consequence of the first factor 
much less capacity is built in the Annex I group. 
Due to the second factor, an increase takes place in 
the LAFM region, which now sells a higher ab­
solute volume of permits. Nonetheless, due to the 
global learning spillover assumption, the effects of 
the weaker stimulus in the Annex I group are felt 
across all regions. 

As for the gas fuel cell, under the particular 
conditions assumed here, it results more attractive 
in the reference scenario than in the constrained 



L. Barreto, S. Kypreos I European Journal of Operational Research 158 (2004) 243- 261 255 

HCA 

•Reference 

c OK)Qlo Trend-No Trade 
0 

40000 --
~ 0K)Qlo-Trend-Annex I-Trade .. 
c 0 OK)Qto-Trend-FUI Trade-2010 

~ 20000 ---------------------------------:s 
u .. 
iii 

NAM ooeco EEFSU 

occ 

LAFM 

24000 ~--------------~ 

~ 
';;" 18000 
0 

~ .. 
; 12000 
Cl 

~ :g 
ti 6000 .. 
iii 

; 

•Reference 

oKyoto Trend-No Trade 

r:?JKyotcr Trend-Mnax I-Trade 

OKyoto-Trond-FuD Trade-2010 

I< 

NAM OOECD EEFSU ASIA 

SPV 

-~-

LAFM 

5000 ~---------------~ 

~ 4000 

c 
0 

~ 3000 .. 
c .. 
Cl 
~ 2000 

.!.! 

~ 1000 
w 

•Reference 

0 Kyok> Trend-No Tr11de 

!:a Kyolo-Trend-hlnu 1-Tr•d• 

OKyolo-Trt1nd.f"ull Tr11d9,-2010 

NAM OCECD EEFSU ASlo\ LAFM 

,. 
!!:. 6000 
c: 
.g 
e 
~ 

i 4000 

" -~ .g 
~ 2000 
iii 

NAM 

NNU 

•Reference 

tJ Kyoto Tron<INo Trade 

I! Kyolo-Trend-Annex ~Trade 

O Kyoto-Trend-Full Trade-2010 

OOECD EEFSU 

GFC 

ASlo\ LAFM 

6000 "=========,---------, 

:::;­
!:.. 
c 
0 
~ 40CK) .. 
c .. 
Cl 
.?;o 
·c:; 2000 

~ .. 
iii 

:::;­
!:.. 
c 
0 

~ 
~ 
c .. 
Cl 
.?;o 
u 
~ .. 
iii 

10000 

8000 

6000 

4000 

2000 

•Reference 

Q Kyoto Trend-.No Trade 

0 Kyoto-Trend-Mnex ..rrade 

QKyoto-TrenMl..t Trade-2010 

NAM OOECO EEFSU ASIA LAFM 

WNO 

;;-
.1 
; 
; ----------- •Reference _, 
:t: [J Kyoto Trend-No Trade 

- .: 

... i• 

! 
-· 

El Kyoto-Trend-Annex I-Trade _ -l 
c Kyao-Trend-Full Trado-2010 i 

; 
i 

-- --- ---------------------------! 
i\'" l 

NAM OOECD EEFSU ASIA. LAFM 
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one. In the latter, the technology faces competition 
from the gas combined cycle plant and solar 
photovoltaics, among others. However, in the 
Kyoto-trend-no-trade case it still results almost 
as attractive as in the baseline. But, with the in­
troduction of trade, its role in the generation 
mix decreases. With Annex I-trade, a significant 
decrease takes place in the NAM and OOECD 

regions, and a lower, but still noticeable, decline in 
the EEFSU. As a result, and due to the presence of 
global spillovers of learning, its penetration in 
ASIA is substantially affected, although its output 
in LAFM remains almost unchanged (due, among 
other factors, to the fact that in this case solar 
photovoltaics penetrates only slightly in this re­
gion, see below). With the allowance of global 
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trade in 2010 its growth recovers somewhat, led by 
installations in the OOECD and EEFSU. 

