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Preface

Systematic assessment and planning to meet food needs on
regional and national levels is of increased interest in many
countries. Such planning efforts must recognize the interrelation-
ship existing between technology, resources, economics and other
components of the food system. ’

The long-range modelling of agriculture development has been
a point of joint research for IIASA's Food and Agriculture program
and System and Decision Sciences area and related to the IIASA-
Bulgarian methodological work on the agro-industrial regional

project at Silistra.

Related papers have been prepared by C. Csdki and A. Propoi.1)

D Csdki, C., Dynamic Linear Programming Model for Agricultural
Investment and Resources Utilization Pollc1es, RM-77-36, IIASA,

Laxenburg, Austria and
Propoi, A., Dynamic Linear Programming Models for Livestock
Earms, RM-77-29, IIASA, Laxenburg, Austria,

- iii -







Abstract

This paper outlines a dynamic linear programming (DLP)
model for planning a diversified agri-industrial complex.
Six production subsystems are presented: livestock, crops,
primary product utilization, processing, inputs and resource
capacities. In addition a financial subsystem is described.
The final two sections discuss briefly alternative goal

functions and some limitations of the DLP model for invest-
ment planning.
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Planning Long Range Agricultural Investment Projects:

A Dynamic Linear Programming Approach

1. Introduction

Events of the last few years that saw wide fluctuations in
world food prices, production and inventories have helped to
reemphasize the need for more systematic assessment and planning
to meet food needs for an expanding world population. Many
countries are now planning and undertaking large scale agricultural
investment projects either to increase their food self sufficiency
or to expand trade with other countries. While the complexity and
size of agricultural projects vary greatly between countries because
of the availability of (a) natural resources, (b) capital, (c) la-
bor and management skills, there still may be a common element or
framework for considering such planning schemes. ‘

Models of agricultural systems may be formulated using various
techniques and with different degrees of detail and‘sophistication.
At the beginning in the early 1960's several versions of linear pro-
gramming models had been developed for agricultural planning pur-
poses (1), (2). 1In recent years more advanced programming techniques
(e.g. integer, quadratic, stochastic programming) have also been
applied (7), (9), (11), (15), (18), and considerable efforts have
been devoted to the analysis of agriculture systems by simulation
methods (4), (7).

For planning and long range investigations the dynamic (multi-
stage) approach (DLP) seems to offer several advantages (3), (5),(12),
(13), (14), (17). The DLP allows us to formulate and derive optimal
plans of farm development over extended time periods (say 5-10 to
30 years). To demonstrate the flexibility of the approach we out-
line a general DLP model for a diversified production-processing
crop-livestock complex.

Perennial as well as annual crops are considered. Specifi-
cally, the problem is to determine the optimal crop-livestock mix
maximizing some specified performance index for a given planning
period. Each of the main components of the model will be dis-
cussed. We conclude with a discussion of some general problems
and limitations of the DLP model.




2.

Formulating the DLP Problem

In formulating the DLP problems it is useful to define and

consider separately (14).

1)

2)

3)

4)

State equations of the system distinguishing between

state (descriptive) and control (decision) variable.
Constraints imposed on these variables.

Planning period T--the number of periods during which the

system is considered and the length of each period.

Performance index (objective function) which quantifies the
contribution of each variable to some performance measure

or index (e.g. profit, net return, asset value, etc.).

As our purpose is to determine an optimal plan for the whole

system we consider separately only state equations and constraints

for each subsystem and then specify means for linking the sub-

models into a general model with a common performance index and

planning horizon.

Production SubSYStems1)

We consider 6 subsystéms:

livestock subsystem

crop subsystem (perennial and annual crops)
product utilization subsystem of primary
production activities

processing subsystem

utilization of purchased inputs

capacities subsystem.

1)

Irrigation subsystem are not considered explicitly in this

paper but may have relevance for the Bulgarian Selistra project.
See further (6) and (8) .



3.1. Livestock Subsystem

We consider a livestock subsystem consisting of several types
of livestock. All animals in accordance with their type (dairy,
beef, hogs, etc.) and maturity or age class are divided .into

I groups.

