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Preface 

Systematic assessment and planning to meet food needs on 

regional and national levels is of increased interest in many 

countries. Such planning efforts must recognize the interrelation- 

ship existing between technology, resources, economics and other . 
components of the food system. 

The long-range modelling of agriculture development has been 

a point of joint research for IIASA'S Food and Agriculture proqram 

and System and ~ecision Sciences area and related to the IIASA- 

Bulgarian methodological work on the agro-industrial regional 

project at Silistra. 

Related papers have been prepared by C. CsAki and A. Propoi. 1 )  

Csbki , C., Dynamic Linear Programming Model for ~gricultural 
Investment and Resources Utilization Policies, RY-77-36, IIASA, 
Laxenburg, Austria and 

Propoi, A., Dynamic Linear Programming I?odels for Livestock 
Farms, RM-77-29, IIASA, Laxenburg, Austria, 





Abstract 

This paper outlines a dynamic linear programming (DLP) 

model for planning a diversified agri-industrial complex. 

Six production subsystems are presented: livestock, crops, 

primary product utilization, processing, inputs and resource 

capacities. In addition a financial subsystem is described. 

The final two sections discuss briefly alternative goal 

functions and some limitations of the DLP model for invest- 

ment planning. 
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Planning Long Range Agricultural Investment Projects: 

A Dynamic Linear Programming Approach 

1 . Introduction 

Events of the last few years that saw wide fluctuations in 

world food prices, production and inventories have helped to 

reemphasize the need for more systematic assessment and planning 

to meet food needs for an expanding world population. Many 

countries are now planning and undertaking large scale agricultural 

investment projects either to increase their food self sufficiency 

or to expand trade with other countries. While the complexity and 

size of agricultural projects vary greatly between countries because 

of the availability of (a) natural resources, (b) capital, (c) la- 

bor and management skills, there still may be a common element or 

framework for considering such planning schemes. 

Models of agricultural systems may be formulated using various 

techniques and with different degrees of detail and s~phistication. 

At the beginning in the early 1960's several versions of linear pro- 

grarnm.ing models had been developed for agricultural planning pur- 

poses (1) , (2). In recent years more advanced programming techniques 

(e.9. integer, quadratic, stochastic programming) have also been 

applied (7) , (9) , (1 1) , (15) , (1 8) , and considerable efforts have 
been devoted to the analysis of agriculture systems by simulation 

methods (41, (71. 

For planning and long range investigations the dynamic (multi- 

stage) approach (DLP) seems to offer several advantages (31 , (51 , (1 2) , 
(131, 1 ,  1 7 .  The DLP allows us to formulate and derive optimal 

plans of farm development over extended time periods (say 5-10 to 

30 years). To demonstrate the flexibility of the approach we out- 

line a general DLP model for a diversified production-processing 

crop-livestock complex. 

Perennial as well as annual crops are considered. Specifi- 

cally, the problem is to determine the optimal crop-livestock mix 

maximizing some specified performance index for a given planning 

period. Each of the main components of the model will be dis- 

cussed. We conclude with a discussion of some general problems 

and limitations of the DLP model. 



2. Formulating the DLP Problem 

In formulating the DLP problems it is useful to define and 

consider separately (. 14) . 
1) S t a t e  e q u a t i o n s  of the system distinguishing between 

s t a t e  (descriptive) and c o n t r o l  (decision) variable. 

2 )  C o n s t r a i n t s  imposed on these variables. 

3) P l a n n i n g  p e r i o d  T--the number of periods during which the 

system is considered and the l e n g t h  of each period. 

4) P e r f o ~ ~ m a n c e  i n d e x  (objective function) which quantifies the 

contribution of each variable to some performancemeasure 

or index (e.g. profit, net return, asset value, etc.). 

As our purpose is to determine an optimal plan for the whole 

system we consider separately only state equations and constraints 

for each subsystem and then specify means for linking the sub- 

models into a general model with a common performance index and 

planning horizon. 

3. Production Subsystems 1) 

We consider 6 subsystems: 

- livestock subsystem 

- crop subsystem (perennial and annual crops) 

- product utilization subsystem of primary 

production activities 

- processing subsystem 

- utilization of purchased inputs 

- capacities subsystem. 

Irrigation subsystem are not considered explicitly in this 
paper but may have relevance for the Bulgarian Selistra project. 
See further (6) and (8) . 



