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Abstract

The statistical uncertainty, resulting from the lack
of knowledge of whichmodelling represents a glven stochastic
process, 1s analyzed. This analysis of model uncertainty
leads to a composite Bayesian distribution. The composite
Bayesian distribution is a linear model of the individual
Bayeslan probability distributions of the individual models,
welghted by the posterior probability that a particular
model is the true model. The composite Bayesian probability
model accounts for all sources of statistical uncertainty--
both parameter uncertainty and model uncertainty. This
model is the one that should be used in applied problems
of decision analysis, for 1t best represents the knowledge--
or lack of it--to the decision maker about future events
of the process.

Introduction

Applied scientists are often confronted with the pro-
blem of choosing one statistical model from many contending
models. An example of this selection problem is frequently
encountered by hydrologists in flood frequency analysis.

The examples and applications in this paper will be addressed
to that problem.

Consider the problem of the hydrologist who must make
a decision between a number of alternate designs that pro-
pose to prevent or decrease the occurrence of future floods.

His first task is to make inferences about the underlying



process that generates these events Sut, in addressing this
problem, he is faced with a number of sources of uncertainty.
These sources of uncertainty have often been summarized into
three categories [1]:

1. Natural uncertainty. This is the uncertainty in
the stochastic process -- the occurrence of extreme
streamflows, q.

2. Statistical uncertainty. This is associated with
the estimation of the parameters of the model of
the stochastic process due to limited data.

3. Model uncertainty. This is associated with the
uncertainty that a particular probabilistic model
of the stochastic process may not be the true model.
Most hydrologic processes are so complex that no
model yet devised may be the true model, or maybe
hydrologic events follow no particular model.

Many models seem to fit the available data very well, but
often the models lead to different inferences and decisions.
In recent years, considerable progress has been made on the
development of statistical procedures for comparing alter-
native models; examples of this are Gaver and Geisel [3],
Smallwood [8] and Leamer [4], who all used Bayesian
statistical procedures, and Dumonceaux et al. [2] and
Pesaran [5] who applied '"eclassical™ statistical procedures

of hypothesis testing.



Composite Bayesian Distribution

For a particular model of flood events, parameter un-
certainty can be accounted for by considering the Bayesian

pdf of flood events, which is

£q) = AfﬂqlA) T fU(A) dA (1)

where f(q) is the Bayesian pdf for q,

f(q|A) is the "modelled" pdf of g, conditional
upon the uncertain parameter set A, and
f" (A) 1is the posterior pdf forbthe parameter set
A.
Model uncertainty can be considered by defining a com-

posite model of the form

£(alA,0) = 8,-fy (alA)) + +=+ + 6, °f (a[A) (2)

where

The composite model, f(q|A,8), is conditioned upon a set
of unknown model parameters A and an unknown composite

model parameter set 6.

f,(afAy),...,and £ (q|A ) 1is the set of probabilistic
models that make up the composite model. These models are
conditioned upon a general unknown parameter set A.

61,..., and Sn are parameters that take on a value of

either O or 1l; their value is uncertain. If 61 =1,

then model fi(q|éi) is the true model. The constraint
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n
z 6. =1 (3)

is imposed, which implies that one and only one model is
the true model.

For notational simplicity, consider the case where
n — 2. The likelihood function for a set of cobservations
Q 1is Jjust:

n n
LA, © | @ = 6, 1T  f£y(a;lA)) + 0, T

fo(q,|A)
(0 teteylRe

i=1

= 0 - Ll(éllg) + 0, L2(52|9)

(4)

There are no cross products of the models, due to the 1li-
mitation imposed on the values that Oi can take onj; and
the constraint on © + L,(A;]Q) 1is just the likelihood
function of model i, conditional upon the observations,
Q.

Define now a composite prior distribution on the pa-

rameters A and ©. The prior will be of the form

£'(A,0) = 0, f'y (Ale; = 1) * p'(0; = 1)
(5)
+0, f', (52|o2 = 1) p'(6, = 1)
f'i(f\_i|ei = 1) is the prior distribution on the parameter

set A, conditional upon 0; = 1. p'(Oi = 1) 1is the prior

probability that model i is the "true" model.