Let

xi(t)(i= 1,...,I) - the number of animals of type
i (dairy calf, dairy heifer,
dairy cow, sow, etc.) at year
(period) t;

u;(t) - the number of animals of type
i purchased at period t;

ul(t) - the number of animals of type
i sold at period t;

- the coefficient, which shows
what proportion of animals of
type j will progress to type
i in the succeeding period

(i.e. attrition rate = 1-—aij).

a,.
13

Then we can write the state equations for the livestock

subsystems as:
I
x,;(t+1) = Z a. 9% (t) + u (t) - u (t) (1)
J=1
or in matrix form

x(£+1) = Ax(t) + ut(t) - uw () . (1a)

Here x(t) =='{x1(t),...,xI(t)} is the vector of state variables;
ut(t) = {u;(t),...,u;(t)} and u (t) = {u;(t),...,u;(t)} are vectors

of control variables.
The state equations (1) can be specified in a more
detailed form. Let x? equal the number of animals of type i




and group a at period t.

An animal belongs to group a, if its age is 1 and aA< 1<
(a+1) A, A is given time interval (i=1,...,n; a=0,1,...,N-1;
t=0,1,...,T=-1).

a . . . .
Vector x (t) defines the animals distributions over their
type in group a at period t:

x2(t) = {x?(t),...,x?(t),...,xi(t)} )

Let the reproductive age begin with the group a, and end

1
2=t€—1. Then the number of animals

born (that is, of group 0) at year t+1 is equal to

by group a,- Usually, a

x (t+1) = § Bla)yx"(t) , ' (2)
a=a
1
where B(a) is a birth matrix of group a; the element bij(a) of
B(a) shows what number of animals of type i "produced" (born)

by one animal of type j and group a.

The transition of animals from group a into group a+ 1 is

described by equation
e+ 1) = s@x? () (3)

where the survival matrix S(a) shows what proportion of animal

roup "a" progresses to group a+ 1 for one time period.
g g g p

If, for example, A=1 year and group a suffers an attri-

tion rate of a?(o_ia?_§1) each year, then the equation (3) can

be written as

— _ _ — —
rx?+1(t-+1) (1-a?) 0 x?(t)
a+1 a a
an (t-+1l i 0 (1-anl Lfn(tl

Let us introduce a vector



o

%(t) = {X?(t)} (i=1,...,n; a=0,1,...,N=1) .

Then equations (2) and

(3) can be combined

x(t+1) = Ax(t) (t=0,1,...,T-1) (4)
where
0 0 .« B(a;). . . B(N-1)]
s(0) 0 0o . . 0
0 S(1)
A = .
. .S(a1)
| 0 . . . . . :S(N-‘l)__

A is the growth matrix.
If we again introduce control vectors:
+ » - -
ut(e) = (F (1)} and  w(B) = {uT(D))

we again come to state equation of the same general form shown in

(1) above:
x(t+1) = Ax(t) + u+(t5 - u (t) .

One additional point should be noted. Attrition rates aii

is usually divided into two terms:

where aii is the real attrition rates due to accidental death of
animals, and the coefficient a?i expresses the ratio of animals
purposely removed from the subsystem due to breeding or culling

policy; a?i is a parameter of the system.



Another way of introducing the breeding or culling policy
is to divide control vector u (t) into two parts

u;(t) = u;s<t) + ulb(t) ,

where uf, (t) is the number of animals of type i removed at period
t from the subsystem for breeding or culling purposes, and uzs(t)

represents intentional selling.

For purposes of illustration, we present some livestock sub-

systems in diagramatic flows with appropriate state equation at
specific periods.