Solar photovoltaic cells do not diffuse in the 
reference or Kyoto-trend-no-trade cases. Despite 
some investments taking place in the first periods, 
particularly in the OOECD region, the technology 
remains "locked-out". It is introduced, however, 
when trade takes place. With Annex I-trade, in­
troduction occurs mainly in NAM and ASIA, and 
to a less extent in EEFSU and OOECD. Being 
EEFSU the main permit seller, an incentive for 
deployment exists there. The potential in that re­
gion is relatively small, but the system is allowed to 
benefit from global learning. Thus, early invest­
ments there trigger installations in constrained and 
non-constrained regions alike, in order to take full 
advantage of the available learning potential. As 
no trade linkage between Annex I and non-Annex 
I regions exists, the penetration in the latter re­
gions is a result of the global spillovers of learning. 

With full trade, incentives for deployment are 
present mainly in developing regions, the main 
permit providers. However, an earlier/later entry 
of those trading partners has effects on the levels 
the technology reaches. With an earlier full trade 
(from 2010), capacity built-up in Annex I regions 
is discouraged. But, the trade linkage encourages 
its introduction in developing regions and a higher 
growth takes place both in ASIA and LAFM, 
the main permit sellers in this situation. But, if 
these two regions join the trade later (i.e. in 2030), 
Annex I regions are compelled to stimulate the 
learning of this zero-carbon technology in the first 
periods. In addition, in this perfect foresight 
framework, early deployment also takes place in 
the developing regions, which are due to become 
permit sellers later on. As each region profits from 
the learning of the others, both processes cross­
enhance each other and the technology is able to 
reach a sizeable expansion in all regions. 

The effects of spillovers in the technology choice 
depend also on the stringency of the constraint and 
the characteristics of the region(s) where it is im­
posed. For instance, in this exercise, the imposition 
of the Kyoto-trend constraint on Annex I regions 
(without trade) stimulated the increase of output 
of gas combined cycle in ASIA, as already de­
scribed above. But, despite the full global learning 

spillover, such constraint was not enough to pro­
duce noticeable additional deployment of the other 
learning technologies in the developing regions 
compared to the baseline situation. 

A model with multi-regional learning spillovers 
has a fundamental, although still rudimentary and 
perfectible, mechanism that helps reflecting the 
possible response of accelerating technological 
progress (here represented as cost reductions) in 
low-carbon technologies in different regions of the 
world induced by stronger climate control policies 
in one of them. This effect cannot be taken into 
account in a conventional linear programming 
model, where the exogenous specification of cost 
trends for the technologies precludes such kind of 
interaction. In such a model, the technology mix in 
regions not facing a carbon constraint and not 
being part of the trading system is bound to be the 
same in both cases because no mechanism of in­
teraction between regions is present. 

Thus, considering multi-regional learning spill­
overs improves the modeling of technological 
change induced by environmental constraints. 
First, under the presence of the learning mecha­
nism, the imposition of environmental constraints 
can induce cost reductions (increasing competi­
tiveness and likelihood of diffusion) of environ­
mentally compatible technologies. Second, when 
spillover across regions is possible, other regions 
can benefit from the learning stimulated by tighter 
environmental policies in a given region. 

5. Sensitivity to the spatial learning spillover 

The analysis above has assumed full spillover of 
learning at the global level. In this section the 
sensitivity of the results to different geographical 
configurations of learning is examined. Here, be­
sides global learning, three additional cases are 
considered. In the first case, called Annex I/non­
Annex I learning, two separate learning domains 
are specified: the Annex I group (i.e. NAM, 00-
ECD and the EEFSU) and the non-Annex I group 
(ASIA and LAFM). In the second case, labeled 
IND/EIT/DEV learning, three learning blocks 
are defined: Industrialized regions (NAM and 
OOECD), economies-in-transition (EEFSU) and 
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developing regions (ASIA and LAFM). Finally, a 
single-region learning case, with each region 
learning alone, is considered. For simplification it 
has been assumed that the same learning curves 
applied in the global learning situation are valid 
for the other learning scales. Also, all technologies 
are considered to have the same learning scale. 

The learning configurations analyzed here con­
sider that spillover between two given regions is 
either full or it does not exist. In such sense, they 
are arbitrary and applied only with illustrative 
purposes. They may not reflect the real "topology" 
of the learning networks of the technologies af­
fected, particularly in an increasingly globalised 
world where more multi-national energy technol­
ogy suppliers operate at the international level. 
Still, examining such hypothetical learning con­
figurations allows insights into the consequences 
of co-operative/non-cooperative "learning strate­
gies" on the diffusion of a given technology and 
the interaction between the multi-regional learning 
and emissions trading mechanisms. Further work 
should be devoted to establish whether an empir­
ical estimation of spillover coefficients for specific 
technologies can be made and/or to develop cri­
teria for supporting the corresponding assump­
tions in the models. 

