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Abstract. This paper suggests some further developments in the theory of first-order necessary
optimality conditions for problems of optimal control with infinite time horizons. We describe an
approximation technique involving auxiliary finite-horizon optimal control problems and use it to
prove new versions of the Pontryagin maximum principle. Special attention is paid to the behavior of
the adjoint variables and the Hamiltonian. Typical cases, in which standard transversality conditions
hold at infinity, are described. Several significant earlier results are generalized.
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1. Introduction. We deal with the following infinite-horizon optimal control
problem (P):

ẋ(t) = f(x(t), u(t)), u(t) ∈ U ;(1.1)

x(0) = x0;(1.2)

maximize J(x, u) =

∫ ∞

0

e−ρtg(x(t), u(t))dt.(1.3)

Here x(t) = (x1(t), . . . , xn(t)) ∈ R
n and u(t) = (u1(t), . . . , um(t)) ∈ R

m are the
current values of the system’s states and controls; U is a nonempty convex compactum
in R

m; x0 is a given initial state; and ρ ≥ 0 is a discount parameter. The functions
f : G × U �→ R

n, g : G × U �→ R
1, the matrix ∂f/∂x = (∂f i/∂xj)i,j=1,...,n, and

the gradient ∂g/∂x = (∂g/∂x1, . . . , ∂g/∂xn) are assumed to be continuous on G×U .
Here G is an open set in R

n such that x0 ∈ G. As usual an admissible control in
system (1.1) is identified with an arbitrary measurable function u : [0,∞) �→ U . A
trajectory corresponding to a control u is a Carathéodory solution x to (1.1), which
satisfies the initial condition (1.2). We assume that, for any control u, a trajectory x
corresponding to u exists on [0,∞) and takes values in G (due to the continuous
differentiability of f , the trajectory x is unique). Any pair (u, x), where u is a control
and x the trajectory corresponding to u, will be called an admissible pair.

Problems of this type naturally arise in the studies on optimization of economic
growth (see [1], [2], [14], [23], [27], [33], [39]). Progress in this field of economics was
initiated by Ramsey in the 1920s [35].
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Our basic assumptions are the following.
(A1) There exists a C ≥ 0 such that

〈x, f(x, u)〉 ≤ C(1 + ‖x‖2) for all x ∈ G and all u ∈ U.

(A2) For each x ∈ G, the function u �→ f(x, u) is affine, i.e.,

f(x, u) = f0(x) +

m∑
i=1

fi(x)ui for all x ∈ G and all u ∈ U,

where fi : G �→ R
n, i = 0, 1, . . . ,m, are continuously differentiable.

(A3) For each x ∈ G, the function u �→ g(x, u) is concave.
(A4) There exist positive-valued functions μ and ω on [0,∞) such that μ(t) → 0,

ω(t) → 0 as t → ∞, and for any admissible pair (u, x),

e−ρt max
u∈U

|g(x(t), u)| ≤ μ(t) for all t > 0;

∫ ∞

T

e−ρt|g(x(t), u(t))|dt ≤ ω(T ) for all T > 0.

Assumption (A1) is conventionally used in existence theorems in the theory of
optimal control (see [19], [22]). Assumptions (A2) and (A3) imply that problem (P)
is “linear-convex” in control; the “linear-convex” structure is important for the imple-
mentation of approximation techniques. The second condition in (A4) implies that the
integral (1.3) converges absolutely for any admissible pair (u, x), which excludes any
ambiguity in interpreting problem (P). As shown in [13, Theorem 3.6], assumptions
(A1)–(A4) guarantee the existence of an admissible optimal pair in problem (P).

In this paper, we develop first-order necessary optimality conditions for prob-
lem (P). Note that, for infinite-horizon optimal control problems without a discount-
ing factor (ρ = 0), the Pontryagin maximum principle was stated in [34]. For problems
involving a positive discounting factor (ρ > 0), a general statement on the Pontryagin
maximum principle was given in [24]. However, both statements establish the “core”
relations of the Pontryagin maximum principle only and do not suggest any analogue
of the transversality conditions, which constitute an immanent component of the Pon-
tryagin maximum principle for classical finite-horizon optimal control problems with
nonconstrained terminal states. The issue of transversality conditions for problem (P)
is the focus of our study.

Introduce the Hamilton–Pontryagin function H : G× [0,∞)×U ×R
n ×R

1 �→ R
1

and the Hamiltonian H : G× [0,∞) × R
n × R

1 �→ R
1 for problem (P):

H(x, t, u, ψ, ψ0) = 〈f(x, u), ψ〉 + ψ0e−ρtg(x, u);

H(x, t, ψ, ψ0) = sup
u∈U

H(x, t, u, ψ, ψ0).

The Pontryagin maximum principle involves an admissible pair (u∗, x∗) and a pair
(ψ,ψ0) of adjoint variables associated with (u∗, x∗); here ψ is a solution to the adjoint
equation

ψ̇(t) = −
[
∂f(x∗(t), u∗(t))

∂x

]∗
ψ(t) − ψ0e−ρt ∂g(x∗(t), u∗(t))

∂x
(1.4)
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on [0,∞), and ψ0 is a nonnegative real; (ψ,ψ0) is said to be nontrivial if

‖ψ(0)‖ + ψ0 > 0.(1.5)

We shall use the following definition. We shall say that an admissible pair (u∗, x∗)
satisfies the core Pontryagin maximum principle (in problem (P)), together with a
pair (ψ,ψ0) of adjoint variables associated with (u∗, x∗), if (ψ,ψ0) is nontrivial and
the following maximum condition holds:

H(x∗(t), t, u∗(t), ψ(t), ψ0) = H(x∗(t), t, ψ(t), ψ0) for a.a. t ≥ 0.(1.6)

Of special interest is the case where problem (P) is not abnormal, i.e., when the
Lagrange multiplier ψ0 in the core Pontryagin maximum principle does not vanish.
In this case we do not lose generality if we set ψ0 = 1. Accordingly, we define the
normal-form Hamilton–Pontryagin function H̃ : G × [0,∞) × U × R

n �→ R
1 and the

normal-form Hamiltonian H̃ : G× [0,∞) × R
n �→ R

1 as follows:

H̃(x, t, u, ψ) = H(x, t, u, ψ, 1) = 〈f(x, u), ψ〉 + e−ρtg(x, u);

H̃(x, t, ψ) = H(x, t, ψ, 1) = sup
u∈U

H̃(x, t, u, ψ).

Given an admissible pair (u∗, x∗), introduce the normal-form adjoint equation

ψ̇(t) = −
[
∂f(x∗(t), u∗(t))

∂x

]∗
ψ(t) − e−ρt ∂g(x∗(t), u∗(t))

∂x
.(1.7)

Any solution ψ to (1.7) on [0,∞) will be called an adjoint variable associated with
(u∗, x∗). We shall say that an admissible pair (u∗, x∗) satisfies the normal-form core
Pontryagin maximum principle together with an adjoint variable ψ associated with
(u∗, x∗) if the following normal-form maximum condition holds:

H̃(x∗(t), t, u∗(t), ψ(t)) = H̃(x∗(t), t, ψ(t)) for a.a. t ≥ 0.(1.8)

In the context of problem (P), [24] states the following (see also [17]).
Theorem 1. If an admissible pair (u∗, x∗) is optimal in problem (P), then

(u∗, x∗) satisfies relations (1.4)–(1.6) of the core Pontryagin maximum principle to-
gether with some pair (ψ,ψ0) of adjoint variables associated with (u∗, x∗).

Qualitatively, this formulation is weaker than the corresponding statement known
for finite-horizon optimal control problems with nonconstrained terminal states. In-
deed, consider the following finite-horizon counterpart of problem (P).

Problem (PT ):

ẋ(t) = f(x(t), u(t)), u(t) ∈ U ;

x(0) = x0;

maximize JT (x, u) =

∫ T

0

e−ρtg(x(t), u(t))dt;

here T > 0 is a fixed positive real. The classical theory [34] says that if an admissible
pair (u∗, x∗) is optimal in problem (PT ), then (u∗, x∗) satisfies the core Pontryagin
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maximum principle together with some pair (ψ,ψ0) of adjoint variables associated
with (u∗, x∗), and, moreover, (ψ,ψ0) satisfies the transversality conditions

ψ0 = 1, ψ(T ) = 0.(1.9)

In Theorem 1 any analogue of the transversality conditions (1.9) is missing.
There were numerous attempts to find specific situations in which the infinite-

horizon Pontryagin maximum principle holds together with additional boundary con-
ditions at infinity (see [12], [15], [16], [21], [26], [31], [36], [38]). However, the major
results were established under rather severe assumptions of linearity or full convexity,
which made it difficult to apply them to particular meaningful problems (see, e.g.,
[28] discussing the application of the Pontryagin maximum principle to a particular
infinite-horizon optimal control problem).