3.1.1. Cattle subsystem (dual purpose dairy cattle)

t = 1 year (time unit)

1,2 groups
(0-3 months)

xl(t) -~ the number of cattle of
1- group 1 at year t

ui_(t) - the number of cattle of
£) group i sold at year t

u1+(t) - the number of cattle of
group i purchased at
year t.

aij - retension rates

1.1 _ 1 ‘ 1
a6x6(t) = 0.5x1(t) + 0.5x2(t)

° Ty = Ty - ulm ()
group X3 = 331% 1
|(12-24m) xl(t) = auzx;(t) - u;—(t) + u;+(t)
1- 1
t —
us &//'XS(t) x;(t+1) = a53x;(t) - u; (t)
6 0 = aqxl(t) - ul_(t)
group
1 _ 1 1 1-
(24+ m) x6(t+1) = a66x6(t) + a65x5(t) - u5 (t)
xg (t)

heifers bulls



State variables: x(t) = {xl(t);..., x;(t)}
Control variables: u1_(t) = {ul_(t),u;-(t),u;—(t),u;_(t),u;_(t)}
at(e) = u;+(t)} '

3.1.2 Cattle subsystem (dairy only)

t = 1 year (time unit)
! a2x?(t) = 0.5x2(t) + 0.5%2(t)
676 1 2
1,2
groups x2(t) = 2(t) - uw¥T(v)
(0-3 months) 3 #31% ;
+ u +(t)
2= (1) a2 () !
Y1 2 5 .
0 = a,.x5(t) - us (v)
24 x?-(t) 42%2 2
u 1
1 N, b 2 _ 24,
; 1 x5(t+1) = 53 3(t) u3 (t)
3 + u§+(t)
group
- ) 2 _ 2
Z} 12 monthsd]) x6(t+1) = 66 6(t) + 65 5(t)
u, (t)
2 \
X (t) N
3 Control variables:
2+
t - - - -
%3 () \\ N {uf (t),ug (t),ug (t) } = u2 (t)
U
group - | i)l = W
(12-24 m)
State variables;
2 2 2 2
xg(t) {}{1 (t) Ix2 (t) Ix3 (t) Ixs(t) ’
x2(6) ) = %P (E)
' 6
group
24+ months) [
X ()

heifers bulls




3.1.3. Pig-breeding subsystem
_ | )
1
(0 - 3 m)
B3 () i (1-85)% (t)
W ]
2 3
(3 - 9 m) (3 - 9 m)
3_.
"2 (O Il ‘\\\\\\g
ug+(t) : | E .
4
(9+ m)
A

3.2. Crop Producing Subsystem.

cludes both perennial and annual crops.

nial crops. (See (6)

crop system.)

Let

y;(8) (3=1,...,9) -

t = 3 months (time unit)
a31x3(t) = x?(t)
x3(t + 1) = a3, [x](t)-ul (t)]g°
= 53 = 23 pu3 0y ..3- a3
0 = x3(t+1) = a31[x1(t) uj ()1 (1 B85)
3 _ 3.3 3 .3
xu(t+1) = auuxu(t) + auzxz(t) +
3+ 3-
State variables
(33 (£) %3 (£) %3 (1) ;33 ()} = %3 (t)

Control variables

3-
2

3-

o), ) = w¥T(

3

{v2+(t)} = vt

(t)

The crop producing subsystem in-

First we consider peren-

for discussion of special problems of perennial

the number of hectares used
for perennial crop j at period t;

(grape, apricot, alfalfa, etc.)and

vf(t) - the number of hectares.,

used for

] new plantings of perennials of
type j at year t.



v.(t) - the number of hectares of perennial
] of type j removed j at year t;
bjk - shows what proportion of lands of

type k (i.e. with trees of type k)
will progress to type j in one
year.

The state equations are then defined as

J
+ -
. = . . - V. 5
yj(t4—1) Ezﬁjkyk(t) + vj(t) Vj(t) (5)
or in matrix form
y(t+1) = By(t) + v it) - v (t) (5a)

where

y(t) {y1(t),...,yJ(t)} is the state vector

and v’ (t) {v}“(t),...,vf;(t)}, v (t) ={v]<t),...,'v3<t-):}

are the control vectors.