3.1. L i v e s t o c k  S u b s y s t e m  

We consider a  l i v e s t o c k  subsystem c o n s i s t i n g  o f  s e v e r a l  t y p e s  

of  l i v e s t o c k .  A l l  an imals  i n  accordance  w i t h  t h e i r  t y p e  ( d a i r y ,  

b e e f ,  hogs ,  e t c . 1  and m a t u r i t y  o r  age  c l a s s  a r e  d i v i d e d  . i n t o  

I groups .  

L e t  

x i  = , , I  - t h e  number of  an ima l s  o f  t ype  
i ( d a i r y  c a l f ,  d a i r y  h e i f e r ,  
d a i r y  cow, sow, e tc . )  a t  y e a r  
( p e r i o d )  t;  

+ 
u i ( t )  - t h e  number of  an imals  o f  t y p e  

i purchased a t  p e r i o d  t ;  

u i  ( t )  - t h e  number o f  an ima l s  o f  t y p e  
i s o l d  a t  p e r i o d  t; 

a  i j - t h e  c o e f f i c i e n t ,  which shows 
what p r o p o r t i o n  o f  an imals  o f  
type  j w i l l  p r o g r e s s  t o  t y p e  
i i n  t h e  succeed ing  p e r i o d  
( i . e .  a t t r i t i o n  r a t e  

= ' 
Then w e  can  w r i t e  t h e  s t a t e  e q u a t i o n s  f o r  t h e  l i v e s t o c k  

subsystems a s :  

o r  i n  m a t r i x  form 

+ x ( t +  1 )  = ~ x ( t )  + u  ( t)  - u - ( t )  ( l a 1  

Here x ( t )  = ' {x, ( t) , . . . , x I  ( t )  } i s  t h e  v e c t o r  o f  s t a t e  v a r i a b l e s ;  

+ + + 
u  ( t )  = {u l  ( t ) ,  . . . , u I ( t )  1 and u - ( t )  = {u ; ( t )  ,. . . , u ; ( t )  > a r e  v e c t o r s  

of  c o n t r o l  v a r i a b l e s .  

The s t a t e  e q u a t i o n s  ( )  can  be s p e c i f i e d  i n  a  more 

d e t a i l e d  form. Le t  x: equa l  t h e  number o f  an imals  of  t y p e  i 



and group a a t  p e r i o d  t .  

An an imal  b e l o n g s  t o  g roup  a ,  i f  i t s  age  i s  T and a A <  T < - - 
( a + l )  A ,  A i s  g i v e n  t i m e  i n t e r v a l  ( i = 1 ,  ..., n; a = O , l ,  ..., N -  1;  

t = O , l ,  ..., T -  1 ) .  

Vec to r  x a ( t )  d e f i n e s  . t h e  an imals  d i s t r i b u t i o n s  o v e r  t h e i r  

t y p e  i n  g roup  a a t  p e r i o d  t: 

L e t  t h e  r e p r o d u c t i v e  a g e  b e g i n  w i t h  t h e  group a l  and end 

by g roup  a 2 .  U s u a l l y ,  a 2  = N -  1 .  Then t h e  number o f  an imals  

b o r n  ( t h a t  i s ,  o f  g roup  0 )  a t  y e a r  t + l  is  e q u a l  t o  

where B (a) i s  a b i r t h  m a t r i x  o f  g roup  a:  t h e  e lement  bi ( a )  o f  

B ( a )  shows what number o f  a n i m a l s  o f  t y p e  i "produced" (born)  

by o n e  an imal  o f  t y p e  j and g roup  a .  

The t r a n s i t i o n  o f  a n i m a l s  from group a i n t o  g roup  a + l  i s  

d e s c r i b e d  by e q u a t i o n  

where t h e  s u r v i v a l  m a t r i x  S ( a )  shows what p r o p o r t i o n  o f  animal  

g roup  " a "  p r o g r e s s e s  t o  g roup  a +  1 f o r  one  t i m e  p e r i o d .  

I f ,  f o r  example, A = l  y e a r  and g roup  a s u f f e r s  a n  a t t r i -  
a a 

t i o n  r a t e  o f  ai(O - <sill) e a c h  y e a r ,  t h e n  t h e  e q u a t i o n  ( 3 )  can  

b e  w r i t t e n  as 

L e t  u s  i n t r o d u c e  a v e c t o r  



where 

Then e q u a t i o n s  ( 2 )  and ( 3 )  can b e  combined 

A i s  t h e  growth m a t r i x .  