In this paper we follow the approximation approach suggested in [9], [10], and [11].
We approximate problem (P) by a sequence of finite-horizon optimal control prob-
lems {(Pk)} (k = 1, 2, . . .) whose horizons go to infinity. Problems (Pk) (k = 1, 2, . . .)
impose no constraints on the terminal states; in this sense, they inherit the structure
of problem (P); on the other hand, problems (Pk) are not plain “restrictions” of prob-
lem (P) to finite intervals like problem (PT ): the goal functionals in problems (Pk)
include special penalty terms associated with a certain control optimal in problem (P).
This approach allows us to find limit forms of the classical transversality conditions
for problems (Pk) as k → ∞ and formulate conditions that complement the core
Pontryagin maximum principle and hold with a necessity for every admissible pair
optimal in problem (P). The results presented here generalize [9], [10], [11], and [12].

Earlier, a similar approximation approach was used to derive necessary optimality
conditions for various nonclassical optimal control problems (see, e.g., [3], [4], [5],
[7], [32], and also survey [6]). Based on relevant approximation techniques and the
methodology presented here, one can extend the results of this paper to more complex
infinite-horizon problems of optimal control (e.g., problems with nonsmooth data). In
this paper, our primary goal is to show how the approximation approach allows us to
resolve the major singularity emerging due to the unboundedness of the time horizon.
Therefore, we restrict our consideration to the relatively simple nonlinear infinite-
horizon problem (P), which is smooth, “linear-convex” in control, and free from any
constraints on the system’s states.

Finally, we note that the suggested approximation methodology, appropriately
modified, can be used directly in analysis of particular nonstandard optimal control
problems with infinite time horizons (see, e.g., [8]).

2. Transversality conditions: Counterexamples. Considering problem (P)
as the “limit” of finite-horizon problems (PT ) whose horizons T tend to infinity, one
can expect the following “natural” transversality conditions for problem (P):

ψ0 = 1, lim
t→∞

ψ(t) = 0;(2.1)

here (ψ,ψ0) is a pair of adjoint variables satisfying the core Pontryagin maximum
principle together with an admissible pair (u∗, x∗) optimal in problem (P). The
relations

ψ0 = 1, lim
t→∞

〈ψ(t), x∗(t)〉 = 0(2.2)

represent alternative transversality conditions for problem (P), which are frequently
used in economic applications (see, e.g., [14]).
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The interpretation of (2.2) as transversality conditions for problem (P) is also
motivated by Arrow’s statement on sufficient conditions of optimality (see [1], [2],
and [36]), which (under some additional assumptions) asserts that if (2.2) holds for
an admissible pair (u∗, x∗) and a pair (ψ,ψ0) of adjoint variables, jointly satisfy-
ing the core Pontryagin maximum principle, then (u∗, x∗) is optimal in problem (P),
provided the superposition H(x, t, ψ(t), ψ0) is concave in x. Another type of transver-
sality condition formulated in terms of stability theory was proposed in [38]. In [12],
global behavior of the adjoint variable associated with an optimal admissible pair
was characterized in terms of appropriate integral functionals. In this paper, we con-
centrate on the derivation of pointwise transversality conditions of types (2.1) and
(2.2).

Note that, generally, for infinite-horizon optimal control problems neither trans-
versality condition (2.1) nor (2.2) is valid. For the case of no discounting (ρ = 0), illus-
trating counterexamples were given in [24] and [37], and for problems with discounting
(ρ > 0), some examples were given in [12] and [31]. In particular, [31] presents an
example showing that an infinite-horizon optimal control problem with a positive dis-
count can be abnormal; i.e., in the core Pontryagin maximum principle, the Lagrange
multiplier ψ0 may necessarily vanish (which contradicts both (2.1) and (2.2)).

Here, we provide further counterexamples for problem (P) in the case where
discount parameter ρ is positive.

Example 1 shows that for problem (P), the limit relation in (2.1) may be violated,
whereas the alternative transversality conditions (2.2) may hold.

Example 1. Consider the optimal control problem

ẋ(t) = u(t) − x(t), u(t) ∈ U = [0, 1];

x(0) =
1

2
;

maximize J(x, u) =

∫ ∞

0

e−t ln
1

x(t)
dt.

We set G = (0,∞) and treat the above problem as problem (P). Assumptions (A1)–
(A4) are, obviously, satisfied. For an arbitrary trajectory x, we have e−t/2 ≤ x(t) < 1

for all t ≥ 0. Hence, (u∗, x∗), where u∗(t)
a.e.
= 0 and x∗(t) = e−t/2 for all t ≥ 0, is the

unique optimal admissible pair. The Hamilton–Pontryagin function is given by

H(x, t, u, ψ, ψ0) = (u− x)ψ − ψ0e−t lnx.

Let (ψ,ψ0) be an arbitrary pair of adjoint variables such that (u∗, x∗) satisfies
the core Pontryagin maximum principle together with (ψ,ψ0). The adjoint equation
(1.4) has the form

ψ̇(t) = ψ(t) + ψ0e−t 1

x∗(t)
= ψ + 2ψ0,

and the maximum condition (1.6) implies

ψ(t) ≤ 0 for all t ≥ 0.(2.3)

Assume ψ0 = 0. Then ψ(0) < 0 and ψ(t) = etψ(0) → −∞ as t → ∞; i.e., the limit
relation in (2.1) does not hold. Let ψ0 > 0. Without loss of generality (or multiplying
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both ψ and ψ0 by 1/ψ0), we assume ψ0 = 1. Then ψ(t) = (ψ(0) + 2)et − 2. By
(2.3), only two cases are admissible: (a) ψ(0) = −2 and (b) ψ(0) < −2. In case (a)
ψ(t) ≡ −2, and in case (b) ψ(t) → −∞ as t → ∞. In both situations the limit relation
in (2.1) is violated. Note that ψ(t) ≡ −2 (t ≥ 0) and ψ0 = 1 satisfy (2.2).

The next example is complementary to Example 1; it shows that for problem (P),
the limit relation in (2.2) may be violated, whereas (2.1) may hold.

Example 2. Consider the following optimal control problem:

ẋ(t) = u(t), u(t) ∈ U =

[
1

2
, 1

]
;(2.4)

x(0) = 0;

maximize J(x, u) =

∫ ∞

0

e−t(1 + γ(x(t)))u(t)dt.(2.5)

Here γ is a nonnegative continuously differentiable real function such that

I =

∫ ∞

0

e−tγ(t)dt < ∞.(2.6)

We set G = R
1. Clearly, assumptions (A1)–(A3) are satisfied. Below, we specify

the form of γ and show that assumption (A4) is satisfied too.

The admissible pair (u∗, x∗), where u∗(t)
a.e.
= 1 and x∗(t) = t for all t ≥ 0, is

optimal. Indeed, let (u, x) be an arbitrary admissible pair. Observing (2.4), we find
that ẋ(t) > 0 for a.a. t ≥ 0. Taking τ(t) = x(t) for a new integration variable in (2.5),
we get dτ = u(t)dt and

t(τ) =

∫ τ

0

1

u(t(s))
ds for all τ ≥ 0.

As far as ∫ τ

0

1

u(t(s))
ds ≥ τ,

we get

J(x, u) =

∫ ∞

0

e−t(1 + γ(x(t)))u(t)dt =

∫ ∞

0

e−
∫ τ
0

1
u(t(s))ds(1 + γ(τ))dτ

≤
∫ ∞

0

e−τ (1 + γ(τ))dτ = J(u∗, x∗).

Hence, (u∗, x∗) is an optimal admissible pair. It is easy to see that there are no other
optimal admissible pairs. The Hamilton–Pontryagin function has the form

H(x, t, u, ψ, ψ0) = uψ + ψ0e−t(1 + γ(x))u.

Let (ψ,ψ0) be an arbitrary pair of adjoint variables such that (u∗, x∗) satisfies
the core Pontryagin maximum principle together with (ψ,ψ0). The adjoint equation
(1.4) has the form

ψ̇(t) = −ψ0γ̇(t)e−t.
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If ψ0 = 0, then the maximum condition (1.6) implies ψ(t) ≡ ψ(0) > 0; hence,
ψ(t)x∗(t) = ψ(0)t → ∞ as t → ∞, and the limit relation in (2.2) is violated.

Suppose ψ0 > 0, or, equivalently, ψ0 = 1. Then, due to (1.4), we have

ψ(t) = ψ(0) −
∫ t

0

γ̇(s)e−sds.