We can illustrate the state equations for the perennial
crop subsystem with an example of apricot production. Consider

the following production time periods:

3.2.1. Apricot production subsystem

Age of trees

months years
y1(t) =0~ 12 0 -1
yo(t) - 12 - 24 1 -2
y3(t) - 24 - 36 2 -3
yu(t) - 36 - 48 3 -4

y5(t) - 48 - ... 4 - ... producing or mature trees.




The state equation for new plantings is
y (E+1) = vI(t)
and trees in the second year:
yo e+ 1) = b21y1(t)
and trees in the third year:
y3(t-+1) = b32y2(t)
and trees in the fourth year:

yu(t-+1) = b (t)

43Y3
and trees in the fifth and succeeding years (producing or mature trees)

Yg(t+ 1 = bggy (t) + bg,y, (t)

with the given bjk j=1,...,5, k=1,...,5. In matrix form the state
equations are written:

y(t+ 1) = By(t) + hv:(t) ;

where
T 0 o0 0 0 07 17
b,, 0o 0 0
B = 0 b32 0 0 0 h = 0
0 0 b43 0 0 0
0 0 0 b, bsS~ | 0 |

Here we have 5 state variables y(t) = {y1(t),...,y5(t)k one con-

trol variable v:(t) and t =1 year.

The system of state variables can be simplified by succes-

sive substitution. For example:



y5(t-+1) = b55y5(t) + b5ubu3y3(t- 1)

bge¥e (t) + bgyb, by, (t=2)

54P43P3
= bggyg(t) + bguby3byoby gy, (t=3)
_ F (e _
= by (t) + by (E-8)

where b = b54 b43 b32 b21 .

Thus we have one state variable, one time delay and t = 1 year. If
we choose time period equals 5 years, then we can eliminate even time

delay. The state equation then reduces to:

ys(E+1) = Esys(t) + v(t), where

é(t) - the number of planting during 5 year period, and
55 shows, what proportion of trees, planted during a
5 year period, will be producing.

The state equations in the above form are needed'only for
perennial crops. For annual crops it is sufficient to intro-
duce the numbers of hectares §(t) used for these crops, which
are the control (decision) variables in processing, utilization

and other subsystems.
3.3 Product Utilization Subsystems of Primary Production Activities.

Outputs of livestock and crop (perennial and annual) sub-
systems may be processed. We distinguish primary product acti-
vities (producing milk, -apples, wheat, etc.) and secondary pro-
duct activities (producing meat, canned fruit, etc.). Then the
primary product subsystem is broken down into 3 subsystems (uti-
lization of outputs of livestock, perennial crops and annual
crops) .

First we consider the product subsystem of primary activities.

Let

z;(t) (m=1,...,Mx) - the stock of primary product of
type m produced by the livestock
subsystem (milk, meat, eggs, etc.)

z%(t) (m=1,...,My) = the stock of the product of type m,
produced by perennial crop system

(apples, plums, etc.)




Ei(t) (m=1,...,ﬁy) - the stock of the product of type m
produced by annual crop-subsystem
(corn, wheat, vegetables, etc.)

zm(t) (m=1,...,M) - the stock of the purchased inputs
of type m (fertilizers, pesticides,

etc.)

The above are state variables.
Similar to the other subsystems, we have buying and sell-

ing activities (control'variables) for the products subsystem.

These are:
22t (t) 2 (t)
2l ()5 217 (t)
377 (1) 207 ()
z:;(t)
In addition, we have other control variables:

§j(t) - the number of hectares for annual crop of

type j at period t (corn, wheat, etc.)

q;k (t) <~ the leyel of activity for processing of the m-th
livestock primary product (e,g. milk) into the
k-th secondary product (e.g. butter) at period t.

(m=1,cer M, k=1, ....,K)

Y
Imk  (t) - (m

I

—
-

.

.
-
=
-

k=1,..., K ) and
Y

~

q%k (t) - m=1,..., M, k =1,..., Ky) have similar

meaning for perennial and annual crops.
Accordingly, we can write the state equations which express

the utilization of these products.




Utilization of outputs of livestock subsystem.