.If  w e  a g a i n  i n t r o d u c e  c o n t r o l  v e c t o r s :  

+ 
u  (t) = {uaic ( t ) )  and u - ( t )  = { I J ; - (~ ) )  

w e  a g a i n  come t o  s t a t e  e q u a t i o n  o f  the s a m e g e n e r a l  form shown i n  

(1 )  above: 

+ x ( t +  1 )  = A x ( t )  + u  ( t)  - u - ( t )  . 

One a d d i t i o n a l  p o i n t  shou ld  b e  no t ed .  A t t r i t i o n  r a t e s  aii  

i s  u s u a l l y  d i v i d e d  i n t o  two t e r m s :  

r where aii i s  t h e  real  a t t r i t i o n  r a t e s  due  t o  a c c i d e n t a l  d e a t h  o f  

an ima l s ,  and t h e  c o e f f i c i e n t  a t i  e x p r e s s e s  t h e  r a t i o  o f  an imals  

purpose ly  removed from t h e  subsystem due  t o  b r eed ing  o r  c u l l i n g  
- 

p o l i c y ;  ab i s  a  parameter  o f  t h e  sys tem.  ii 



Another way of introducing the breeding or culling policy 

is to divide control vector u- (t) into two parts 

*me u~ (t) is the number of animals of type i removed at period 

t from the subsystem for breeding or culling purposes, and uTS(t) 

represents intentional selling. . . 

~. 

For purposes of illustration, we present some livestock sub- 
systems in diagramatic flows with appropriate state equation at 

specific periods. 

3.1.1. Cattle subsystem (dual purpose dairy cattle) 

1,2 groups 11 t = 1 year (time unit) 

(0-3 months) 
1 - 

u, (t> 
+ 

1 xi(t) - the number of cattle of 
group i at year t 

3 

group 

( 3- 1 2m) 

1 - 
:)ui (t) - the number of cattle of 

group i sold at year t 
4 

group 

(3-1 8m) 

1+ u (t) - the number of cattle of i group i purchased at 
year t. 

1 
x,(t> 

"i j - retension rates 

1 1  1 1 a6x6 (t) = 0 . 5 ~ ~  (t) + 0 . 5 ~ ~  (t) 

1 x 1 (t) - u;-(t) + u2 1 + (t) x4(t) = 2 

1 x1 (t) - ul-(t) x5(t+1) = as3 3 3 

heifers bulls 



State variables: 
1 1 

~ ( ~ 1  = { x ~ ( ~ ) ~ ~ - * ,  x6(t)} 

Control variables: ul-(t) = ~ u ~ - ( t ) . u ~ - ( t ) . u ~ - ( t ) , ~ ~ - ( t ) ~ u ~ - ( t ) ~  

3.1.2 Cattle subsystem (dairv only) 

t = 1 year (time unit) 

b 

112 
groups 

(0-3 months) 

2 2 2 2 a6x6(t) = 0 . 5 ~ ~  (t) + 0.5x2(t) 

2 + 
u 

1 2 
x5(t+1) = ag3x:.(t) - u2+(tj 3 

+ u:+ (t) 

2 
x , ( t )  

u 

Control variables: 

3 

group 

{u;- (t) ,u;- (t) ,u:- (t) 1 = u2- (t) ~ 
{u;+ 

2+ (t) ,U:+(t) 1 = u (t) 

State variables; 

2 t; (t) ,x2 (t) ,xi (t) ,x; (t) 1 

heifers bulls 



3.1.3. Pig-breeding subsystem t = 3 months (time unit) 

State variables 

3 3 3 {xl (t) ,x; (t) ,x3 (t) ,xi (t) 1 = x (t) 

Control variables 

{u;7t) ,u;- (t, 1 = u3- (t) 

3+ 
Cv2 (t) 1 = 

3+ 
v (t) 

3.2. Crop producing Subsystem. The crop producing subsystem in- 

cludes both perennial and annual crops. First we consider peren- 

nial crops. (See (6) for discussion of special problems of perennial 

crop system. ) 

Let 

yj (t) ( j = 1,. . . , J - the number of hectares used 
for perennial crop j at period t; 
(grape, apricot, alfalfa, etc.)and 

v?(t) - the number of hectares., used for 
3 new plantings of perennials of 

type j at year t. 



v- ( t)  - t h e  number of  hectares of p e r e n n i a l  
3 of type  j removed j a t  year  t; 

b  
jk 

- shows what p ropor t ion  of l ands  of  
type  k  ( i . e .  wi th  trees of type  k )  
w i l l  p rogress  t o  t ype  j i n  one 
year .  