Bayes' rule can be written as

f"(b|data) = = L (bldata) . £'(b) . (6)

1
K
f" (b|data) 1is the posterior distribution of the b,
conditional upon the data; L(b]data) is the likelihood
function for b; f'(b) 4is the prior distribution of b;
and K 1is a normalizing constant.

The normalizing constant K 1is often called, in the
econometrics literature, the marginal density of the ob-

servations or the marginal likelihood [12] and can be

feund by

K = J[’ L(b|data, model) - f'(b|model) db. (7
b

K.

5> the marginal likelihood function for model i, can be

thought of as the probability of observing the data, given
model 1.
The posterior density function for 4,9 1is calculated

from Bayes' rule; it is
" . . . . -
£U(A,0)= {0, * Ly(A]Q) + 0, - Ly(AlQ} * {0 fi(éllel 1)

p'(0)=1) + 0, * £1(A,]0,71) * p'(0,=1)]

= 0,Kf"(A,]0,=1) * p'(0;=1)
n - . 1] -
+ 0K, I"(A,]0,=1) * p'(0,71)
!
- 1] - . ” -
= 0, = p'(0;=1) i (A1|@1‘1)
%

0 A T8 T TR, [0520) (8)

*



*
where K 1is a normalizing constant equal to
- . 1 - . -

The posterior model probabillities, p"(@i) are

Ky

p'(0,=1) = I p'(0=1) (10)
X
K>

PU(0,71) = —Zpr (0, (11)

These posterior probabilities for Oi are the same
as those found by Leamer [4], Gaver and Geisel [3], and
Smallwood [8], even though their approaches to the problem
were different.

The composite Bayesian distribution of extreme flood

events, g, can also be found by applying first principles:

£(q)

/ £(ajh,0) * £"(4,0) dAde
4,9

[H

a,0 101 flalay) + 0, © flalay)}
{p"(0y=1) * £"(A ]09) + p"(0,71)

n - .
f"(A,l0,=1)) - dAde

p"(0,=1) - f(a) + p"(0,=1) * f5(q) (12)

The composite Bayesian distribution is simply the
Bayesian distributions of the models weighted by the poste-

rior probability that a particular model is the true model.

This result is extremely convenient.



Analytical Derivation of the Marginal Density Function

The marginal density function of a set of observations
is calculated from Equation (7), and represents the proba-
bility of observing that set of data. The marginal density
function depends upon the probability model for the sto-
chastic process, the prior probability density function
over the parameters of the model and the set of observed
data. Consider the marginal likelihood function for the
following cases:

1. Normal Process

Let the random variable g be distributed with Normal
mean Y and precision h. The probability density for
q 1is

1

f(qlu,h) = h? exp {- h (a-1)°} . (13)
J2 11 5

Then, given n independent observations of q, Q, the like-

lihood function for u and h is

L(u,h{Q) = fl fylazlu,h)
= (2m) V22 L expi- B on(g - ?) .
Define the following
m = % Zq; (1%5)
v = 1o 2(g;mm)? (16)




then

-n/2 1

exp{- 5 h vv - % hn(m—u)2}-hn/2

L(u,h|Q) = (2m)

(17)

Assume the prior on (u,h) is a natural conjugate priorl

of the form

£'(u,h) = (21r)-1/2 exp{- % hn'(u—m')2 ~ % hv'v'}
n'1/2h1/2 . h1/2\)’—1 (172 v'v')l/2 vt
: (18)
r(1/2 v')

Then, the marginal likelihood function for the Normal model,

ffL(u,hIQ) * £'(u,h) dudh
u,h

is from Equation (14) and (18)

s /2oy v/2 (/2 vy yl/2 v
r(i/2 v')
2TT) 1/2 1/2 Xp{- %hn" . (U‘m")2}
hl/Z\)""l exp{- l—h\)"V"}dudh R