X

T(E) + T ghix(8) + Jono oui() -
i i

zx(t+1) = z
m m

X X °X o~
LopiXs (8) + 1 Broys () + 1 B g.(e) +
1 J J
X P x+ xX-
+ E Sk Tm (B) | + 2 (£) — 2z~ (t) (6)
g;i - the volume of product of type m from a unit of
livestock of type i (without withdrawing from
the system)
g;i - the same as g;i but when withdrawing it from the
system .
a;i - the volume of livestock product m consumed by unit
of livestock i.
ng the volume of livestock product m (e.g. manure)
utilized on one
B;j hectare of type j (perennial and annual crops)
§* - the utilization of livestock product m for pro-

mK
ducing one unit of secondary product «.

In matrix form edquations (6) can be rewritten as:

zX(t+1) = z¥(t) + ®x(t) + ¢ (t) - {a®x(t) (6a)

+ Xy (t) + BX5 () + a%¥ () 1Y + 2ZXT () -2¥ T (v)

with matrices



[AX 0*] is the vector of the "row-by-row" product of the
matrices A* and Qx.

In the above equation it is assumed that all animals u;(t)
to be so0ld are processed before sale. Otherwise it is necessary
to divide variables uz(t) into two parts: (1) to be sold and

(2) to be processed.

3.3.2 Utilization of outputs of perennial crop subsystem

2f(t + 1) = 2X(t) + [ gl.y.(t) -

5 “miT]
-[Z aiixi(t) + ] B%jyj(t) + ZézK q% q%K(t)] +
i j K
y+ Ly
+ oz (t) z (t) (7)

In matrix form
2t + 1) = 27 (1) + & yt) -{o¥x(t) + B¥y(t) + [a¥Q¥(t)1} +

+ 2 (e) - 2Y7 (v, (7a)
where matrices Gy, ay, BY and AY have the same meaning as in (6a).

3.3.3 Utilization of outputs of annual crop subsystem

2 (£ + 1) = E%(t) + § §§j§j(t) - [g &Y x. (t) +

+ g‘é%j§j(t) + EE%K @%K(t)] + E%+(t)‘- 23 (¢) (8)
In matrix form

(e + 1) = 27(t) + &¥(t) - {a¥x(t) + BYy(r) +

f 1YY (01} + ¥ - 3 (e (8a)



3.4 Processing Subsystem

State variables are defined as:

Si(t) (k = 1,...,K5) is the stock of the product of

type m produced by the secondary

processing of primary livestock

subsystem (cheese, butter,

meat, bacon, etc.)

Si (t) (k

1l
—
=

n <

canned

is the stock of the secondary

product of type m from perennial

crop subsystem (juice, canned fruit,

frozen goods)

§i(t) (k = 1,...,K§) is the stock of the secondary pro-

duct of the type m from annual

crops (wheat flour,

etc.)

Selling activities (control variables) are as follows:

X~ - —~ ] -
s (B), 57T (6), BT (v

Thus state equations can be written as:

X X X X X
sk(t + 1) = sk(t) + i dmkqu(t) Sy
Y - oY Y Y S A
sk(t + 1) = sk(t) + i dmkqu(t) S1
2y - zY Y 2Y _ aYy-
sk(t + 1) = sk(t) + i dmkqu(t) sk

Here

X Y Y

dmk' dmk and dmk

(t)

(t)

(t)

(9)

(10)

(11)

are the amounts of products of type m required

per unit of activity 1, for primary animals, perennials crops

and annual crop products, respectively.
In matrix form

s¥(t + 1) = s¥(£) + D*()¥ ()] - s (v)

H

sY(t + 1) = s¥(t) + (DY ()oY (v)] - ¥ (¢)

sY(t + 1) = 8¥(t) + Y)Y ()1 - 87 (v)

(9a)

(10a)

(11a)



3.5 Uttlization of Purchased Inputs

Let zm(t) equal the stock of the purchased inputs of
type m (m = 1,...M) (fertilizers, pesticides,
fuel, etc.)

