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Abstract

We studied why many diseases has multi-year period in their epidemiological dynamics,

whereas a main source of the fluctuation is a seasonality with period of one year. Previous

studies using a compartment model succeeded to generate a multi-year epidemics when they

have a large seasonal difference in a transmission rate. However, those studies have focused on

the dynamical consequence of seasonal forcing in epidemiological dynamics and an adaptation

of pathogens in the seasonal environment has been neglected. In this paper, we describe our

study of the evolution of pathogen’s sensitivity to seasonality and show that a larger fluctuation

in the transmission rate can be favored in the life history evolution of pathogens, suggesting

that multi-year periodicity may evolve by natural selection. Our result proposes a new aspect

of the evolution of multi-year epidemics.

1 INTRODUCTION

Oscillations in demography and epidemiology have been a challenging issue in ecology for decades

(Nisbet & Gurney 1982; Grenfell et al. 1995). Seasonal forcing and entrainment in nonlinear oscil-

latory dynamics is thought to play a key role in the multi-year periodicity in epidemics (Hethcote

& York 1984; Rand & Wilson 1991; Bolker & Grenfell 1993; Kamo & Sasaki 2002; Greenman et al.

2004). Seasonal forcing is also thought to be important in resetting phases in ecological oscillations.

For example, a common environmental fluctuation can synchronize chaotic nonlinear dynamics of

isolated wild sheep populations (Grenfell et al. 1998).

Various factors bring seasonality into epidemiological dynamics, and different strains of

pathogens may respond differently to seasonality. Cholera epidemics in a large geographical scale

synchronize with El Niño event (Pascual et al. 2000), and at a smaller geographical scale synchronize

with monsoon season at each locality (Pascual et al. 2002). When the classical biotype of Vibrio

cholerae is replaced by the El Tor biotype in Bengal (Colwell 1996), seasonal patterns in cholera

epidemic have been changed as well (Pascual et al. 2002), suggesting that the two strains had

different characteristics related to seasonality. Among two malaria strains, Plasmodium vivax and
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P. falcipaum, P. falcipaum is known to show less seasonality in epidemics than P. vivax (Abeku

et al. 2002). Meningococcal infection to the mucous membranes occurs more easily in dry air

condition, and the meningococcal epidemics in Sub-Saharan Africa starts with the dry season and

ends with the beginning of the wet season. However, in Oregon, the number of meningococcal

disease cases is peaked in the middle of rainy season, suggesting that meningococcus in Africa and

Oregon has adapted differently to dry/wet climatic cycles (see a review article by Dowell (2001)

and the papers therein).

These studies suggest that there would be pathogen strains that adapt differently to sea-

sonality by changing their response to environmental fluctuation. In this paper, we deal with the

adaptive evolution of pathogen trait that affects the sensitivity of pathogen’s transmission rate to

seasonal fluctuation of environment. We theoretically derive the conditions for a seasonal specialist

which has a large fluctuation in its transmission process to be selected for over a seasonal gen-

eralist which has less fluctuation in the transmission rate (and vice versa). As the sensitivity to

seasonal environment in transmission rate greatly affects the dynamical behavior (and multiyear

periodicity, in particular) of epidemics, our model also explores an evolutionary reason why many

epidemiological dynamics have multiyear periodicity (Anderson & May 1983 1991).

To study the effect of seasonal forcing in epidemiological dynamics, an external seasonal

fluctuation in transmission rate has been introduced in the conventional compartment model with

susceptible, (exposed), infected, and recovered (S(E)IR) classes in a host population (Hethcote &

York 1984; Rand & Wilson 1991; Bolker & Grenfell 1993; Kamo & Sasaki 2002). Studies of a

seasonally forced S(E)IR model have revealed how the annual cycle in the number of infected hosts

for weak enough seasonal forcing shows a cascade of bifurcations towards subharmonics (cycles

with multi-year periods) and finally towards chaos as the seasonality becomes large (Schwartz &

Smith 1983; Aron & Schwartz 1984; Schwartz 1985; Keeling & Grenfell 1997; Keeling et al. 2001;

Rohani et al. 2002; Greenman et al. 2004). Most studies of seasonally forced epidemiological models

have focused on how their dynamical behaviors depend on parameters (e.g., Sugihara et al. 1990).