As an example, we illustrate here how the 
variation of the learning scale affects the deploy­
ment of solar photovoltaics in the different regions 
under the Kyoto-trend scenario. Under the par­
ticular conditions assumed in these model runs, 
solar photovoltaics is a marginal technology and 
as such is strongly affected by the variation of the 
learning scale. 

Before discussing it, an interesting aspect of the 
influence of the learning scale on emissions trading 
should be noticed. Changes in the learning topol­
ogy of the low-carbon technologies available in a 
given region can make it more prone to buy/sell 
permits (see Fig. 10 for an example with the ASIA 
region). Owing to the action of emissions trading, 
those changes become also influential in the tech­
nology choice in other regions. 

Let us turn now to the diffusion of solar 
photovoltaics, the example chosen here. Fig. 11 
presents the aggregate electricity generation of the 
solar photovoltaic technology for the year 2050 in 
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Fig. 10. Volume of C02 permits sold by ASIA in the Kyoto­
trend scenario with full trade 2010 under different scales of 
learning. 

the Annex I and non-Annex I groups of regions 
under the different sub-cases of the Kyoto-trend 
scenario. In order to examine the effects of a later 
entry of the non-Annex I regions to the trade 
system, a case where full trade across regions takes 
place after 2030 is also shown. 

The three Annex I regions show a similar pat­
tern of installations. The technology is introduced 
in significant amounts only under the global 
learning situation. Otherwise, it remains practi­
cally "locked-out". Under global learning, as al­
ready discussed above, installations take place 
exclusively under the Kyoto-trend scenario and 
only when (Annex I- or full) trade is permitted. In 
those cases the technology is deployed in all re­
gions. The highest penetration is achieved in the 
Kyoto-trend-full-trade-2030 case. 

But, with the reduction of the learning scale, 
Annex I regions cannot benefit from the cost re­
ductions caused by the deployment in non-Annex I 
regions, where higher production potential is at 
hand. As a result, the technology is no longer at­
tractive in Annex I regions. Other technologies 
take the lead. Among others, new nuclear power 
plants have a higher output. 

In the non-Annex I group installations also take 
place only when emissions trade is allowed. With 
global learning spillover the technology is intro­
duced both when Annex I-trade or global trade are 
possible. Penetration in the Annex I-trade case is a 
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Fig. 11. Comparison of the electricity generation of solar photovoltaics in Annex I and non-annex I groups for the year 2050. D ifferent 
scales of learning (reference and Kyoto-trend scenarios). 

consequence of spillover effects. The introduction 
in the full trade case is, as mentioned before, the 
result of the incentive to sell permits to Annex I 
regions. 

The technology still remains relatively attractive 
when the learning scale shrinks. This is basically 
due to installations in ASIA and, to a much lower 
extent, in LAFM. However, with reduced learning 
scales it is installed in these regions only when full 
trade is allowed. That is, only when an incentive to 
sell permits to the Annex I regions exists. Under 
the no trade or Annex I-trade situations none of 
the two mechanisms of interaction between the 
Annex I and non-Annex I groups considered here, 
namely learning spillover and trade, is acting. The 
two groups are "decoupled" from each other and 
this strongly undermines the diffusion process in 
all regions. 

On the whole, solar photovoltaics benefits from 
a larger learning domain. Imposing restrictions on 
the scale of learning affects its diffusion substan­
tially. This is particularly so in Annex I regions, 
which do not possess large solar electricity poten­
tials, but it becomes apparent also in non-Annex I 
regions, despite having a larger solar resource at 

their disposal. The competitiveness of the photo­
voltaics option suffers when both groups are left 
only with their own learning opportunities or 
when a further fragmentation of the learning net­
work occurs, leaving smaller groups or single re­
gions learning alone. As for the influence of 
emissions trading, its allowance stimulates the 
deployment of this otherwise marginal technology, 
but different trading modalities combined with 
diverse scales of learning drive to various degrees 
of penetration. Specifically, Annex I-trade only 
drives to installations when global spillover of 
learning is possible. Allowing full trade provides 
an effective stimulus for the penetration of the 
technology in the non-Annex I regions, although 
the magnitude of such penetration is affected when 
the learning scale shrinks. 