Therefore we can write for all stored goods:

+
zm(t + 1) = z (t) + zm(t) - g amlxl(t) + Z B y (t) +
N ' Y v (12)
% Bni¥q (B) - Z Yn,k mk(t) + E ST (B) + ]Z{ Yok qu(t)
where ami’ ij, ij represent the use of purchase inputs of

type m by unit of livestock, perennial and annual crop sub-
systems, respectively;
X Y ~Y . .
Ymk' Yok Ymk &Y€ the utilization of purchased inputs,
of typem per unit of type k activity for processing

of animals, perennial and annual crop products, respectively.
In matrix form these equations are written:
z(t + 1) = z(t) + z+(t) - [a x (t£) + By(t) + By(t) ] -
1 ~yy o~
- 3[1"" o® (t)] + [PY Qy(t)J + [FY oY (t):H (12a)

For nonstorable goods and services (e.g. electricity) the

state equation (12) is replaced by:

+ [ ~
z () - z a X, (€) + § emjyj(t) + § B ¥ 5 (t)]

B

X X Yy Y ~ LY
- E Yk + ]E YmkTk + E Ymqu] =0 (13)
And matrix form:

z+(t) - [g x (t) + By(t) + B?(t)] - [Fx QX (t)] +

+ [rY Qy(t)} + [T"Y oY (t)] =0 (13a)

In summary we illustrate the producing subsystems in diagramatic

form in Figure 1.

i
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3.6 Capacities Subsystem. The capacity of the physical resources
(fixed assets) of the system (buildings, machinery, etc.) may
change over the planning horizon, due to various investment

and disinvestment policies.

Let ' kn(t) (n =1,...,N) - the phj%ical resource capacity
‘ of type n (buildings, machinery,
storage, etc.) available at the

beginning of period t

t) - the intensity of activity of type r (pur-
chasing of various types of
tractors, construction of €Ow
barns, etc.) at period t for
increasing the capacities of type n at
period t + 1 (r =1,...,R)

the resource capacity of type n removed

k()
from the system during period
t (e.g., disposal)

Adnr - shows, on what amount the capacity of type

n will increase when using
activity r at unit level for

one period

<, - depreciation rate of asset of type n.
The state equations are then defined as:
R
k(£ + 1) = ck (t) + Y

d
r=1 D

r Ynr (8) - k;(t) , (14)

or in matrix form

k(t + 1) = Ck(t) + [DW (t)] - k~ (t) (14a)



where

C = T ; D= {d

apf F W) = fw  (£)]

k(t) is the state vector,
W(t), k (t) are control variables.

If we incorporate time lags our state equations are modi-

fied as follows:

kn(t + 1) = cnkn(t) + E dnrwr(t—Tr) - kn(t), (14p)
where
T~ time for full depreciation of activity r.

The development region may have initial capacities in-
consistent with a future desired set (mix) of these capécities.
Hence, from a practical view not only the construction of new
capacities is necessary to consider also the reconstruction of
existing assets. 1In this case the state equations (14) should
be rewritten as follows:

kn(t + 1) = cnkn(t) + ﬁ dnrwnr(t) - §xns(t) +

- k_ 14¢
g Xan xsn(t) kn(t) | ( )
Here
xns(t) (n,s=1,...,N) is the decreasing capacity of

type n at step t which at this step began reconstruction into
the capacity of type s (for example, the modernization of
technology, changing of the type of activity, etc.) We call
this process "conversion n — s".
Xsn is the conversion coefficient which shows the increase
of the capacity n due to reconstruction of a unit of the capacity s.
Thus the total increase of the capacity n at step t due to

conversion from the others capacities will be



Xsn xsn(t)
and the total decrease of the capacity n at step t due to con-
version into the others capacities will be

z xns(t)
s

Obviously
cnkn(t) - ixns(t) >0

for each n.
Usually the process of reconstruction takes more than one

step. In this case the above equations become

kn(t + 1) = cnkn(t) + E dnrwnr(t - Tr) -

(t - Tné) + I Xgp Xgplt = Tgn) - k;(t) (14e)

- L Xpg
S s

where Ths is the time (number of steps) for conversion n — s.