The s t a t e  equa t ions  a r e  t hen  de f ined  a s  

o r  i n  ma t r ix  form 

where 

y ( t )  = { y l ( t ) , . . . , y J ( t ) ]  i s  t h e  s t a t e  v e c t o r  

+ + + - - 
and v  ( t)  = {vl  ( t ) ,  . . . , v J ( t )  1 ,  v - ( t l  = {vl  ( t )  ,. ,'vJ(t9.} 

a r e  t h e  c o n t r o l  v e c t o r s .  

W e  can i l l u s t r a t e  t h e  s t a t e  equa t ions  f o r  t h e  p e r e n n i a l  

c rop  subsystem wi th  an example of a p r i c o t  p roduc t ion .  Consider 

t h e  fo l lowing  product ion t i m e  pe r iods :  i 

3.2.1. Apr ico t  p roduc t ion  subsystem 

A q e  of  t r e e s  

months yea r s  

y l ( t )  = 0 - 12 0 - 1  

y 2  (t) - 12 - 2 4  1 - 2  

y 5 ( t )  - 48 - ... 4 - ... producing o r  mature t r e e s .  



The s t a t e  e q u a t i o n  f o r  new p l a n t i n g s  i s  

and trees i n  t h e  second y e a r :  

and trees i n  t h e  t h i r d  y e a r :  

y 3 ( t + l )  = b  32 y  2 ( t)  

and trees i n  t h e  f o u r t h  y e a r :  

y 4 ( t + l )  = b 4 3 ~ 3 ( t )  

and trees i n  t h e  f i f t h  and s u c c e e d i n g  years Cproducing o r  ma tu re  trees) 

Y5 ( t  + 1) = b55y5 (t) + b54y4 ( t)  

w i t h  t h e  g i v e n  b  1  5 k = 1 5  I n  m a t r i x  form t h e  s t a t e  
j k  

e q u a t i o n s  are w r i t t e n :  

+ 
y ( t +  1) = B y ( t )  + hvl  ( t )  ; 

where 

Here w e  h a v e  5  s t a t e  v a r i a b l e s  y  (t) = {yl  (t) , . . . ,Y5 ( t ) h  One con- 
+ t r o l  v a r i a b l e  v l  ( t)  and t = 1  y e a r .  

The s y s t e m  o f  s t a t e  v a r i a b l e s  c a n  b e  s i m p l i f i e d  by s u c c e s -  

s i v e  s u b s t i t u t i o n .  For  example: 



where b  = b54 b43  b32 b21 . 

Thus w e  have one s t a t e  v a r i a b l e ,  one t i m e  d e l a y  and t = 1 year. I f  

w e  choose t i m e  pe r iod  -1s 5  years, then we can eliminate even time 

de l ay .  The s t a t e  equa t i on  t hen  reduces  t o :  

- 
y 5 ( t + I )  = b g Y 5 ( t )  + G ( t ) ,  where 

- 
v ( t )  - t h e  number o f  p l a n t i n g  du r ing  5  yea r  p e r i o d ,  and - 
b5 shows, what p ropo r t i on  of trees,  planzed d u r i n g  a  

5  yea r  p e r i o d ,  w i l l  be producing.  

The s t a t e  equa t i ons  i n  t h e  above form a r e  needed o n l y  f o r  

p e r e n n i a l  c rops .  For annual  c rops  it i s  s u f f i c i e n t  t o  i n t r o -  

duce t h e  numbers o f  h e c t a r e s  ;(t) used f o r  t h e s e  c r o p s ,  which 

a r e  t h e  conLrol  ( d e c i s i o n )  v a r i a b l e s  i n  p roces s ing ,  u t i l i z a t i o n  

and o t h e r  subsystems.  

3.3 Product  U t i l i z a t i o n  Subsys tems  o f  Primary P r o d u c t i o n  A c t i v i t i e s .  

Outputs  of l i v e s t o c k  and c r o p  ( p e r e n n i a l  and annua l )  sub- 

sys tems may be  p rocessed .  W e  d i s t i n g u i s h  primary p roduc t  a c t i -  

v i t i e s  (producing mi lk ,  . a p p l e s ,  wheat ,  e t c . )  and secondary pro- 

d u c t  a c t i v i t i e s  (producing meat,  canned f r u i t ,  e t c . ) .  Then t h e  

pr imary p roduc t  subsystem i s  broken down i n t o  3  subsystems ( u t i -  

l i z a t i o n  of o u t p u t s  o f  l i v e s t o c k ,  p e r e n n i a l  c rops  and annua l  

c r o p s )  . 
F i r s t  w e  cons ide r  t h e  p roduc t  subsystem of  primary a c t i v i t i e s .  