It is not easy to derive a straightforward con­
clusion about the influence of the learning scale 
and the trade on the final model outcome. The 
interactions are complex and appear case and 
technology dependent. But, basically, the reduc­
tion of the learning scale changes the ranking and, 
therefore, deployment of technologies in the dif­
ferent regions. As a consequence, the amount of 
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COi-permits bought/sold by them also changes. 
The magnitude of those changes depends on the 
emissions trading configuration and the stringency 
and location of the emission constraint. 

6. Conclusions 

An indicative analysis has been performed using 
a five-region compact "bottom-up" MARK.AL 
model of the global energy system that considers 
endogenous technology learning for several elec­
tricity generation technologies. The response of the 
model to an illustrative Kyoto-like constraint on 
C02 emissions is analyzed. The fulfillment of the 
abatement targets under different configurations of 
emissions trading is examined. Results remain, of 
course, highly dependent on the assumptions but, 
more importantly than the numbers and assump­
tions here, the deployment of learning technologies 
in response to changes in emissions trading con­
figurations and geographical scale of the learning 
process has been illustrated. 

With learning, carbon abatement activities in a 
given region stimulate technological change, here 
represented as costs reductions, of low-carbon 
technologies. Under the presence of multi-regional 
learning spillovers in the model, this may foster 
their diffusion also in other regions, even if they 
do not face an emissions reduction commitment. 
Thus, introducing multi-regional technological 
learning spillovers provides a fundamental, though 
still perfectible, mechanism to represent environ­
mentally induced technological change in the 
model. Such induced technological change may 
produce positive effects in terms of system costs 
and emission profiles in those regions. 

Within the limitations of this "bottom-up" 
framework, some effects of emissions trading on 
technology deployment under the presence of 
technology learning have been studied here. As a 
rule, the cheaper mitigation options brought 
about by the emissions trading mechanism pro­
duce a disincentive to deploy low-carbon technol­
ogies in permit-buying regions. But, on the other 
hand, trade stimulates their penetration in (po­
tentially) selling ones. This is particularly so in the 
case where non-Annex I regions join the trading 

system. The final effects on technology deployment 
depend, among other factors, on the configuration 
of the learning and trading networks, the magni­
tude of learning spillover between regions and the 
level and location of the carbon constraint im­
posed. But, even in the cases where the trade 
configuration strongly reduces the incentives for 
technology learning of low-carbon technologies in 
constrained Annex I regions (e.g. global emissions 
trade), the model still finds cost-effective to stim­
ulate early deployment of some low-carbon tech­
nologies, although to a lower extent, provided 
global spillovers of learning are possible. 

Changes in the spatial configuration of the 
learning and trade networks along the time hori­
zon have also noticeable impacts. Here, as an ex­
ample, a later inclusion of non-Annex I in the 
emissions trading system is analyzed, in order to 
determine how such delay affects the "triggering" 
of the learning mechanism of electricity generation 
technologies. In these experiments, within a per­
fect-foresight framework, delaying the availability 
of cheaper mitigation options in non-Annex I re­
gions keeps learning processes going on in the 
constrained Annex I regions. Through spillover 
effects, such learning processes have an influence 
on the technology choice of the permit-selling non­
Annex I regions as well . By contrast, an ear­
lier global trade hinders the learning process of 
low-carbon technologies in constrained Annex I 
regions with expensive mitigation measures. 
However, in the long term it fosters it in the selling 
regions. Provided the existence of learning spill­
overs, the latter can drive to deployment of those 
low-carbon options also in the constrained (buy­
ing) regions. The final outcome depends, among 
other things, on the relative weight of these 
counteracting forces . 

In addition, the "topology" of the multi­
regional learning network has an influence on the 
competitiveness of the learning technologies. Here, 
such influence is illustrated with examples of hy­
pothetical configurations of learning spillovers. 
The different regions are either allowed to fully 
benefit from the learning potential in others or 
completely precluded to do so. Such changes in 
the learning configuration, basically shrinking or 
expanding the spatial domain of the learning 
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process, alter the regional ranking of technologies 
and, consequently, the balance between domestic 
mitigation measures and transactions (sales/pur­
chases) in the permits market for the different 
regions. The configurations of learning and emis­
sions trading networks appear as important de­
terminants of the diffusion (or not) of emerging 
low-carbon technologies in a C02-constrained 
world. 
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