Models of reconstruction in more details are considered in [10].

4. Constraints

Any realistic economic model contains constraints of various
types. First, we list those related to the technical require-
ments of the DLP model. Secondly, we note those related to avail-

able resource capacities.
4.1 WNon negativity

Obviously all variables (both state and control) are

nonnegative in the considered case:



State wvariables:

5y

xi(t) >0 zm(t) >0

ys(8) >0 s;(t) >0
Y

k (t) >0 s (t) > 0 (15a)
X xY

zm(t) >0 sm(t) > 0

zy(t) >0 z (t) >0
m — m -

Control variables:

+ - —

ui(t), ui(t) >0 s; (t) > 0

vi(t), vi(t) > 0 sY™ (t) > 0
J "3 m -

w (t), k_(t) > 0 Y7 (¢) > 0
n' " i - m - (15b)
x+ X- bd Yy

z (t),z_~(t) >0 Ak (B) 1 Qe (£

+ - ~

2 (), 2Y 7 (6) > 0 gl (e > 0

~y+ ~Y- + '

zm (t),zm (t) > 0 zm(t) > 0

V. (t > 0
75(t) >
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4.2 Resource Capacities

The values of resource capacities kn(t) can be derived from
state equations (14). Generally, we can combine from different
values of (physical) resources capacities kn(t), n=1.,,,,N.
(tractors of different types, separate buildings, etc.) the

available capacities Kg(t) for a specific g_th operation:

RKglt) = ) ugpk, (0) (g =1,...,6)

where coefficients Ugn show per unit (say, tractor power)
capacity for g—th operation.

Frequently, ugn = 1 for a = n and “gn = 0 otherwise.

In that case we have:

K (t) =k (t)

The constraints on available capacities is written as follows:

2 Y ..
g gi%i (t) + § gjy](t) +§ gjyj(t) +
x y Y
* Z gmk * Z Z kqu(t) + z g ququ(t)

(16)

I A

It should be noted that the above general equation covers
most cases dealing with resource constraints. But in many of

the equations most coefficients are zero.
Also to complete the system, certain control variables

may need to be constrained by separate inequalities (e.gq.

available land, disease control, etc.).
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For example, storage capacities of all products can be limiting

as illustrated by the following:

20 (£) < Z(t) sX(t) < Sh(t)
¥ (t) < ZY(¢) st (£) < SY(t)
_ (17)
Y (£) < z¥(t) sY(t) < 8%t
z (t) <z (t)

X, 0 Y 5Y X Y a2y
where values of zm(t), zm(t), zm(t), sm(t), sm(t), sm(t)

andlzm(t) are derived from the state equations (6) to (12). For
those subsystems without storage capacity inequalities (17) should

be replaced by constraints of type (13).

5. Financial Subsystem

This subsystem summarizes the financial results of the
activities described by the other subsystems largely in physical
terms. Because of the wide range of possible solutions of such
calculations, according to different economic and accounting
systems followed, we describe only general elements of the finan-
cial subsystem which are important. The specific accounting pro-
cedure and management organization will dictate the exact form

of the equation and constraints upon the system.

5.1 Return in Period t

?piui(t) + ; pjvj(t) + I pnkn(t) + mezm (£) + X PrnZm (t)
i j n m m
(18)
x y ~V=
Y- Y q X- a” Y- =~ q° Y- _ T
+ Ipiz? (t) + I P, S (t) + T P, S + I P Sh £f7(t)
m m m m

fr(t) is the total amount of return in period t.

P

i pj' etc. are the prices or appropriate indicators.
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5.2 FExpenditures

PR ey # 1 przY* () + I By 27 (t) + ] plz_(t) +

Ay t
* E g Pg Agi¥i(t) + § ; Pglgs¥s (8 + (19)
+ 1] pgagFye-+ 1] Ip Aququ(t) + 1] 2 P *quﬁﬁk‘t)
jg mk g k
= £° ()

fe(t) is the amount of expenditures in period t.

pC is the expenses on g"th resource usage, including
El depreciation
5.3 Money Balance
r e
zp(t + 1) = zp(t) + £7(t) - £ (t) (20)

z_(t) 1is the income generated by the system

5.4 TInvestments

Ips ul(e) + gp V() + L] pppvin, (8) £ (£) (21)

f1(t) is the amount invested in period t.