However, little attention has been paid to how the life history evolution of pathogen affects the

periodicity, which is the focus in this paper.
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Multi-year periodicity in childhood diseases is widely observed in many cities of greatly

different climatic and demographic conditions (e.g., temperature, humidity and birth/death rates)

(Anderson & May 1983; Earn et al. 2000). In this paper, we explore a hypothesis that a longer

period in epidemiological oscillation might be realized as a consequence of life history evolution in

pathogens. More specifically, we deal with the evolution of sensitivity (or tolerance) to seasonally

fluctuating environment and examine how the evolution of epidemiological parameters changes

dynamical behavior. This is an attempt to extend previous studies on the interplay between

evolution of life history parameters and its consequence in dynamical behavior (e.g., Rand et al.

1995; Haraguchi & Sasaki 2000; Doebeli & Koella 1995; Ferrière & Gatto 1993) into seasonal

fluctuating environments.

According to bifurcation analysis (Schwartz & Smith 1983), a longer period in epidemics

is associated with a larger seasonal fluctuation in transmission rate. We consider two strains

of pathogens that have seasonally varying transmission rates with the same mean but different

variance. One of the strains has a larger amplitude in transmission rate, hence it is more likely to

cause a longer epidemic period. The difference in transmission rates is implemented by introducing

a different sensitivity to seasonal fluctuation. The strain having a larger sensitivity has a higher

transmission rate than that of the other in an epidemic season, but it has a lower transmission

rate in the off season. If there is a tendency for a larger sensitivity (i.e., a larger amplitude in

transmission rate) to be preferred in pathogen evolution, multi-year epidemic period appears as a

consequence. In this paper, we ask which amount of sensitivity is evolutionarily stable, and where

does the sensitivity parameter fall in the bifurcation diagram.

2 MODEL

We consider a simple epidemiological model called the SIS model with a seasonally varying trans-

mission rate, in which there is no acquired immunity. Extensions to the SIR model with acquired

immunity are discussed later. In the SIS model, a susceptible host (S) may be infected (I) at trans-

mission rate β. The infected host suffers an additional mortality α and may recover and become
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susceptible again at rate γ. Denoting the birth rate of host by r and its natural mortality by μ,

the densities of susceptible and infected hosts change in time as

dS

dt
= −βSI + γI − μS + rS,

dI

dt
= βSI − (γ + μ + α)I. (1)

We assume an infinite population and the following arguments are free from population extinction

and fade-out. We assume that the transmission rate varies seasonally as

β = β0(1 + δP (t)), (2)

where β0 is the base infection rate, and P (t) denotes the environmental fluctuation with mean 0

and a period of one year (i.e., seasonality). Note that δ represents the sensitivity to the seasonal

fluctuation (P (t)). Though seasonal fluctuation is common to all the strains, pathogen strains

would have different amplitudes of fluctuation in transmission rate by having different sensitivities

(δ) to the seasonal environment. Throughout this paper, we assume that the sensitivity δ is a trait

of the pathogen not rather than of the host. This is simply because we focus on the evolution of

the pathogen. In reality, seasonal fluctuation in transmission rate is largely affected by host density

varying by school/holiday terms; however, these factors are embedded in P (t) in our model.

When there is no seasonal variation in transmission rate (δ = 0), there are two equilibria

(trivial and endemic) of Eq. (1). With the assumption that the birth rate of host is greater than

its natural mortality (r > μ) and with a nonzero recovery rate (γ > 0), the trivial equilibrium

(S = I = 0) is always unstable and the endemic equilibrium

(S∗, I∗) =
(

μ + α + γ

β
,
(r − μ)(μ + α + γ)

(μ + α)β

)

is stable.

As reported previously (Schwartz & Smith 1983; Rand & Wilson 1991; Kamo & Sasaki 2002;

Greenman et al. 2004), such seasonally forced epidemiological models show a cascade of bifurcations
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as δ is increased. Figure 1 illustrates a bifurcation diagram.