Le t  

X 
z m ( t l  (m=l , .  . . , M x )  - t h e  s t o c k  of  primary p roduc t  of  

t ype  m produced by t h e  l i v e s t o c k  

subsystem (mi lk ,  meat,  eggs ,  e t c . )  
Y z m ( t )  (m=1, ..., M ) = t h e  s t o c k  of  t h e  p roduc t  of  t y p e  m ,  

Y 
produced by p e r e n n i a l  c r o p  system 

( a p p l e s ,  plums, e t c .  ) 



"Y 
- 

zm(t) (m=l , . . . ,My) - the stock of the product of type m 
produced by annual crop-subsystem 

(corn, wheat, vegetables, etc.) 

zm(t) 1 . . . M - the stock of the purchased inputs 
of type m (fertilizers, pesticides, 

etc.) 

The above are state variables. 

Similar to the other subsystems, we have buying and sell- 

ing activities (control variables) for the products subsystem. 

These are: 

1 In addition, we have other control variables: 

G j  (t) - the number of hectares for annual crop of 

type j at period t (corn, wheat, etc.) 

X 
%k (t) - the level of activity for processing of the m-th 

livestock primary product Ce,g. milk) into the 

k -th secondary product (e.g. butter) at period t. 

(31 = 1, ..., MxI k = 1, ....I Kx) 

Y 
'mk (t) - Cm = I, ..., M 

Y' 
k = 1, ..., K ) and 

- - Y gk (t) - (m = 1 ,  ..., M k = l  ,..., K ) have similar 
Y' Y 

meaning for perennial and annual crops. 

Accordingly, we can write the state equations which express 

the utilization of these products. 



3 . 3 . 1  U t i l i z a t i o n  o f  o u t p u t s  o f  l i v e s t o c k  subsys t em.  

where 

X 
4mi - the volume of product of type m from a unit of 

livestock of type i (without withdrawing from 

the system) 
u X 
9mi - the same as gmi but when withdrawing it from the 

system 
X 

"mi - the volume of livestock product m consumed by unit 
of livestock i. 

X 
Bm j the volume of livestock product m (e.g. manure) 

- utilized on one 
X 
Bm hectare of type j (perennial and annual crops) 

6X 
nlK 

- the utilization of livestock product m for pro- 
ducing one unit of secondary product K .  

In matrix form equations (6) can be rewritten as: 

with matrices 



[AX Q ~ I  is the vector of the "row-by-row" product of the 
X matrices A and ox. 

In the above equation it is assumed that all animals ui(t) 

to be sold are processed before sale. Otherwise it is necessary 

to divide variables uy (t) into two parts : ( 1 ) to be sold and 

( 2 )  to be processed. 

3.3.2 U t i l i z a t i o n  o f  o u t p u t s  o f  p e r e n n i a l  c r o p  s u b s y s t e m  

In matrix form 

where matrices GY, aY, BY and AY have the same meaning as in (6a) . 
3 .3 .3  U t i l i z a t i o n  o f  o u t p u t s  o f  a n n u a l  c r o p  s u b s y s t e m  

ii(t + 1) = ii(t) + $'.p. (t) cY x. (t) + 
j m~ I - [f mi I 

In matrix form 

"Y- iY(t + 1) = iY(t) + G y(t) - {cYx(t) + gYj(t) + 



3 . 4  Processing S u b s y s t e m  

S t a t e  v a r i a b l e s  a r e  d e f i n e d  a s :  

X sE(t)  k  = I  . . . , I  i s  t h e  s t o c k  o f  t h e  p r o d u c t  o f  

t y p e  m produced by t h e  secondary  

p r o c e s s i n g  o f  pr imary  l i v e s t o c k  

subsystem ( c h e e s e ,  b u t t e r ,  canned 

meat ,  bacon,  e t c . )  

sz (t) (-k = 1, . . . , IfY) i s  t h e  s t o c k  of  t h e  secondary  
s 

p r o d u c t  o f  t y p e  m from p e r e n n i a l  

c r o p  subsys tem ( j u i c e ,  canned f r u i t ,  

f r o z e n  goods)  

q ( t )  (k  = I , . . . ,  iy) i s  t h e  s t o c k  o f  t h e  secondary  pro-  s - - 

d u c t  o f  t h e  t y p e  m from a n n u a l  

c r o p s  (wheat f l o u r ,  s u g a r ,  e t c . )  
S e l l i n g  a c t i v i t i e s  ( c o n t r o l  v a r i a b l e s )  a r e  a s  f o l l o w s :  