The limit relation in (2.2) has the form limt→∞ tψ(t) = 0. Let us show that one can
define γ so that the latter relation is violated; i.e., for any ψ(0) ∈ R

1,

p(t) �→ 0 as t → ∞,(2.7)

where p(t) = tψ(t). We represent p(t) as follows:

p(t) = tψ(0) − t

∫ t

0

γ̇(s)e−sds = tψ(0) − t

[
γ(s)e−s|t0 +

∫ t

0

γ(s)e−sds

]

= tψ(0) − tγ(t)e−t + tγ(0) − tI(t),

where

I(t) =

∫ t

0

γ(s)e−sds.

Introducing ν(t) = γ(t)e−t, rewrite

I(t) =

∫ t

0

ν(s)ds;(2.8)

p(t) = tψ(0) − tν(t) + tν(0) − tI(t).(2.9)

Due to (2.6),

lim
t→∞

I(t) = I.(2.10)

Now let us specify the form of ν. For each natural k, we fix a positive εk < 1/2
and denote by Δk the εk-neighborhood of k. Clearly, Δk ∪ Δj = ∅ for k �= j. We set

ν(k) =
1

k
for k = 1, 2, . . . ;

ν(t) = 0 for t /∈ ∪∞
k=1 Δk;

ν(t) ∈
[
0,

1

k

]
for t ∈ Δk (k = 1, 2, . . .).

Moreover, we require that

∞∑
k=j

∫
Δk

ν(t)dt ≤ 1

j2
.(2.11)

This can be achieved, for example, by letting 2εk
k ≤ ak

k2 , where
∑∞

k=1 ak = 1, ak > 0.
Indeed, in this case

∞∑
k=j

∫
Δk

ν(t)dt ≤
∞∑
k=j

2εk
k

≤
∞∑
k=j

ak
k2

≤ 1

j2

∞∑
k=j

ak ≤ 1

j2
;
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i.e., (2.11) holds. Note that, for j = 1, the left-hand side in (2.11) equals I (see (2.6));
thus, (2.11) implies that assumption (2.6) holds.

Another fact following from (2.11) is that

lim
t→∞

t(I − I(t)) = 0.(2.12)

Indeed, by (2.8), I(j + εj) =
∑j

k=1

∫
Δk

ν(t)dt; hence, due to (2.11),

I − I(j + εj) =

∞∑
k=j+1

∫
Δk

ν(t)dt ≤ 1

(j + 1)2
.

For t ∈ [j + εj , j + 1 + εj+1], we have I(j + εj) ≤ I(t) ≤ I; therefore, for t ≥ 1,

0 ≤ I − I(t) ≤ 1

(j + 1)2
≤ 1

(t− εj+1)2
≤ 1

(t− 1/2)2
,

which yields (2.12). The given definition of ν is equivalent to defining γ by

γ(k) =
ek

k
for k = 1, 2, . . . ;

γ(t) = 0 for t /∈ ∪∞
k=1 Δk;(2.13)

γ(t) ∈
[
0,

ek

k

]
for t ∈ Δk (k = 1, 2, . . .)

and requiring (2.11). Let us show that assumption (A4) is satisfied. Let (u, x) be
an arbitrary admissible pair. By (2.4), t/2 ≤ x(t) ≤ t for all t ≥ 0. Hence, by the

definition of ν, we have ν(x(t)) ≤
(
t
2 − 1

)−1
= 2

(t−2) for all t > 2. Hence,

0 ≤ e−ρt max
u∈U

[(1 + γ(x(t))u] ≤ μ(t) = e−ρt +
2

(t− 2)
→ 0 as t → ∞.

Thus, the first condition in (A4) holds. Furthermore, introducing the integration
variable τ(t) = x(t), we get∫ ∞

T

e−t(1 + γ(x(t)))u(t)dt =

∫ ∞

x(T )

e−
∫ τ
0

1
u(t(s))ds(1 + γ(τ))dτ

≤
∫ ∞

x(T )

e−τ (1 + γ(τ))dτ ≤ ω(T )

=

∫ ∞

T
2

e−t(1 + γ(t))dt → 0 as T → ∞.

Hence, the second condition in (A4) holds. We stated the validity of assumption (A4).
By the definition of γ, for t ∈ Δk, k = 1, 2, . . . , we have

0 ≤ tν(t) ≤ k + εk
k

≤ 1 +
1

k
.

Hence,

0 ≤ tν(t) ≤ 2 for all t ≥ 0;(2.14)
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i.e., the function tν(t) is bounded. Furthermore, kν(k) = 1, and due to (2.13) for
any sequence tk → ∞ such that tk ∈ [k, k + 1] \ (Δk ∪ Δk+1), we have tkν(tk) = 0.
Therefore, limt→∞ tν(t) does not exist.

Using ν(0) = 0, we specify (2.9) as

p(t) = tψ(0) − tν(t) − tI(t).(2.15)

If ψ(0) > I, then, in view of (2.10), limt→∞ t(ψ(0) + I(t)) = ∞, which implies
limt→∞ p(t) = ∞, since tν(t) is bounded. Similarly, we find that if ψ(0) < I, then
limt→∞ p(t) = −∞. Let, finally, ψ(0) = I. Then,

lim
t→∞

t(ψ(0) − I(t)) = lim
t→∞

t(I − I(t)) = 0,

as follows from (2.12). Thus, in the right-hand side of (2.15) the sum of the first and
third terms has the zero limit at infinity, whereas the second term, tν(t), has no limit
at infinity, as we noted earlier. Consequently, p(t), the left-hand side in (2.15), has
no limit at infinity. We showed that (2.7) holds for every ψ(0) ∈ R

1.
Thus, the limit relation in the transversality conditions (2.2) is violated. Note that

setting ψ0 = 1 and ψ(0) = I, we make the adjoint variable ψ satisfy the transversality
conditions (2.1). Indeed, in this case ψ(t) = p(t)/t = ψ(0)− I− ν(t) for all t > 0, and
the conditions ψ(0) = I and (2.14) imply that ψ(t) → 0 as t → ∞.

Examples 1 and 2 show that assumptions (A1)–(A4) are insufficient for the valid-
ity of the core Pontryagin maximum principle together with the transversality condi-
tions (2.1) or (2.2) as necessary conditions of optimality in problem (P). Below, we
find mild additional assumptions that guarantee that necessary conditions of optimal-
ity in problem (P) include the core Pontryagin maximum principle and transversality
conditions of type (2.1) or of type (2.2).

3. Basic constructions. In this section, we define a sequence of finite-horizon
optimal control problems {(Pk)} (k = 1, 2, . . .) with horizons Tk → ∞; we treat
problems (Pk) as approximations to the infinite-horizon problem (P).

Let us describe the data defining problems (Pk) (k = 1, 2, . . .). Given a control
u∗ optimal in problem (P), we fix a sequence of continuously differentiable functions
zk : [0,∞) → R

m (k = 1, 2, . . .) and a sequence of positive σk (k = 1, 2, . . .) such that

sup
t∈[0,∞)

‖zk(t)‖ ≤ max
u∈U

‖u‖ + 1;(3.1)

∫ ∞

0

e−(ρ+1)t‖zk(t) − u∗(t)‖2dt ≤ 1

k
;(3.2)

sup
t∈[0,∞)

‖żk(t)‖ ≤ σk < ∞;(3.3)

σk → ∞ as k → ∞

(obviously, such sequences exist). Next, we take a monotonically increasing sequence
of positive Tk such that Tk → ∞ as k → ∞ and

ω(Tk) ≤
1

k(1 + σk)
for all k = 1, 2, . . . ;(3.4)

recall that ω is defined in (A4). For every k = 1, 2, . . . , we define problem (Pk) as
follows.
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Problem (Pk):

ẋ(t) = f(x(t), u(t)), u(t) ∈ U ;

x(0) = x0;

maximize Jk(x, u) =

∫ Tk

0

e−ρtg(x(t), u(t))dt− 1

1 + σk

∫ Tk

0

e−(ρ+1)t‖u(t) − zk(t)‖2dt.

By Theorem 9.3.i of [19], for every k = 1, 2, . . . there exists an admissible pair (uk, xk)
optimal in problem (Pk).

The above-defined sequence of problems, {(Pk)} (k = 1, 2, . . .), will be said to be
associated with the control u∗.

We are ready to formulate our basic approximation lemma.

Lemma 1. Let assumptions (A1)–(A4) be satisfied; let u∗ be a control optimal in
problem (P); let {(Pk)} (k = 1, 2, . . .) be the sequence of problems associated with u∗;
and for every k = 1, 2, . . . , let uk be a control optimal in problem (Pk). Then, for
every T > 0, it holds that uk → u∗ in L2([0, T ],Rm) as k → ∞.