2.1 Invasion in a seasonally fluctuating environment

We first examine the condition for the invasibility of a mutant pathogen strain in a host population

where a resident strain circulates and is stably maintained in a seasonally fluctuating environment.

We denote by β̄i, δi, γi, and αi the base transmission rate, the sensitivity in transmission rate, the

recovery rates, and the virulence of strain i, respectively. Let us assume that the density I1 of the

resident strain is on a stable periodic attractor. When the density I2 of a mutant strain is rare, it

follows that
dI2

dt
= I2

[
Ŝ1(t)β2(t) − (γ2 + α2 + μ)

]
,

where β2(t)
(
= β̄2(1 + δ2P (t))

)
, γ2 and α2 are the transmission rate, the recovery rate and the

virulence of the mutant strain, respectively. Ŝ1(t) denotes the density of susceptible hosts on the

stable periodic attractor with the resident strain.

The mutant strain can invade if its marginal logarithmic growth rate, ρ(2|1), is posi-

tive(Chesson & Ellner 1989), as follows

ρ(2|1) =
〈

d

dt
log I2

〉
=

〈
Ŝ1(t)β2(t)

〉
− (γ2 + α2 + μ) > 0, (3)

where 〈x〉 denotes the long-term average of x. We note that from the stationarity condition,

ρ(1|1) = 〈 d

dt
log I1〉 =

〈
Ŝ1(t)β1(t)

〉
− (γ1 + α1 + μ) = 0 (4)

must be satisfied. Then, we have,

〈
Ŝ1(t)(1 + δ1P (t))

〉
=

(γ1 + α1 + μ)
β̄1

=
1

B(1)
, (5)

where B(1) = β̄1/(γ1 + α1 + μ) is a per-host transmission factor (van Baalen & Sabelis 1995) and

is equal to the basic reproductive ratio,R0 (Anderson & May 1991), when the host densities are
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scaled by total host density.

In the same way, Eq. (3) can be rewritten as

〈
Ŝ1(t)(1 + δ2P (t))

〉
>

1
B(2)

, (6)

where B(2) is the basic reproductive ratio of strain 2, defined in the same way as B(1). If we combine

Eqs. (4) and (6), we have an invasion condition in the general form,

ρ(2|1) = (δ2 − δ1)
〈
Ŝ1(t)P (t)

〉
−

(
1

B(2)
− 1

B(1)

)
> 0. (7)

This condition gives us two important pieces of information. One is that the difference in seasonality

affects the invasibility of a mutant strain. More precisely, the sign of 〈Ŝ1(t)P (t)〉 determines whether

a mutant strain with a greater degree of sensitivity can invade and replace the resident. The other is

that if two strains have the same sensitivities (δ1 = δ2) or if there is no seasonal variation (P (t) ≡ 0),

the conventional wisdom of evolutionary maximization of basic reproductive ratio remains true.

3 RESULT

3.1 Evolutionarily stable sensitivity

As shown in Eq. (7), the difference in δ, the sensitivity to seasonal environment, affects the

invasibility of a mutant and hence affects the evolutionary outcome as well. In examining the effect

of sensitivity on the evolution, we focus on the simplest case in which the strains differ only in

their sensitivities, by assuming that the per-host transmission factor, are the same among strains.

In other words, we concentrate only on the difference in the response of pathogens to a seasonally

changing environment, by assuming that other life history parameters are equal.
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If the strains differ only in sensitivity, the invasion condition (Eq. (7)) is simplified to be

ρ(2|1) = (δ2 − δ1)
〈
Ŝ1(t)P (t)

〉
> 0. (8)

If ρ(2|1) is positive, the second strain can invade the population that is endemic with strain 1.

Thus the sign of 〈Ŝ1(t)P (t)〉, the correlation between seasonal variation in transmission rate (P (t))

and the density of susceptible hosts (Ŝ1(t)), determines the invasibility of a mutant. This result is

summarized as follows:

(i) if the susceptible host density and the transmission rate are positively correlated in the resident

population, the strain showing more seasonal difference in transmission rate (i.e., larger δ) can

invade the population;

(ii) conversely, if there is negative correlation, the strain showing a smaller seasonal difference can

invade;

(iii) thus an evolutionarily stable sensitivity δ∗ is the one at which the correlation between S(t)

and P (t) vanishes.