2 (19)

where
o = n'm' + nm
n'+n
n" = n' +n
1

For the Normal process, the natural conjugate over the
mean and precision is Normal-Gamma (Raiffa and Schlaifer, [6]).
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2 2

vt oz %”(v’v’ Foam'? 4 vy o+ m© - n'm"e)
vt v 4 v+ 1 = nfo- 1
The integral is equal to
"
1 . F(l/2 v
5 — .
nnl/ (172 yrymyl/2v" (20)
Thus \
1/2 -v/2 1/2 vw"
Ky = () (emy7V/2 . I(172 V)
n" r(1/2 vt)
(1/2 v'v')1/2v'
——"—_—_ﬁ—'" .
(1/2 viyr)t eV (21)
2. Log-Normal Process
Let X = in a; be distributed Normal with mean u

and precision h. Then a3 is distributed Log-Normal by de-

finition. The probability density function for.q is

(EW)_1/2h1/2 2} .(22)

£(qlu,h) = exp{- %h(x - u)

Q1=

The likelihood function for u and h, given n independent

observations of gq is

L(u,h|Q) =

exp{- Z-hnz(x; - ey . (23)
2
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Assume a Normal-Gamma prior for u and h of the same form

as Equation (18). The marginal likelihood, Kiwe is just
the integration of u and h over the product of the likeli-

hood and the prior probability density function.

_ 1 -n/2,. n/2
il

i=1 4 uh
1 2
- exp {- 3hn ) (x; = w7} + £'(u,h)dudh. (24)

The integral is of the same form as the marginal likelihood

for the Normal model. Then, from Equation (21}, Koy is:
_ 1 . ,n'\1/2 -v/2 (1/2 v")
Kin = Gm) (2m) 72V

1 q.

i=1 *

(1/2 viy)t/2 V'

* 2

(1/2 v"y" 172 vr (e5)

3. Exceedance Model

Another model of common use in water resources, espe-
cially in the analysis of extreme events, is the Exceedance
model. (Shane and Lynn, [7]; Wood, [10]; Todorovic and
Zelenhasic, [9].) The Exceedance model considers only
those extreme events, let's say flood discharges, greater
than a specified base level. Such discharges are called
exceedance discharges and the probability density function
of exceedance discharges is assumed to be of an Exponential
type. Furthermore, the arrival of exceedance events is
assumed to be a Poisson process. Such a model is of a

general form since the upper tails of many distributions
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can be approxlimated by an exponential form.

The second part of this model concerns flood discharges
less than the base level. Usually such discharges are of
little interest in analyzing extreme events, and the distri-
bution of such events may be quite complex. Here, it will
be assumed that the events will follow a uniform distribu-
tion. The use of the uniform b density function implies
that the posterior probability for the Exceedance model will
be underestimated or conservative.

The probability density function for the Exceedance

model is

f(q|v,a) = vatexp {-a(q - qb)} for g > qy
S for 0 < g < (26)
- — > 2 < a s qb >
9y

where v 1is the arrival rate of floods, a 1s the event
magnitude parameter and Qy is the base level.

Given a sample of n independent discharges, Q, of which m
are discharges less than ay and n-m are discharges greater
than or equal to qy > then the likelihood function for v

and o can be shown to be,

(1 -v)? n-m n-m n-m
L(v,a|Q) = Y a exp {-a I (g4 —qb)}
qb izl

exp{-thi} (7
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The marginal likelihood function, Kg, is defined as

KE:f L(v,a|Q) - £'(v) + f'(a)dvda . (28)

v,a

The conjugate prior density function for v and a

are of the form

1

1. lu
fr{v) = exp(-s‘-v)-vu s’
Tu') (29)
f'{a) = exp(-—ﬂ'-Ot)'OLV_1 gV’ . (30)
T{v")

Therefore, from Equation (28) applying Equations (27) and

(29) Xg is simply

ul
Ko = g m s’ exp{~-(s" + m)\)}-\)(u'*m"m)'1 dv
E b T(u')
v
1
2’ (v'+n-m) -1
T(v") .[ exp {-2' + Z(qi'qb)} @ da
a

(31)

The integral over v equals

T (32)

w >
(s" + m)u

where
U"Zu'+n—m

s" = 3" + T (or s" = s' + Zti)
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and the integral over a equals

I"(Vn)
’ (
. (33)
where
v = v +n-m
2" = 2"+ (g - qp)
Thus, KE equals
- u' t
Kg = qp" . 8" . orwm o, &Y e
(S"+m)u F(u') g]nV" F(V')
(34)