Proof. Take a T > 0. Let k1 be such that Tk1
≥ T . For every k ≥ k1, we have

Jk(xk, uk) =

∫ Tk

0

e−ρt

[
g(xk(t), uk(t)) − e−t ‖uk(t) − zk(t)‖2

1 + σk

]
dt

≤
∫ Tk

0

e−ρtg(xk(t), uk(t))dt−
e−(ρ+1)T

1 + σk

∫ T

0

‖uk(t) − zk(t)‖2dt,

where xk is the trajectory corresponding to uk. Hence, introducing the trajectory x∗
corresponding to u∗ and taking into account the optimality of uk in problem (Pk),
optimality of u∗ in problem (P), assumption (A4), and conditions (3.2) and (3.4), we
find that, for all sufficiently large k,

e−(ρ+1)T

1 + σk

∫ T

0

‖uk(t) − zk(t)‖2dt ≤
∫ Tk

0

e−ρtg(xk(t), uk(t))dt− Jk(x∗, u∗)

≤
∫ Tk

0

e−ρtg(xk(t), uk(t))dt− J(x∗, u∗)

+ ω(Tk) +

∫ ∞

0

e−(ρ+1)t

1 + σk
‖u∗(t) − zk(t)‖2dt

≤
∫ Tk

0

e−ρtg(xk(t), uk(t))dt− J(x∗, u∗) +
2

k(1 + σk)

≤ J(xk, uk) − J(x∗, u∗) +
3

k(1 + σk)
≤ 3

k(1 + σk)
.

Hence,

‖uk − zk‖2
L2 ≤ 3e(ρ+1)T

k
.
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Then, in view of (3.2),

‖uk − u∗‖L2 ≤
(∫ T

0

‖u∗(t) − zk(t)‖2dt

)1/2

+

(∫ T

0

‖uk(t) − zk(t)‖2dt

)1/2

≤
(
e(ρ+1)T

k

)1/2

+

(
3e(ρ+1)T

k

)1/2

= (1 +
√

3)

(
e(ρ+1)T

k

)1/2

.

Therefore, for any ε > 0, there exists a k2 ≥ k1 such that ‖uk − u∗‖L2 ≤ ε for all
k ≥ k2.

Now, based on Lemma 1, we derive a limit form of the classical Pontryagin maxi-
mum principle for problems (Pk) (k = 1, 2, . . .), which leads us to the core Pontryagin
maximum principle for problem (P).

We use the following formulation of the Pontryagin maximum principle [34] for
problems (Pk) (k = 1, 2, . . .). Let an admissible pair (uk, xk) be optimal in prob-
lem (Pk) for some k. Then there exists a pair (ψk, ψ

0
k) of adjoint variables associated

with (uk, xk) such that (uk, xk) satisfies relations (1.4)–(1.6) of the core Pontryagin
maximum principle (in problem (Pk)) together with (ψk, ψ

0
k) and, moreover, ψ0

k > 0
and the transversality condition

ψk(Tk) = 0(3.5)

holds; recall that ψk is a solution on [0, Tk] to the adjoint equation associated with
(uk, xk) in problem (Pk), i.e.,

ψ̇k(t)
a.e.
= −

[
∂f(xk(t), uk(t))

∂x

]∗
ψk(t) − ψ0e−ρt ∂g(xk(t), uk(t))

∂x
,(3.6)

and the core Pontryagin maximum principle satisfied by (uk, xk), together with
(ψk, ψ

0
k), implies that the following maximum condition holds:

Hk(xk(t), t, uk(t), ψk(t), ψ
0
k)

a.e.
= Hk(xk(t), t, ψk(t), ψ

0
k);(3.7)

here Hk and Hk, given by

Hk(x, t, u, ψ, ψ
0) = 〈f(x, u), ψ〉 + ψ0e−ρtg(x, u) − ψ0e−(ρ+1)t ‖u− zk(t)‖2

1 + σk
;(3.8)

Hk(x, t, ψ, ψ
0) = sup

u∈U
Hk(x, t, u, ψ, ψ

0),

are, respectively, the Hamilton–Pontryagin function and the Hamiltonian in prob-
lem (Pk); note that in [34] it is shown that (3.6) and (3.7) imply

d

dt
Hk(xk(t), t, ψk(t), ψ

0
k)

a.e.
=

∂Hk

∂t
(xk(t), t, uk(t), ψk(t), ψ

0
k).(3.9)

Lemma 2. Let assumptions (A1)–(A4) be satisfied; let (u∗, x∗) be an admissible
pair optimal in problem (P); let {(Pk)} (k = 1, 2, . . .) be the sequence of problems
associated with u∗; for every k = 1, 2, . . . , let (uk, xk) be an admissible pair optimal
in problem (Pk); for every k = 1, 2, . . . , let (ψk, ψ

0
k) be a pair of adjoint variables

associated with (uk, xk) in problem (Pk) such that (uk, xk) satisfies relations (3.6)



PROBLEMS WITH INFINITE TIME HORIZONS 1105

and (3.7) of the core Pontryagin maximum principle in problem (Pk) together with
(ψk, ψ

0
k); and for every k = 1, 2, . . . , one has ψ0

k > 0, and the transversality condition
(3.5) holds. Finally, let the sequences {ψk(0)} and {ψ0

k} be bounded and

‖ψk(0)‖ + ψ0
k ≥ a (k = 1, 2, . . .)(3.10)

for some a > 0. Then there exists a subsequence of {(uk, xk, ψk, ψ
0
k)}, denoted again

as {(uk, xk, ψk, ψ
0
k)}, such that

(i) for every T > 0,

uk(t) → u∗(t) for a.a. t ∈ [0, T ] as k → ∞;(3.11)

xk → x∗ uniformly on [0, T ] as k → ∞;(3.12)

(ii)

ψ0
k → ψ0 as k → ∞(3.13)

and for every T > 0,

ψk → ψ uniformly on [0, T ] as k → ∞,(3.14)

where (ψ,ψ0) is a nontrivial pair of adjoint variables associated with (u∗, x∗);
(iii) (u∗, x∗) satisfies relations (1.4)–(1.6) of the core Pontryagin maximum prin-

ciple in problem (P) together with (ψ,ψ0);
(iv) the stationarity condition holds:

H(x∗(t), t, ψ(t), ψ0) = ψ0ρ

∫ ∞

t

e−ρsg(x∗(s), u∗(s))ds for all t ≥ 0.(3.15)

Proof. Lemma 1 and the Ascoli theorem (see, e.g., [19]) imply that, selecting a
subsequence if needed, we get (3.11) and (3.12) for every T > 0. By assumption,
the sequence {ψ0

k} is bounded; therefore, selecting a subsequence if needed, we obtain
(3.13) for some ψ0 ≥ 0.

Now, our goal is to select a subsequence of {(uk, xk, ψk)} such that for every
T > 0, (3.14) holds and (ψ,ψ0) is a nontrivial pair of adjoint variables associated
with (u∗, x∗) (we do not change notation after the selection of a subsequence).

Consider the sequence {ψk} restricted to [0, T1]. Observing (3.6), taking into
account the boundedness of the sequence {ψk(0)} (see the assumptions of this lemma),
using the Gronwall lemma (see, e.g., [25]), and selecting if needed a subsequence
denoted further as {ψ1

k}, we get that ψ1
k → ψ1 uniformly on [0, T1] and ψ̇1

k → ψ̇1

weakly in L1[0, T1] as k → ∞ for some absolutely continuous ψ1 : [0, T1] → R
n; here

and in what follows L1[0, T ] = L1([0, T ],Rn) (T > 0).
Now consider the sequence {ψ1

k} restricted to [0, T2]. Taking if necessary a sub-

sequence {ψ2
k} of {ψ1

k}, we get that ψ2
k → ψ2 uniformly on [0, T2] and ψ̇2

k → ψ̇2

weakly in L1[0, T2] as k → ∞ for some absolutely continuous ψ2 : [0, T2] → R
n whose

restriction to [0, T1] coincides with ψ1.
Repeating this procedure sequentially for [0, Ti] with i = 3, 4, . . . , we find that

there exist absolutely continuous ψi : [0, Ti] → R
n (i = 1, 2, . . .) and ψi

k : [0, Ti] → R
n

(i, k = 1, 2, . . .) such that for every i = 1, 2, . . . , the restriction of ψi+1 to [0, Ti]
is ψi, the restriction of the sequence {ψi+1

k } to [0, Ti] is a subsequence of {ψi
k}, and,

moreover, ψi
k → ψ uniformly on [0, Ti] and ψ̇i

k → ψ̇i weakly in L1[0, Ti] as k → ∞.
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Define ψ : [0,∞) �→ R
n so that the restriction of ψ to [0, Ti] is ψi for every

i = 1, 2, . . . . Clearly, ψ is absolutely continuous. Furthermore, without changing
notation, for every i = 1, 2, . . . and every k = 1, 2, . . . , we extend ψi

k to [0,∞) so

that the extended function is absolutely continuous and, moreover, the family ψ̇i
k

(i, k = 1, 2, . . .) is bounded in L1[0, T ] for every T > 0. Since Ti → ∞ as i → ∞, for
every T > 0, we get that ψk

k converges to ψ uniformly on [0, T ] and ψ̇k
k → ψ̇ weakly

in L1[0, T ] as k → ∞. Simplifying notation, we again write ψk instead of ψk
k and note

that for ψk, (3.6) holds (k = 1, 2, . . .). Thus, for every T > 0, we have (3.14) and also
get that ψ̇k → ψ̇ weakly in L1[0, T ] as k → ∞. These convergences together with
equalities (3.6) and convergences (3.11) and (3.12) (holding for every T > 0) yield
that ψ solves the adjoint equation (1.4). Thus, (ψ,ψ0) is a pair of adjoint variables
associated with (u∗, x∗) in problem (P). The nontriviality of (ψ,ψ0) (see (1.5)) is
ensured by (3.10).