Thus natural selection favors a pathogen with a greater seasonal specificity when the fluc-

tuations in transmission rate and susceptible host density are, on average, in phase (positively

correlated). In contrast, if they are out of phase on average (negatively correlated), a pathogen

with a greater tolerance to seasonality is favored.

3.2 Numerical simulations for evolutionary dynamics

To confirm whether the sensitivity to seasonal variation evolves towards the predicted ESS in which

the correlation between transmission rate and susceptible density vanishes, we conducted numerical

simulations which allow many strains of pathogen, with their sensitivity parameters (δ′is) equally

divided between 0 and 1, to compete with each other in a given seasonal environment. We assume

a sinusoidal form of seasonal environmental fluctuation: P (t) = sin 2πt, where time is measured in
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units of year. Figure 2a shows how the correlation 〈Ŝ1(t) sin 2πt〉 between susceptible density and

transmission rate varies as the sensitivity δ to seasonality of pathogen varies. In calculating the

correlation as a function of δ, we assume that the pathogen is monomorphic in the δ.

We found that when the mean sensitivity is less than about 0.7, the epidemiological dy-

namics falls in the region of a one-year period attractor (see Fig. 1). In this region, the correlation

between P (t) and S(t) is positive. When the sensitivity passes through the threshold for period-

doubling bifurcation, the correlation suddenly drops and becomes negative. Since the evolutionarily

stable sensitivity is the one when the correlation vanishes, evolution comes to a halt with the sensi-

tivity at which the correlation changes its sign. Thus the evolution in δ brought the population to

the region of a two-year period epidemic. The time change in the mean sensitivity in the pathogen

population is plotted in Figure 2b, which shows that the sensitivity evolves, with temporal over-

shooting, towards the threshold at which the correlation between P (t) and S(t) vanishes (Fig.

2b).

3.3 Trade-off between sensitivity δ and mean transmissibility β̄

To confirm the robustness of the result, we introduce a trade-off between the sensitivity parameter

and the base transmission rate. We assume that the pathogen has to increase the specificity to

seasonal variation at a cost of lower mean transmission rate. Specifically, we assume that β(t) obeys

β(t) =

⎧⎪⎪⎨
⎪⎪⎩

β0(1 + δ sin 2πt) when sin 2πt ≤ 0

β0(1 + δΩsin 2πt) when sin 2πt > 0
(9)

where Ω is a positive number smaller than 1. This modulation of the shape of fluctuation in β gives

rise to a negative trade-off between the mean transmission rate β̄ and sensitivity δ:

β̄(δ) = β0

[
1 − δ

(1 − Ω)
π

]
. (10)
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Figure 3a shows the correlation between Ŝ(t) and β(t) as a function of δ when there is a negative

trade-off (Eq. (10)), and Fig. 3b shows the time change in the mean sensitivity when many strains

with slightly different sensitivities compete with each other.

With this negative trade-off, the correlation between S(t) and P (t) is negative for both small

and large δ, and positive for an intermediate range, thereby generating an evolutionary bistability.

That is, there are two locally stable ES sensitivities (closed circles in Fig. 3a), and locally unstable

one (open circle). The evolutionary outcome then depends on the initial condition.

If we switch the condition in Eq. 9, we have a positive trade-off. The result with the

trade-off is almost the same as in Figure 2.

3.4 When does selection prefer a larger sensitivity?

We have so far shown that whenever there is a positive correlation between susceptible host density

(S(t)) and seasonal variation (P (t)) in transmission rate, there is a selection for a larger sensitivity

to seasonality in pathogen evolution. In this section, we ask under what condition the correlation

becomes positive, by applying standard linear analysis of a weakly forced system (i.e., a system

with a small δ). We also extend our analysis to include a broader range of compartment models:

SIS models when infected hosts can also give birth, and SIS and SIR models with a fixed total

population. The correlations between S and P for these models obtained by linear perturbation

are listed in Table 1 (also see Appendix for a description of the models).