Thus s t a t e  e q u a t i o n s  can  b e  w r i t t e n  a s :  

X X X X s k ( t  + 1 )  = s k ( t )  + L d q  ( t )  - sc-(t)  
m mk mk 

Here 

d i k ,  d i k  and d:k a r e  t h e  amounts o f  p r o d u c t s  o f  t y p e  m r e q u i r e d  

p e r  u n i t  o f  a c t i v i t y  1 ,  f o r  pr imary  a n i m a l s ,  p e r e n n i a l s  c r o p s  

and a n n u a l  c r o p  p r o d u c t s ,  r e s p e c t i v e l y .  

I n  m a t r i x  form 

sX(t  + 1 )  = s X ( t )  + [ D ~ ( ~ ) C I ~ ( ~ )  I - sX-( t )  ( 9 a )  



3.5 UtiZization of Purchased Inputs 

L e t  z m ( t )  e q u a l  t h e  s t o c k  o f  t h e  purchased i n p u t s  o f  

t y p e  m ( m  = 1 ,  ... M) ( f e r t i l i z e r s ,  p e s t i c i d e s ,  

f u e l ,  e t c . )  

There fore  w e  can  w r i t e  f o r  a l l  s t o r e d  goods: 

- 
where ami, Bmjr Bmj r e p r e s e n t  t h e  use  o f  purchase  i n p u t s  o f  

t ype  m by u n i t  o f  l i v e s t o c k ,  p e r e n n i a l  and annua l  c r o p  sub- 

sys tems ,  r e s p e c t i v e l y , ;  

X -Y a r e  t h e  ~ t i l i z a t i o n  of  purchased i n p u t s ,  Y&' Y*' Y* 

o f  typem per u n i t  o f  t y p e  k  a c t i v i t y  f o r  p roces s ing  

o f  an ima l s ,  p e r e n n i a l  and annua l  c rop  p roduc t s ,  r e s p e c t i v e l y .  

I n  m a t r i x  form t h e s e  e q u a t i o n s  a r e  w r i t t e n :  

.- 

- l[rx ox (t)] + by p y ( t ) ]  + [FY dY (t) ] I  (12a)  

For  n o n s t o r a b l e  goods and s e r v i c e s  (e.g.  e l e c t r i c i t y )  t h e  

s t a t e  e q u a t i o n  ( 1 2 )  i s  r e p l a c e d  by: 

And m a t r i x  form: 

I n  summary w e  i l l u s t r a t e  t h e  producing subsystems i n  d i a g r a m a t i c  

form i n  F igu re  1. 





3.6 Capacities absystem. The capacity of the physical resources 

(fixed assets) of the system (buildings, machinery, etc.) may 

chanie over the planning horizon, due to various investment 

and disinvestment policies. 

Let kn (t) (n = 1). . . ,N) - the phgsical resource capacity 

of type n (buildings, machinery, 

storage, etc.) available at the 

beginning of period t 

w (t) - the intensity of activity of type r (pur- nr 
chasing of various tvpes of 

tractors, construction of cow 

barns, etc.) at period t for 

increasing the capacities of type n at 

period t + 1 (r = 1, ..., R) 
ki(t) - the resource capacity of type n removed 

from the system during period 

t (e.g., disposal) 

dnr - shows, on what amount the capacity of type 

n will increase when using 

activity r at unit level for 

one period 

C n - depreciation rate of asset of type n. 

The state equations are then defined as: 
R 

kn(t + 1) = cnkn(t) + 1 dnr wnr (t) - ki (t) 
r=l 

or in matrix form 



where 

L 1 

k(t) is the state vector, 

W(t) , k- (t) are control variables. 

If we incorporate time lags our state equations are modi- 

fied as follows: 

k (t + 1) = c k (t) + C dnrwr(t-~r) - k,(t), n n n (1 4b) 
r 

where 

T - time for full depreciation of activity r. r 

The development region may have initial capacities in- 

consistent with a future desired set (mix) of these capacities. 