For every k = 1, 2, . . . , consider the maximum condition (3.7) and specify it as

〈f(xk(t), uk(t)), ψk(t)〉 + ψ0
ke

−ρtg(xk(t), uk(t)) − ψ0
ke

−(ρ+1)t ‖uk(t) − zk(t)‖2

1 + σk

a.e.
= max

u∈U

[
〈f(xk(t), u), ψk(t)〉 + ψ0

ke
−ρtg(xk(t), u) − ψ0

ke
−(ρ+1)t ‖u− zk(t)‖2

1 + σk

]
.

Taking into account that Tk → ∞ and σk → ∞ as k → ∞ and using convergences
(3.13), (3.14), (3.11), and (3.12) (holding for every T > 0), we obtain the maximum
condition (1.6) as the limit of (3.7). Thus, (u∗, x∗) satisfies the core Pontryagin
maximum principle together with the pair (ψ,ψ0) of adjoint variables associated with
(u∗, x∗).

Now we specify (3.9) using the form of Hk (see (3.9)). We get

d

dt
Hk(xk(t), t, ψk(t), ψ

0
k)

a.e.
=

∂Hk

∂t
(xk(t), t, uk(t), ψk(t), ψ

0
k)

a.e.
= −ψ0

kρe
−ρt

[
g(xk(t), uk(t))+(ρ+1)e−(ρ+1)t ‖uk(t)−zk(t)‖2

1 + σk

]

+ 2ψ0
ke

−(ρ+1)t 〈uk(t) − zk(t), żk(t)〉
1 + σk

.

Take an arbitrary t > 0 and an arbitrary k such that Tk > t and integrate the last
equality over [t, Tk] taking into account the boundary condition (3.5). We arrive at

Hk(xk(t), t, ψk(t), ψ
0
k) = ψ0

ke
−ρTk max

u∈U

[
g(xk(Tk), u) − e−ρTk

‖u− zk(Tk)‖2

1 + σk

]

− ψ0
kρ

∫ Tk

t

e−ρsg(xk(s), uk(s))ds

+ ψ0
k(ρ + 1)

∫ Tk

t

e−(ρ+1)s ‖uk(s) − zk(s)‖2

1 + σk
ds

+ 2ψ0
k

∫ Tk

t

e−(ρ+1)s 〈uk(s) − zk(s), żk(s)〉
1 + σk

ds.
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Now, we take the limit using convergences (3.13), (3.14), (3.11), and (3.12) (holding
for every T > 0) and also estimates (3.1)–(3.3). We end up with (3.15).

Corollary 1 below specifies Lemma 2 for the case where the Pontryagin maximum
principle for problems (Pk) (k = 1, 2, . . .) is taken in the normal form. We use the
following formulation of the normal-form Pontryagin maximum principle for prob-
lems (Pk) (k = 1, 2, . . .). Let an admissible pair (uk, xk) be optimal in problem (Pk)
for some k. Then there exists an adjoint variable ψk associated with (uk, xk) such
that (uk, xk) satisfies the normal-form core Pontryagin maximum principle (in prob-
lem (Pk)) together with ψk, and the transversality condition (3.5) holds; here ψk is
a solution on [0, Tk] of the normal-form adjoint equation associated with (uk, xk) in
problem (Pk), i.e.,

ψ̇k(t)
a.e.
= −

[
∂f(xk(t), uk(t))

∂x

]∗
ψk(t) − e−ρt ∂g(xk(t), uk(t))

∂x
,(3.16)

and the fact that (uk, xk) satisfies the normal-form core Pontryagin maximum prin-
ciple, together with ψk, implies that the following maximum condition holds:

H̃k(xk(t), t, uk(t), ψ(t)) = H̃k(xk(t), t, ψk(t)) for a.a. t ∈ [0, Tk];(3.17)

here H̃k and H̃k, given by

H̃k(x, t, u, ψ) = 〈f(x, u), ψ〉 + e−ρtg(x, u) − e−(ρ+1)t ‖u− zk(t)‖2

1 + σk
;

H̃k(x, t, ψ) = sup
u∈Ũ

H̃k(x, t, ũ, ψ),

are, respectively, the normal-form Hamilton–Pontryagin function and normal-form
Hamiltonian in problem (Pk).

Corollary 1. Let assumptions (A1)–(A4) be satisfied; let (u∗, x∗) be an admis-
sible pair optimal in problem (P); let {(Pk)} (k = 1, 2, . . .) be the sequence of problems
associated with u∗; for every k = 1, 2, . . . , let (uk, xk) be an admissible pair optimal
in problem (Pk); and for every k = 1, 2, . . . , let ψk be an adjoint variable associ-
ated with (uk, xk) in problem (Pk) such that (uk, xk) satisfies relations (3.16) and
(3.17) of the normal-form core Pontryagin maximum principle in problem (Pk) to-
gether with ψk, and the transversality condition (3.5) holds. Finally, let the sequence
{ψk(0)} be bounded. Then there exists a subsequence of {(uk, xk, ψk)}, denoted again
as {(uk, xk, ψk)}, such that

(i) for every T > 0, (3.11) and (3.12) hold;
(ii) for every T > 0, (3.14) holds where ψ is an adjoint variable associated with

(u∗, x∗) in problem (P);
(iii) (u∗, x∗) satisfies relations (1.7) and (1.8) of the normal-form core Pontryagin

maximum principle in problem (P) together with ψ;
(iv) the normal-form stationarity condition holds:

H̃(x∗(t), t, ψ(t)) = ρ

∫ ∞

t

e−ρsg(x∗(s), u∗(s))ds for all t ≥ 0.(3.18)

Corollary 2. Let assumptions (A1)–(A4) be satisfied and let (u∗, x∗) be an
admissible pair optimal in problem (P). Then there exists a pair (ψ,ψ0) of adjoint
variables associated with (u∗, x∗) such that

(i) (u∗, x∗) satisfies relations (1.4)–(1.6) of the core Pontryagin maximum prin-
ciple together with (ψ,ψ0), and

(ii) (u∗, x∗) and (ψ,ψ0) satisfy the stationarity condition (3.15).
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Proof. Let {(Pk)} (k = 1, 2, . . .) be the sequence of problems associated with u∗,
and for every k = 1, 2, . . . , let (uk, xk) be an admissible pair optimal in problem (Pk).
In accordance with the classical formulation of the Pontryagin maximum principle,
for every k = 1, 2, . . . , there exists a pair (ψk, ψ

0
k) of adjoint variables associated

with (uk, xk) in problem (Pk) such that (uk, xk) satisfies the core Pontryagin max-
imum principle together with (ψk, ψ

0
k) and for every k = 1, 2, . . . , ψ0

k > 0, and the
transversality condition (3.5) holds.

Since ψ0
k > 0, the value ck = ‖ψk(0)‖ + ψ0

k is positive. We keep the notation ψk

and ψ0
k for the normalized elements ψk/ck and ψ0

k/ck, thus achieving ‖ψk(0)‖+ψ0
k = 1

and, clearly, preserving the transversality condition (3.5) and the fact that (uk, xk)
satisfies the core Pontryagin maximum principle (in problem (Pk)) together with
(ψk, ψ

0
k) (k = 1, 2, . . .). Now, the sequences {ψk(0)} and {ψ0

k} are bounded and (3.10)
holds with a = 1. Thus, the sequence {(uk, xk, ψk, ψ

0
k)} satisfies all the assumptions of

Lemma 2. By Lemma 2 there exists a subsequence of {(uk, xk, ψk, ψ
0
k)}, denoted again

as {(uk, xk, ψk, ψ
0
k)}, such that for the pairs (ψk, ψ

0
k) of adjoint variables, convergences

(3.13) and (3.14) hold with an arbitrary T > 0; the limit element (ψ,ψ0) is a nontrivial
pair of adjoint variables associated with (u∗, x∗) in problem (P); (u∗, x∗) satisfies the
core Pontryagin maximum principle in problem (P) together with (ψ,ψ0); and, finally,
(u∗, x∗) and (ψ,ψ0) satisfy the stationarity condition (3.15).