The analysis reveals that an adaptive evolution of sensitivity from zero to a larger value is

impossible in the SIS model with a fixed total population. However, in the other models, there is

a broad range of parameters in which the selection favors a positive sensitivity. In particular, in

the SIR model with a fixed total population size, as long as we assume that the natural death rate

(μ) of the host is much smaller than other parameters (as is the case in most human infectious

diseases), the leading term of the correlation between S(t) and P (t) for small δ, when we denote
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the transmission rate as β(1 + δP (t)) = β(1 + δ sin 2πt), is

〈S(t)P (t)〉 =
μδ(α + γ)(β − (α + γ))

8βπ2
+ O(μ2). (11)

Since we assume that B = β/(μ + α + γ) ≈ β/(α + γ) > 1 , the leading term is always positive.

This implies that, if the host is long lived and can have acquired immunity against a focal disease,

there is always a selection for a larger sensitivity to seasonality, and hence selection favors a longer

period in epidemics.

4 DISCUSSION

Fluctuations in epidemiological dynamics and the role of seasonality on the fluctuations have been

widely studied both theoretically and empirically. The authors of previous studies have focused

on drawing the bifurcation diagram and finding the parameter range within which the observed

periodicity in the dynamics can be reproduced. By virtue of these studies, we know that a sim-

ple compartment model (SEIR or SIR) with a seasonally forced transmission rate can successfully

explain the multi-year periodicity in childhood diseases (Earn et al. 2000). However, authors pre-

viously have discussed the evolution of pathogens’ life history parameters and dynamical behavior

of epidemics separately. In this paper, we intended to combine these two topics and derive a new

evolutionary principle.

We showed that a greater sensitivity to seasonality is favored when the density of susceptible

hosts, S(t), and the seasonal variation in transmission rate, P (t), are positively correlated. As this

positive correlation is expected when the epidemic shows an annual cycle, there is a selection towards

a larger sensitivity (a greater seasonal specificity), resulting in a longer period in epidemics. As

shown in Fig. 2a, an evolutionary end point is the sensitivity at which the correlation changes

its sign, which often brings a biennial cycle into the system. Of course, the biennial cycle is not

always the evolutionary consequence; however, the most important result of our analysis is that the

evolution towards a larger temporal variation in transmissibility occurs as long as the correlation is
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positive, and hence there is a tendency to push the population towards period-doubling. We used

the simple sinusoidal function for the seasonally varying transmission rate in this study. However,

as is obvious from our formula for invasibility, even if we use a more general function form for

seasonality including term-timing transmission rate, the sign of the correlation still determines the

direction of the evolution.

In the literature about life history evolution in a changing environment (Levins 1968; Segar

& Brockmann 1987), it is well known that a trait that causes a larger temporal fluctuation in fitness

is selected against because it reduces the geometric mean fitness (the evolution of bet-hedging).

This principle is derived from single species genetic dynamics with frequency-independent selection,

and it has no guarantee for multi-species dynamics or with frequency dependence in selection. A

literal application of this principle to the evolution of a pathogen’s life history parameter in a

seasonal environment suggests the evolution towards a reduced seasonality. However, as we have

shown in this paper, the selection can favor a greater fluctuation in transmissibility in a seasonally

changing environment, depending on the sign of the correlation mentioned above.

Our analysis here is largely based on a simple SIS model. To verify the reality of our

invasion criteria, we adopt the SIR models. The bifurcation diagram of the SIR model becomes

much more complex than that of the SIS (see, for example, Greenman et al. 2004). However, we

can derive the same invasion criteria also in the SIR model very easily, indicating that the sign of

a correlation between density of a susceptible host and seasonal variation in the transmission rate

determines the direction of evolution. Figure 4 shows our preliminary analysis of the evolution of

the sensitivity using the SIR model with a constant total population size (model 4 in the Appendix)

with measles parameters. The bifurcation diagram is more complicated (Fig. 4a). Some attractors

coexist with the same level of sensitivity (for example, period 1, 3 and 4 exist at δ=0.1) and each

period has period-doubling bifurcation. However, if we know the correlation for each period (Fig.

4b), we can know the direction of evolution. With the measles parameters, evolution comes to a

halt at δ = 1 (Fig. 4c) and the period of host dynamics is 2 years (Fig. 4d).