The investments may be restricted.
£L(t) < z_(t), (21a)
- P
or

£he) <oz (e) +E () £ty (21b)

=i . . - .
f(t) is the exogenously given upper limit of investment

funds available from external sources.



5.5 Fized Capital
_ i
zc(t + 1) = zc(t) + £7(t)

zc(t) is the net value of fixed assets

6. Objective Function and Planning Horizon

Multiperiod or dynamic linear programming models generally
assume a finite time horizon, therefore requiring consideration
of the appropriate goal functions, discounting procedures and
specification of terminal conditions (and or values for the
fixed assets). However, for the latter problem of appropriately
valuing terminal "fixed" assets we can note that theoretically
their value is determined by the present value of earnings beyond
the terminal date. Hence, the implicit consideration of an in-
finite horizon cannot be avoided. One alternative is to explicitly
consider the problem in an infinite horizon framework by specifying
that the activities entering the solution in the final time period
specified in the model continue indefinitely; the objective function
values for terminal period activities are thus the present value of
the earning stream of that activity from that point to infinity
(see (6)).

The question of the appropriated objective or goal function
becomes more complex as we move from a single period model to one
of multiple periods. The question is open as to what the decision
maker should or does maximise in the longer run and the constraints
under which such maximization takes place. For example the Lutzes (8)

suggest four possibilities:

"First, the entrepeneur may find the present value

of the future gross revenue stream (v) and the present
value of the future cost stream (c) by capitalizing at

the interest rate ruling in the market, and maximize

the difference (v-c) between these present values.
Secondly, he may maximize the present value of the future
revenue stream (again formed by capitalizing at the

given market rate of interest) divided by the present
value, similarly calculated, of the future cost stream,
i.e., he may maximize v/c. Thirdly, he may maximize .
the "internal rate of return” on the capital sum invested.
Fourthly, he may maximize the rate of return on his

own capital, which is assumed to be a given amount and
may be smaller than the total sum invested whenever

part of the latter is financed out of borrowed funds."




Hirshleifer emphasizes that while no rule is universal,

the present value rule is correct in a wide variety of cases.(g)
However, Solomon draws attention to the maximization of wealth
or net present worth as an operating objective for financial
management.(16) Perhaps we can conclude this discussion only by
giving a partial list of objective functions that have found

some use in investment analysis.

1. Maximization of the present value of future consumption
2. Maximization of the present value of future return
(profits) both (a) in the situaticn where profits are
withdrawn at the end of each accounting period and
(b) in the situation where profits are reinvested as
they eventuate
3. Maximization of the discounted cash flow
Maximization of the present value of future cash flows
5. Maximization of terminal net worth.
For example for the problem being discussed in this paper the
following objective functions may be considered;
T .
Max ) w (t) z_(t)
t=1 P

w(t) is the discount coefficient

or
Max zc(T) + ZP(T)

zc(T) is the fixed capital in the terminal year T.

7. Some Limitations of DLP Approach

The DLP model assumes constant prices of inputs and outputs,

that is linearity is assumed. If output prices were a function

of output which well may be the case in large scale projects, then

the model should be reformulated as a nonlinear programming model (18).

In practice, appropriate sensitivity analysis by parametric pro-
gramming techniques often allow good approximations to the non-

linear solutions while retaining the computational efficiency of

linear programming.



Another objection to DLP is that it is a deterministic
approach to a problem with many stochastic elements. Here
again alternative techniques may be conceptually superior
(e.g. quadratic programming, stochastic programming) but
operational problems are more formidable because of massive
data requirements. Furthermore, it can be argued that some of
the annual stochastic variations may be relatively minor com-
pared to the more critical sources of uncertainty in models
of long planning horizons (changes in the general level of
prices, yields, and the variables due to technological change

and general economic conditions).
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