It is easy to see that in the framework of problem (P) the necessary optimality
conditions given by Corollary 2 are equivalent to those stated in [31]. Indeed, relation
(3.15) implies the asymptotic stationarity condition introduced in [31]:

lim
t→∞

H(x∗(t), t, ψ(t), ψ0) = 0;(3.19)

on the other hand, if in problem (P), (u∗, x∗) satisfies the core Pontryagin maximum
principle together with (ψ,ψ0), then (3.19) implies (3.15). One can, however, an-
ticipate that beyond setting (P) (for example, for problems with nonsmooth data),
condition (3.15) complementing the core Pontryagin maximum principle can be sub-
stantially stronger than (3.19).

Note that in the problem considered in Example 1 the usage of the core Pontryagin
maximum principle (Theorem 1) does not lead to the specification of an optimal
control, whereas it can be shown that the latter control is determined uniquely if one
applies the core Pontryagin maximum principle together with (3.15) (Corollary 2).

As an example given in [31] shows, under the assumptions of Corollary 2, the
nontriviality condition (1.5) can hold with ψ0 = 0; i.e., problem (P) can be abnormal.
Below we find additional assumptions excluding abnormality of problem (P).

4. Normal-form maximum principle with positive adjoint variables. In
this section, we suggest an assumption that excludes abnormality of problem (P), i.e.,
ensures that for problem (P), the normal-form Pontryagin maximum principle (see
section 1) provides a necessary condition of optimality. Moreover, the basic result
of this section formulated in Theorem 2 states that all the coordinates of the adjoint
variable ψ in the Pontryagin maximum principle are necessarily positive-valued. Based
on Theorem 2, we formulate conditions ensuring that the core Pontryagin maximum
principle is complemented by the transversality conditions discussed in section 2. The
proof of Theorem 2 is based on Corollary 1.

In what follows, the notation a > 0 (respectively, a ≥ 0) for a vector a ∈ R
n

designates that all coordinates of a are positive (respectively, nonnegative). Similarly,
the notation A > 0 (respectively, A ≥ 0) for a matrix A designates that all elements
of A are positive (respectively, nonnegative).
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The assumption complementing (A1)–(A4) is the following.
(A5) For every admissible pair (u, x) and for a.a. t ≥ 0, one has

∂g(x(t), u(t))

∂x
> 0 and

∂f i(x(t), u(t))

∂xj
≥ 0 for all i, j : i �= j.

In typical models of regulated economic growth the coordinates of the state vec-
tor x represent positive-valued production factors. Normally it is assumed that the
utility flow and the rate of growth of every production factor increase as all the pro-
duction factors grow. In terms of problem (P), this implies that the integrand g(x, u)
in the goal functional (1.3), together with every coordinate of the right-hand side
f(x, u) of the system equation (1.1), is monotonically increasing in every coordinate
of x. These monotonicity properties (specified so that g(x, u) is strictly increasing in
every coordinate of x) imply that assumption (A5) is satisfied. Note that the utility
flow and the rates of growth of the production factors are normally positive, implying
g(x, u) > 0 and f(x, u) > 0. The latter assumptions as well as the assumption x > 0
mentioned earlier appear in different combinations in the formulations of the results
of this section.

The next theorem strengthens Theorem 1 under assumption (A5) and some pos-
itivity assumptions for f .

Theorem 2. Let assumptions (A1)–(A5) be satisfied. There exists a u0 ∈ U such
that f(x0, u0) > 0, and for every admissible pair (u, x), it holds that f(x(t), u(t)) ≥ 0
for a.a. t ≥ 0. Let (u∗, x∗) be an admissible pair optimal in problem (P). Then there
exists an adjoint variable ψ associated with (u∗, x∗) such that

(i) (u∗, x∗) satisfies relations (1.7) and (1.8) of the normal-form core Pontryagin
maximum principle together with ψ;

(ii) (u∗, x∗) and ψ satisfy the normal-form stationarity condition (3.18);
(iii)

ψ(t) > 0 for all t ≥ 0.(4.1)

Proof. Let {(Pk)} (k = 1, 2, . . .) be the sequence of problems associated with u∗
and for every k = 1, 2, . . . , let (uk, xk) be an admissible pair optimal in problem (Pk).
In accordance with the classical formulation of the normal-form Pontryagin maximum
principle, for every k = 1, 2, . . . , there exists an adjoint variable ψk associated with
(uk, xk) in problem (Pk) such that (uk, xk) satisfies the normal-form core Pontryagin
maximum principle (in problem (Pk)) together with ψk and for every k = 1, 2, . . . ,
the transversality condition (3.5) holds.

Observing assumption (A5), the adjoint equation resolved by ψk (see (3.16)), and
transversality condition (3.5) for ψk, we easily find that ψk(t) > 0 for all t sufficiently
close to Tk. Let us show that

ψk(t) > 0 for all t ∈ [0, Tk).(4.2)

Suppose the contrary. Then, for some k, there exists a τ ∈ [0, Tk) such that at
least one coordinate of the vector ψk(τ) vanishes. Let ξ be the maximum of all such
τ ∈ [0, Tk), and let i ∈ {1, 2, . . . , n} be such that ψi

k(ξ) = 0. Then,

ψk(t) > 0 for all t ∈ (ξ, Tk)(4.3)

and for all t ∈ [ξ, Tk], we have

ψi
k(t) = −

∫ t

ξ

〈
∂f i(xk(s), uk(s))

∂x
, ψk(s)

〉
ds−

∫ t

ξ

e−ρs ∂g
i(xk(s), uk(s))

∂x
ds.(4.4)
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The latter equation and assumption (A5) imply that there is an ε > 0 such that
ψi
k(t) < 0 for all t ∈ (ξ, ξ+ε), which contradicts (4.3). The contradiction proves (4.2).

Let us show that the sequence {ψk(0)} is bounded. The equation for ψk (see
(3.16)) and maximum condition (3.17) yield

d

dt
H̃k(xk(t), t, ψk(t))

a.e.
=

∂H̃k

∂t
(xk(t), t, ũk(t), ψk(t))

a.e.
= −ρe−ρtg(xk(t), uk(t)) + (ρ + 1)e−(ρ+1)t ‖uk(t) − zk(t)‖2

1 + σk

+ 2e−(ρ+1)t 〈uk(t) − zk(t), żk(t)〉
1 + σk

.

Integrating over [0, Tk] and using the transversality condition (3.5), we arrive at

H̃k(x0, 0, ψk(0)) = e−ρTk max
u∈U

[
g(xk(Tk), u) − e−Tk

‖u− zk(Tk)‖2

1 + σk

]

+ ρ

∫ Tk

0

e−ρtg(xk(t), uk(t))dt

− (ρ + 1)

∫ Tk

0

e−(ρ+1)t ‖uk(t) − zk(t)‖2

1 + σk
dt

− 2

∫ Tk

0

e−(ρ+1)t 〈uk(t) − zk(t), żk(t)〉
1 + σk

dt.

This, together with (3.1)–(3.3), implies that H̃k(x0, 0, ψk(0)) ≤ M for some M > 0
and all k = 1, 2, . . . . Hence, by virtue of

〈f(x0, u0), ψk(0)〉 + g(x0, u0) −
‖u0 − zk(0)‖2

1 + σk
≤ H̃k(x0, 0, ψk(0)),

we have

〈f(x0, u0), ψk(0)〉 ≤ M + |g(x0, u0)| + (2|U | + 1)2,

where |U | = maxu∈U ‖u‖. The latter estimate, assumption f(x0, u0) > 0, and (4.2)
yield that the sequence {ψk(0)} is bounded.

Therefore, the sequence {(uk, xk, ψk)} satisfies all the assumptions of Corol-
lary 1. By Corollary 1, there exists a subsequence of {(uk, xk, ψk)}, denoted again as
{(uk, xk, ψk)}, such that for every T > 0, one has convergence (3.14) for the adjoint
variables ψk, where the limit element ψ is an adjoint variable associated with (u∗, x∗)
in problem (P); (u∗, x∗) satisfies the normal-form core Pontryagin maximum principle
in problem (P) together with ψ; and, finally, (u∗, x∗) and ψ satisfy the normal-form
asymptotic stationarity condition (3.18). Thus, for (u∗, x∗) and ψ, statements (i)
and (ii) are proved.

From (3.14) and (4.2) it follows that ψ(t) ≥ 0 for all t ≥ 0. Assumption (A5) and
the fact that ψ solves the adjoint equation (1.7) imply (4.1), thus proving (iii).