To conclude, we have found a new agent for evolution of multi-year periodicity by introduc-
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ing a new parameter: the sensitivity to the seasonally fluctuating environment. It is interesting to

ask if the same logic may also provide an evolutionary explanation for the periodic demographic

fluctuations in other biological systems like prey-predator and host-parasitoid dynamics.
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APPENDIX

The full descriptions for models are in Table 1. Ṡ and İ represent a time derivative of susceptible

and infected hosts, respectively. Only endemic equilibria, (S∗, I∗), are shown.

(1) SIS model we used in this paper. See Eq. 1

(2) SIS model with reproduction both by infected and susceptible hosts.

Dynamics: Ṡ = r(S + I) − βSI + γI − μS,

İ = βSI − (α + γ + μ)I.

Equilibrium: (S∗, I∗) =
(

α + γ + μ

β
,
(r − μ)(α + γ + μ)

β(α + μ − r)

)
.

(3) SIS model with constant population size.

Dynamics: Ṡ = μ − βSI + (γ + α)I − μS,

İ = βSI − (α + γ + μ)I.

Equilibrium: (S∗, I∗) =
(

α + γ + μ

β
,
α + γ + μ − β

β

)
.
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(4) SIR model with constant population size.

Dynamics: Ṡ = μ − βSI + αI − μS,

İ = βSI − (α + γ + μ)I.

Equilibrium: (S∗, I∗) =
(

α + γ + μ

β
,
μ(α + γ + μ − β)

β(γ + μ)

)
.

14



6 References

Abeku, T. A., de Vlas, S. J., Borsboom, G., Teklehaimanot, A., Kebede, A., Olana, D., van

Oortmarssen, G. J. & Habbema, J. D. F. (2002). Forecasting malaria incidence from historical

morbidity patterns in epidemic-prone areas of ethiopia: a simple seasonal adjustment method

performs best. Tropical Medicine and International Health, 7, 851–857.

Anderson, R. M. & May, R. M. (1983). Vaccination and herd immunity to infectious diseases.

Nature, 318 (28), 323–329.

Anderson, R. M. & May, R. M. (1991). Infectious diseases of humans – dynamics and control.

Oxford University, Oxford.

Aron, J. L. & Schwartz, I. B. (1984). Seasonality and period-doubling bifurcations in an epidemic

model. Journal of Theoretical Biology, 110, 665–679.

Bolker, B. M. & Grenfell, B. T. (1993). Chaos and biological complexity in measles dynamics.

Proceedings of the Royal Society of London, B, 251, 75–81.

Chesson, P. L. & Ellner, S. (1989). Invasibility and stochastic boundedness in monotonic competi-

tion models. Journal of Mathematical Biology, 27, 117–138.

Colwell, R. R. (1996). Global climate and infectious disease: the cholera paradigm. Science, 274,

2025–2031.

Doebeli, M. & Koella, J. C. (1995). Evolution of simple population dynamics. Proceedings of the

Royal Society of London, B, 260, 119–125.

Dowell, S. F. (2001). Seasonal variation in host susceptibility and cycles of certain infectious

diseases. Emerging Infectious Diseases, 7, 369–374.

Earn, D. J., Rohani, P., Bolker, B. M. & Grenfell, B. T. (2000). A simple model for complex

dynamical transitions in epidemics. Science, 287, 667–670.

15



Ferrière, R. H. & Gatto, M. (1993). Chaotic population dynamics can result from natural selection.

Proceedings of the Royal Society of London, B, 251, 33–38.

Greenman, J., Kamo, M. & Boots, M. (2004). External forcing of ecological and epidemiological

systems: a resonance approach. Physica D, 190, 136–151.