Some computer experiments were carried out with samples
generated from known distributions. As an example, a
sample growing from 10 to 200 was generated from a Log-
ulny = 7.85 and G%ny = 0.95
and the marginal likelihoods where numerically evaluated

Normal distribution with

for the Log-Normal and the Exceedance models assuming diffuse
prior distributions on the probability model parameters.
Table 1 shows the values of the marginal likelihoods jointly
with the posterior model probabilities estimated according
to Equations (10) and (11) on the assumption of diffuse
prior model probabilities (p'(el = 1) = p'(e2 = 1) = 0.5).
Extensive experiments are presently being performed to
evaluate the worth of data on the problem of model selection
as well as the influence of prior assessments, and the

results will be forthcoming.
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An Application to the Blackstone River, U.S.A.

The Blackstone River, at Woonsocket, Rhode Island,
has been analyzed by Wood and Rodriguez [11] for prior
information for the Bayesian probability density function
of its flood discharges (for four different probability
models), and for a decision problem concerning local flood
protection. Model uncertainty was not considered in the
previous paper even though competing models were considered.
This section calculates the posterior model probabilities.
The parameters for the marginal likelihood functions are
summarized in Table 2. The values of the marginal likeli-

hoods are

7.46 x 107191, Koy = 4.76 x 107160

=~
n

b

K. = 1.14 x 10”196
for the Normal, Log-Normal, and Exceedance models, respectively.
Assuming uniform prior probabilities on the three

models, the posterior probabilities for the models are

pn(eN = 1) = 0.0
p"(8;, = 1) = .00U18

p"(6y = 1) = .99582
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The composite Bayesian distribution of flood discharges is,

from Equation (12)

£(q) = .99582 £ (q) + .00M18 fyy(a) , (35)

where EE(q) is the Bayesian density function for the Exceed-
ance model, and %LN(Q) is the Bayesian density function for
the Log-Normal model.

The composite Bayesian distribution of Equation (36) 1is the
probability model which should be used in making inferences
about future flood discharges. The composite Bayesian model
rationally accounts for both parameter and model uncertainty.

It 1s interesting to note that the form of composite Bayesian
model is not fixed, but is dynamic and changes as more data

becomes available.

Conclusions

This paper considers the problem of model uncertainty
within a Bayesian analysis. When there is a set of competing
probability models for flood discharges, Bayesian analysis
leads to a composite Bayesian model. The composite Bayesian
model is a linear model consisting of the Bayesian distribu-
tion of the individual models, weighted by the posterior
model probability that the individual model is the true model.
The posterior model probabilities are calculated from the

marginal likelihood function of the observed data and the
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prior model probability.

The posterior model probabilities are found by calcula-
ting the marginal likelihood function for each competing
model. The marginal likelihood function was derived analy-
tically for three commonly used models -- a Normal process,

a Log-Normal process,and an Exceedance model. The results
have been applied to "real-world" data and favourable

results obtained.



_17_

Table 1: Marginal Likelihoods and Posterior Model Probabilities

for Samples Generated from Log-Normal Process with

Hon v = 7.8 and 99n v = 0.95
Log-Normal Model Sample Size Exceedance Model
Marginal Posterior Model Marginal Posterior Model
Likelihood Probability Likelihood Probability
9.83594 x 10°%3  0.525 10 8.90135 x 10°%3  0.475
10.3726 x 10782 0.671 20 5.09288 x 10783 0.329
14,4061 x 107102 o.678 40 6.85213 x 107105  0.320
15.3628 x  10°2%% 0.997 60 13.6377 x 10°2"8  0.003




Table 2:
Blackstone River, U.S.A.
Normal Model

n' = 7 years n"
v = 36 years o
v o= 9.22 x 100 efs® v

Log-Normal Model
n' = U years n"”
v'!' = 36 years v
v! = .22 log cf‘s2 v"

Exceedance Model
u' = 6 events u"
v' = 3 events v
S' = 50 years sn
2' = 10850 cfs "
m = 32 events n
qy = 8500 cfs
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Marginal Likelihood Parameters for Normal,

Log-Normal, and Exceedance Models for the

H

b4 years
43 years

24.7 x 10~ cfs

41 years
4o years

.689 log cf52

11 events
8 events
87 (S"+m=119) years
LgL68 cfs

5 events
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