Now, we formulate conditions coupling the normal-form core Pontryagin maxi-
mum principle and the transversality conditions discussed in section 2.
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Corollary 3. Let the assumptions of Theorem 2 be satisfied and

f(x∗(t), u∗(t)) ≥ a1 for a.a. t ≥ 0,(4.5)

where a1 > 0. Then there exists an adjoint variable ψ associated with (u∗, x∗) such
that statements (i), (ii), and (iii) of Theorem 2 hold true and, moreover, ψ satisfies
the transversality condition

lim
t→∞

ψ(t) = 0.(4.6)

Proof. By Theorem 2, there exists an adjoint variable ψ associated with (u∗, x∗)
such that statements (i), (ii), and (iii) of Theorem 2 hold true. Let us prove (4.6).
From (3.15) and (4.5) we get

lim
t→∞

〈a1, ψ(t)〉 ≤ lim
t→∞

max
u∈U

〈f(x∗(t), u), ψ(t)〉 = 0;

the latter, together with (4.1), implies (4.6).
Corollary 4. Let the assumptions of Theorem 2 be satisfied, and let

x0 ≥ 0;(4.7)

g(x∗(t), u∗(t)) ≥ 0 for a.a. t ≥ 0;(4.8)

and

∂f(x∗(t), u∗(t))

∂x
≥ A for a.a. t ≥ 0,(4.9)

where A is a matrix of order n such that A > 0. Then there exists an adjoint variable ψ
associated with (u∗, x∗) such that statements (i), (ii), and (iii) of Theorem 2 hold true
and, moreover, ψ satisfies the transversality condition

lim
t→∞

〈x∗(t), ψ(t)〉 = 0.(4.10)

Proof. By Theorem 2, there exists an adjoint variable ψ associated with (u∗, x∗)
such that statements (i), (ii), and (iii) of Theorem 2 hold true. Let us prove (4.10).
The system equation (1.1) and normal-form adjoint equation (1.7) yield

d

dt
〈x∗(t), ψ(t)〉 = 〈f(x∗(t), u∗(t)), ψ(t)〉(4.11)

−
〈
x∗(t),

[
∂f(x∗(t), u∗(t))

∂x

]∗
ψ(t)

〉

− e−ρt

〈
x∗(t),

∂g(x∗(t), u∗(t))

∂x

〉
for a.a. t ≥ 0.

From (4.7), assumption (A5), and (4.8), it follows that

−e−ρt

〈
x∗(t),

∂g(x∗(t), u∗(t))

∂x

〉
≤ 0 ≤ e−ρtg(x∗(t), u∗(t)).
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Taking this into account and using assumption (A5), the normal-form maximum con-
dition (1.8), and assumption (4.9), we continue (4.11) as follows:

d

dt
〈x∗(t), ψ(t)〉 ≤ 〈f(x∗(t), u∗(t)), ψ(t)〉

−
〈
x∗(t),

[
∂f(x∗(t), u∗(t))

∂x

]∗
ψ(t)

〉
+ e−ρtg(x∗(t), u∗(t))

≤ −〈Ax∗(t), ψ(t)〉 + H̃(x∗(t), t, ψ(t)) for a.a. t ≥ 0.

Therefore, by (4.9), for some θ > 0, we have

d

dt
〈x∗(t), ψ(t)〉 ≤ −θ〈x∗(t), ψ(t)〉 + α(t),

where

α(t) = H̃(x∗(t), t, ψ(t)) → 0 as t → ∞

(see (3.18)). Then, taking into account (4.7) and (4.1), we get

0 ≤ 〈x∗(t), ψ(t)〉 ≤ e−θt〈x0, ψ(0)〉 + e−θt

∫ t

0

eθsα(s)ds.(4.12)

Furthermore,

α̇(t) =
d

dt
H̃(x∗(t), t, ψ(t)) =

∂

∂t
H̃(x∗(t), t, u∗(t), ψ(t))

= −ρe−ρtg(x∗(t), u∗(t)) ≤ 0 for a.a. t ≥ 0

(here we used (4.8)). Therefore,

∫ t

0

eθsα(s)ds =
1

θ
[eθtα(t) − α(0)] +

1

θ

∫ t

0

eθsα̇(s)ds ≤ 1

θ
(eθtα(t) − α(0)).

Substituting this estimate into (4.12), we get

0 ≤ 〈x∗(t), ψ(t)〉 ≤ e−θt〈x0, ψ(0)〉 + e−θt 1

θ
[eθtα(t) − α(0)] → 0 as t → ∞.

The next theorem is, to a certain extent, an inversion of Theorem 2. It adjoins
works treating the Pontryagin maximum principle as a key component in sufficient
conditions of optimality. Within the finite-horizon setting, this line of analysis was
initiated in [30]. In [1] the approach was extended to infinite-horizon optimal control
problems.

Theorem 3. Let assumptions (A1)–(A5) be satisfied, x0 ≥ 0, and for every
admissible pair (u, x), it holds that f(x(t), u(t)) ≥ 0 and g(x(t), u(t)) ≥ 0 for a.a.
t ≥ 0. Let (u∗, x∗) be an admissible pair satisfying (4.9) with some A > 0, and there
exists an adjoint variable ψ associated with (u∗, x∗) such that statements (i), (ii),
and (iii) of Theorem 2 hold true. Finally, let the set G be convex and the function
x �→ H̃(x, t, ψ(t)) : G �→ R

1 be concave for every t ≥ 0. Then, the admissible pair
(u∗, x∗) is optimal in problem (P).
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We omit the proof, which is similar to the proofs given in [2] and [36].
Combining Corollary 4 and Theorem 3, we arrive at the following optimality

criterion for problem (P).
Corollary 5. Let assumptions (A1)–(A5) be satisfied, x0 ≥ 0, and there exists

a u0 ∈ U such that f(x0, u0) > 0. For every admissible pair (u, x) it holds that
f(x(t), u(t)) ≥ 0, g(x(t), u(t)) ≥ 0, and ∂f(x(t), u(t))/∂x ≥ A for a.a. t ≥ 0 with some
A > 0. Let, finally, the set G be convex and the function x �→ H̃(x, t, ψ) : G �→ R

1

be concave for every t ≥ 0 and for every ψ > 0. Then, an admissible pair (u∗, x∗)
is optimal in problem (P) if and only if there exists an adjoint variable ψ associated
with (u∗, x∗) such that statements (i), (ii), and (iii) of Theorem 2 hold true and the
transversality condition (4.10) is satisfied.

5. Case of dominating discount. In [12], infinite-horizon necessary optimal-
ity conditions involving the normal-form core Pontryagin maximum principle and an
integral characterization of global behavior of the adjoint variable were stated for
problems with sufficiently large (dominating) discount factors; in this work the con-
trol system was assumed to be linear. In this section, we consider problem (P) for
the nonlinear control system (1.1) and apply the approximation scheme developed
in section 3 in the case of the dominating discount. If system (1.1) is linear, the
basic statement of this section (Theorem 4) leads to a formulation of the Pontryagin
maximum principle (Corollary 7), which is stronger than that given in [12].

Following [12], we posit the next growth constraint on g.
(A6) There exist a κ ≥ 0 and an r ≥ 0 such that∥∥∥∥∂g(x, u)

∂x

∥∥∥∥ ≤ κ(1 + ‖x‖r) for all x ∈ G and for all u ∈ U.

Given an admissible pair (u, x), we denote by Y(u,x) the normalized fundamental
matrix for the linear differential equation

ẏ(t) =
∂f(x(t), u(t))

∂x
y(t);(5.1)

more specifically, Y(x,u) is the n× n matrix-valued function on [0,∞) whose columns

yi (i = 1, . . . , n) are the solutions to (5.1) such that yji (0) = δi,j (i, j = 1, . . . , n),
where δi,i = 1 and δi,j = 0 for i �= j; for every t ≥ 0, ‖Y(u,x)(t)‖ stands for the
standard norm of Y(u,x)(t) as a linear operator in R

n. Similarly, given an admissible
pair (u, x), we denote by Z(u,x) the normalized fundamental matrix for the linear
differential equation

ż(t) = −
[
∂f(x(t), u(t))

∂x

]∗
z(t).

Note that

[Z(u,x)(t)]
−1 = [Y(u,x)(t)]

∗.(5.2)

We introduce the following growth assumption.
(A7) There exist a λ ∈ R

1, a C1 ≥ 0, a C2 ≥ 0, and a C3 ≥ 0 such that for every
admissible pair (u, x), one has

‖x(t)‖ ≤ C1 + C2e
λt for all t ≥ 0

and

‖Y(u,x)(t)‖ ≤ C3e
λt for all t ≥ 0.
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It is easily seen that assumption (A6) implies that there exist a C4 ≥ 0 and a
C5 ≥ 0 such that for every admissible pair (u, x), one has

|g(x(t), u(t))| ≤ C4 + C5‖x(t)‖r+1 for all t ≥ 0.(5.3)

Furthermore, (A7) and (5.3) imply that

e−ρt|g(x(t), u(t))| ≤ C6e
−ρt + C7e

−(ρ−(r+1)λ)t

holds for every admissible pair (u, x) with C6 ≥ 0 and C7 ≥ 0 not depending on
(u, x). Therefore, if ρ > 0, then assumptions (A6) and (A7) imply (A4), provided
ρ > (r + 1)λ. The latter inequality implies that the discount parameter ρ in the goal
functional (1.3) dominates the growth parameters r and λ (see (A6) and (A7)), which
is a counterpart of a condition assumed in [12].