Grenfell, B. T., Bolker, B. M. & Kleczkowski, A. (1995). Seasonality and extinction in chaotic

metapopulations. Proceedings of the Royal Society of London, B, 259, 97–103.
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Kamo & Sasaki, Table 1

Model Correlation when δ is small

SIS (Eq. 1 in the text)
I∗δ(α+γ+μ)(−I∗β(α+μ)2+(r+α−I∗β)ω2)

2((r−μ)2(α+γ+μ)2+(I∗β(−2(r+α)+I∗β)+(r−μ)2)ω2+ω4)

SIS with reproduction by both hosts
S∗I∗βδ(−2I∗β(−r+α+μ)2+2(α−I∗β)ω2)

4(I∗2β2(−r+α+μ)2+(I∗β(−2α+I∗β)+(r−μ)2)ω2+ω4)

SIS with fixed population size − S∗I∗2β2δ

2I∗2β2+2ω2

SIR with fixed population size
S∗I∗βδ(−I∗β(γ+μ)2+(−I∗β+γ)ω2)

2(I∗2β2(γ+μ)2+(I∗2β2−2I∗βγ+μ2)ω2+ω4)

Table 1: Correlation between S(t) and P (t)(= sin 2πt) when δ is small. S∗ and I∗, represent the

densities of susceptible and infected hosts at an equilibria in the absence of seasonality, respectively

(see Appendix). ω = 2π is the angular frequency of seasonal forcing.



Figure Captions

Figure 1. Bifurcation diagram of SIS model with seasonally varying transmission rate. The maxi-

mum density of infected hosts in each year, after the epidemiological dynamics reached stationarity,

is plotted against the sensitivity, δ, to seasonality in the transmission rate. The population con-

verges to annual cycles when δ is below about 0.7, and to biennial cycles when it is larger than this

value. The transmission rate β(t) varies with time t as β(t) = β0(1+ δ sin 2πt). Parameters: μ = 1,

α = 5, β0 = 20, r = 4,γ = 1.

Figure 2. The correlation between the density of susceptible host and the transmission rate,

〈Ŝ1(t) sin 2πt〉, as a function of sensitivity δ (a), and the time change in the mean sensitivity

of the pathogen population, when many strains with different sensitivities compete (b). In the

evolutionary simulation, we used a multi-strain SIS model given by a set of equations, Ṡ =

−S
∑n

i=1 Iiβi + γ
∑n

i=1 Ii − μS + rS and İi = SβiIi − (γ + μ + α)Ii, where Ii is the density of

the i-th strain infected hosts. ẋ represents the time derivative of x. Each strain has a different

value of sensitivity, assigned one of the equally divided values between 0 and 1. A small amount

of mutation is introduced between the strains having neighboring values of sensitivity. Parameters

are μ = 1, α = 5, β0 = 20, r = 4, γ = 1.

Figure 3. The correlation between S and P (t) plotted against the sensitivity parameter δ (a), and

the evolutionary trajectory for mean sensitivity (b), when there is a negative trade-off between the

mean transmissibility and the sensitivity. There are two evolutionary end points for δ – two closed

circles at 0 and right are a stable equilibrium in evolutionary dynamics, while the open circle in the

middle is unstable. The evolutionary trajectory converges at either of two end points depending

on the initial condition. The numbers on the trajectories in (b) indicate the initial amount of

sensitivity in the population. Parameters: μ = 1, α = 5, β0 = 20, r = 4, γ = 1, Ω = 0.9.



Figure 4. Evolution of the sensitivity parameter with the SIR model. Bifurcation diagram (a),

correlation between S(t) and P (t), evolutionary trajectory of a mean δ (c), and dynamics after

evolution comes to a halt (d) . Numbers beside branches in (a) and (b) indicate periods in years.

In (a), a few attractors coexist with the same sensitivity (e.g., around δ= 0.1 attractors for 1-,

3- and 4-years periods exist). Each attractor is followed by period-doubling bifurcation and the

period is doubled when we increase δ. Attractors for a period of 1 year (and 2 years derived by a

bifurcation) exist for all the range of δ, whereas the others exist for limited ranges. Circles in (b)

indicate unstable evolutionary end points (as described in Figure 2). If we start our evolutionary

simulation for small δ (less than 0.05), the dynamics becomes period of 1 year because there are no

other attractors. The correlation is always positive on the attractor, so that the evolution increases

δ along the branch. Evolution comes to a halt eventually when δ hits 1 (c), and the dynamics at

the final δ is a period of 2 years (d). In the simulation, we use measles parameters (β=476, γ=28,

α=0; Greenman et al. (2004)) and assume that the mean life time of hosts is 80 years ( μ= 0.0125).
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