Hence, from a practical view not only the construction of new 

capacities is necessary to consider also the reconstruction of 

existing assets. In this case the state equations (14) should 

be rewritten as follows: 

Here 

x (t) (n,s=1,. . . ,N) is the decreasing capacity of ns 
type n at step t which at this step began reconstruction into 

the capacity of type s (for example, the modernization of 

technology, changing of the type of activity, etc.) We call 

this process "conversion n - S" . 
'sn is the conversion coefficient which shows the increase 

of the capacity n due to reconstruction of a unit of the capacity s. 

Thus the total increase of the capacity n at step ,t due to 

conversion from the others capacities will be 



and the total decrease of the capacity n at step t due to con- 

version into the others capacities will be 

Obviously 

for each n. 

Usually the process of reconstruction takes more than one 

step. In this case the above equations become 

where T~~ is the time (number of steps) for conversion n + s . 
Models of reconstruction in more details are considered in [lo]. 

4. Constraints 

Any realistic economic model contains constraints of various 

types. First, we list those related to the technical require- 

ments of the DLP model. Secondly, we note those related to avail- 

able resource capacities. 

4.1 Non n e g a t i v i t y  

Obviously all variables (both state and control) are 

nonnegative in the considered case: 



State variables: 

Control variables: 

+ 
Ui(t)1 uI(t) 2 0 

+ 
vj (t) 1 v; (t) ' 0 - 

wn(t) I k;(t) 2 0 

X+ X- 
z m (t)tzm (t) > 0 - 

zY+(t).zi-(t) m - > 0 

iY+(t) ,i;-(t) > o 
m - 

sY- m (t) - > 0 



4 . 2  Res ource  C a p a c i t i e s  

The v a l u e s  o f  r e s o u r c e  c a p a c i t i e s  k  ( t )  can  b e  d e r i v e d  from 
n  

s t a t e  e q u a t i o n s  ( 1 4 ) .  G e n e r a l l y ,  we can combine f r o n  d i f f e r e n t  

v a l u e s  of ( p h y s i c a l )  r e s o u r c e s  c a p a c i t i e s  k n ( t ) ,  n  = l . , , , , N .  

( t r a c t o r s  o f  d i f f e r e n t  t y p e s ,  s e p a r a t e  b u i l d i n g s ,  e t c . )  t h e  

a v a i l a b l e  c a p a c i t i e s  K ( t )  f o r  a  s p e c i f i c  g  
9  

-th o p e r a t i o n :  

where c o e f f i c i e n t s  u show p e r  u n i t  ( s a y ,  t r a c t o r  power) 
- t h  g  n  

c a p a c i t y  f o r  g  o p e r a t i o n .  

F r e q u e n t l y ,  u = 1  f o r  9 = n  and u = 0 o t h e r w i s e .  
g n  9" 

I n  t h a t  c a s e  w e  have:  

K n ( t )  = k n ( t )  

The c o n s t r a i n t s  on a v a i l a b l e  c a p a c i t i e s  i s  w r i t t e n  a s  f o l l o w s :  

I t  s h o u l d  be  n o t e d  t h a t  t h e  above g e n e r a l  e q u a t i o n  c o v e r s  

most c a s e s  d e a l i n g  w i t h  r e s o u r c e  c o n s t r a i n t s .  But i n  many o f  

t h e  e q u a t i o n s  most c o e f f i c i e n t s  a r e  z e r o .  

Also  t o  comple te  t h e  sys tem,  c e r t a i n  c o n t r o l  v a r i a b l e s  

may need t o  be c o n s t r a i n e d  by s e p a r a t e  i n e q u a l i t i e s  ( e . g .  

a v a i l a b l e  l a n d ,  d i s e a s e  c o n t r o l ,  e t c . ) .  



For example,storage capacities of all products can be limiting 

as illustrated by the following: 

Y X Y Y where values of zi(t), zm(t) , ii(t), sm(t), sm(t) , im(t) 

and ,zm(t) are derived from the state equations (6) to ( 12) . For 

those subsystems without storage capacity inequalities (17) should 

be replaced by c~nstraints of type (13). 

5. Financial Subsystem 

This subsystem summarizes the financial results of the 

activities described by the other subsystems largely in physical 

terms. Because of the wide range of possible solutions of such 

calculations, according to different economic and accounting 

systems followed, we describe only general elements of the. finan- 

cial subsystem which are important. The specific accounting pro- 

cedure and management organization will dictate the exact form 

of the equation and constraints upon the system. 

5.1 Re turn  i n  P e r i o d  t 

fr(t) is the total amount of return in period t. 

pi, pjI etc. are the prices or appropriate indicators. 



5 . 2  E x p e n d i t u r e s  

C c Y hX.x. (t) + 1 1 p X .y. (.t) + 
+ L L p g  g 1 1  

i 9 j s g g3 3  

= fe (t) 

fe(t) is the amount of expenditures in period t. 

pC is the expenses on g- th resource usage, including 

depreciation 

5 . 3  Money Balance  

z (t) is the income generated by the system 
P - 

5 . 4  I n v e s t m e n t s  

fi(t) is the amount invested in period t. 

The investments may be restricted. 

~ ~ ( t )  is the exogenously ~iven upper limit of investment 

funds available from external sources. 



5.5  F ixed  C a p i t a l  

zc(t) is the net value of fixed assets 

6. Objective Function and Plannina Horizon 

Nultiperiod or dynamic linear programming models generally 

assume a finite time horizon, therefore requiring consideration 

of the appropriate goal functions, discounting procedures and 

specification of terminal conditions (and or values for the 

fixed assets). However, for the latter problem of appropriately 

valuing terminal "fixed" assets we can note that theoretically 

their value is determined by the present value of earnings beyond 

the terminal date. Hence, the implicit consideration of an in- 

finite horizon cannot be avoided. One alternative is to explicitly 

consider the problem in an infinite horizon framework by specifying 

that the activities entering the solution in the final time period 

specified in the model continue indefinitely; the objective function 

values for terminal period activities are thus the present value of 

the earning stream of that activity from that point to infinity 

(see (6) . 
The question of the appropriated objective or goal function 

becomes more complex as we move from a single period model to one 

of multiple periods. The question is open as to what the decision 

maker should or does maximise in the longer run and the constraints 

under which such maximization takes place. For example the Lutzes (8) 

suggest four possibilities: 

"First, the entrepeneur may find the present value 
of the future gross revenue stream (v) and the present 
value of the future cost stream (c) by capitalizing at 
the interest rate ruling in the market, and maximize 
the difference (v-c) between these present values. 
Secondly, he may maximize the present value of the future 
revenue stream (again formed by capitalizing at the 
given market rate of interest) divided by the present 
value, similarly calculated, of the future cost stream, 
i.e., he may maximize v/c. Thirdly, he may maximize 
the "internal rate of return" on the capital sum invested. 
Fourthly, he may maximize the rate of return on his 
own capital, which is assumed to be a given amount and 
may be smaller than the total sum invested whenever 
part of the latter is financed out of borrowed funds." 



Hirshleifer emphasizes that while no rule is universal, 

the present value rule is correct in a wide variety of cases. (9 

However, Solomon draws attention to the maximization of wealth 

or net present worth as an operating objective for financial 

management. 6 ,  Perhaps we can conclude this discussion only by 

giving a partial list of objective functions that have found 

some use in investment analysis. 

1. Maximization of the present value of future consumption 

2. Maximization of the present value of future return 

(profits) both (a) in the situation where profits are 

withdrawn at the end of each accounting period and 

(b) in the situation where profits are reinvested as 

they eventuate 

3. Maximization of the discounted cash flow 

4. flaxinization of the present value of future cash flows 

5. Maximization of terminal net worth. 

For example for the problem being discussed in this paper the 

following objective functions may be considered; 

w (t) is the discount coefficient 

or 

Max zc(Tl + zp(T) 

zc(Tl is the fixed capital in the terminal year T- 

7. Some  imitations of DLP Approach . 

The DLP model assumes constant prices of inputs and outputs, 

that is linearity is assumed. If output prices were a function 

of output which well may be the case in large scale projects, then 

the model should be reformulated as a nonlinear programming model(l8). 

In practice, appropriate sensitivity analysis by parametric pro- 

gramming techniques often allow good approximations to the non- 

linear solutions while retaining the computational efficiency of 

linear programming. 



Another objection to DLP is that it is a deterministic 

approach to a problem with many stochastic elements. Here 

again alternative techniques may be conceptually superior 

(e.9. quadratic programming, stochastic programming) but 

operational problems are more formidable because of massive 

data requirements. Furthermore, it can be argued that some of 

the annual stochastic variations may be relatively minor com- 

pared to the more critical sources of uncertainty in models 

of long planning horizons (changes in the general level of 

prices, yields, and the variables due to technological change 

and general economic conditions). 
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