The proof of the next result is based on Corollary 1.
Theorem 4. Let assumptions (A1)–(A4), (A6), and (A7) be satisfied and let

ρ > (r + 1)λ. Let (u∗, x∗) be an admissible pair optimal in problem (P). Then there
exists an adjoint variable ψ associated with (u∗, x∗) such that

(i) (u∗, x∗) satisfies relations (1.7) and (1.8) of the normal-form core Pontryagin
maximum principle together with ψ;

(ii) (u∗, x∗) and ψ satisfy the normal-form stationarity condition (3.18);
(iii) for every t ≥ 0, the integral

I∗(t) =

∫ ∞

t

e−ρs[Z∗(s)]
−1 ∂g(x∗(s), u∗(s))

∂x
ds,(5.4)

where Z∗ = Z(u∗,x∗), converges absolutely and

ψ(t) = Z∗(t)I∗(t).(5.5)

Proof. Let {(Pk)} (k = 1, 2, . . .) be the sequence of problems associated with u∗
and for every k = 1, 2, . . . , let (uk, xk) be an admissible pair optimal in problem (Pk).
In accordance with the classical formulation of the normal-form Pontryagin maximum
principle, for every k = 1, 2, . . . , there exists an adjoint variable ψk associated with
(uk, xk) in problem (Pk) such that (uk, xk) satisfies the normal-form core Pontryagin
maximum principle (in problem (Pk)) together with ψk and for every k = 1, 2, . . . ,
the transversality condition (3.5) holds.

Let us show that the sequence {ψk(0)} is bounded. Using the standard represen-
tation of the solution ψk to the linear normal-form adjoint equation (3.16) with the
zero-boundary condition (3.5) through the fundamental matrix Zk = Z(uk,xk) of the
corresponding linear homogeneous equation (see, e.g., [25]), we get

ψk(0) =

∫ Tk

0

e−ρs[Zk(s)]
−1 ∂g(xk(s), uk(s))

∂x
ds.

Therefore, due to (5.2),

‖ψk(0)‖ ≤
∫ Tk

0

e−ρs‖Y(xk,uk)(s)‖
∥∥∥∥∂g(xk(s), uk(s))

∂x

∥∥∥∥ ds,
and due to assumptions (A6) and (A7),

‖ψk(0)‖ ≤
∫ Tk

0

(C8e
−(ρ−λ)s + C9e

−(ρ−(r+1)λ)s)ds,
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where C8 ≥ 0 and C9 ≥ 0 do not depend on k. Now the assumption ρ > (r + 1)λ
implies that the sequence {ψk(0)} is bounded.

Therefore, the sequence {(uk, xk, ψk)} satisfies all the assumptions of Corol-
lary 1. By Corollary 1, there exists a subsequence of {(uk, xk, ψk)}, denoted again
as {(uk, xk, ψk)}, such that for every T > 0, one has convergences (3.11) and (3.12)
for the admissible pairs (uk, xk) and convergence (3.14) for the adjoint variables ψk,
where the limit element ψ is an adjoint variable associated with (u∗, x∗) in prob-
lem (P); (u∗, x∗) satisfies the normal-form core Pontryagin maximum principle in
problem (P) together with ψ; and, finally, (u∗, x∗) and ψ satisfy the normal-form
stationarity condition (3.18). Thus, for (u∗, x∗) and ψ, statements (i) and (ii) are
proved.

Consider the integral I∗(t) in (5.4) for an arbitrary t ≥ 0. Convergences (3.11)
and (3.12) imply

Zk(s) → Z∗(s) for all s ≥ 0.(5.6)

Hence,

I∗(t) = lim
T→∞

∫ T

t

e−ρs[Z∗(s)]
−1 ∂g(x∗(s), u∗(s))

∂x
ds

= lim
T→∞

lim
k→∞

∫ T

t

e−ρs[Zk(s)]
−1 ∂g(xk(s), uk(s))

∂x
ds.

Furthermore, from (5.2) and (A7) it follows that for all s ≥ 0,

e−ρt‖[Zk(s)]
−1‖

∥∥∥∥∂g(xk(s), uk(s))

∂x

∥∥∥∥ ≤ C10e
−(ρ−λ)s + C11e

−(ρ−(r+1)λ)s

with some positive C10 and C11. Therefore, I∗(t) converges absolutely. Let us prove
(5.5). Integrate the adjoint equation for ψk (see (3.16)) over [t, Tk] assuming that k is
large enough (i.e., Tk ≥ t) and taking into account the transversality condition (3.5).
We get

ψk(t) = Zk(t)

∫ Tk

t

e−ρsZ−1
k (s)

∂g(xk(s), uk(s))

∂x
ds.(5.7)

Convergences (3.11) and (3.12) (holding for every T > 0) imply that xk(s) → x∗(s) for
all s ≥ 0 and uk(s) → u∗(s) for a.a. s ≥ 0. The latter convergences, convergences (5.6)
and (3.14), and the absolute convergence of the integral I∗(t) yield that the desired
equality (5.5) is the limit of (5.7) with k → ∞. Statement (iii) is proved.

Now we recall some facts from the stability theory (see [18], [20]).
Consider a linear differential equation

ẋ(t) = A(t)x(t).(5.8)

Here t ∈ [0,∞), x ∈ R
n, and the components of the real n× n matrix function A are

measurable and bounded.
Let x be a nonzero solution to (5.8). Then, a number

λ = lim sup
t→∞

1

t
ln ‖x(t)‖
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is said to be the Lyapunov characteristic number of x. Note that the characteristic
number λ was defined by A. M. Lyapunov with the opposite sign [29].

The Lyapunov characteristic number of any nonzero solution to (5.8) is finite.
The set of the characteristic numbers for all nonzero solutions to (5.8) is called the
Lyapunov spectrum of (5.8). The Lyapunov spectrum of (5.8) has no more than n el-
ements. A fundamental system x1, . . . , xn of solutions to (5.8) is said to be normal if
the sum of their characteristic numbers is minimal in the set of all fundamental sys-
tems of solutions to (5.8). A normal fundamental system always exists. If x1, . . . , xn is
a normal fundamental system of solutions to (5.8), then the characteristic numbers for
x1, . . . , xn cover the Lyapunov spectrum of (5.8) (for different xj and xk the Lyapunov
characteristic numbers may coincide). Any normal fundamental system contains the
same number ns of solutions to (5.8) with characteristic number λs, 1 ≤ s ≤ l, l ≤ n,
from the Lyapunov spectrum of (5.8).

Let σ =
∑l

s=1 nsλs be the sum of all numbers λ1, . . . , λl from the Lyapunov
spectrum of (5.8) taken according to their multiplicity. Equation (5.8) is called regular
if

σ = lim inf
t→∞

1

t

∫ t

0

trA(s)ds,

where trA(s) is the trace of matrix A(s). If (5.8) is regular, then for every ε > 0, the
Cauchy matrix (s, t) �→ K(s, t) for (5.8) satisfies

‖K(s, t)‖ ≤ κ1e
λ̄(s−t)+εs for all t ≥ 0 and all s ≥ t,(5.9)

where λ̄ is the maximum element in the Lyapunov spectrum of (5.8) and κ1 ≥ 0 is a
constant depending only on ε (see [20]).

Corollary 6. Let the assumptions of Theorem 4 be satisfied, let the linear
differential equation

ẏ(t) =
∂f(x∗(t), u∗(t))

∂x
y(t)(5.10)

be regular, and let λ ≥ λ̄, where λ̄ is the maximum element in the Lyapunov spectrum
of (5.10). Then for every ε > 0, it holds that

‖ψ(t)‖ ≤ κ2(e
−ρt+εt + e−(ρ−rλ)t+εt) for all t ≥ 0,(5.11)

where κ2 ≥ 0 is a constant depending only on ε.
Proof. By (5.5) and (5.2),

ψ(t) =

∫ ∞

t

e−ρs[[Y∗(t)]
∗]−1[Y∗(s)]

∗ ∂g(x∗(s), u∗(s))

∂x
ds

=

∫ ∞

t

e−ρs[Y∗(s)[Y∗(t)]
−1]∗

∂g(x∗(s), u∗(s))

∂x
ds

=

∫ ∞

t

e−ρs[K(s, t)]∗
∂g(x∗(s), u∗(s))

∂x
ds,

where Y∗ = Y(u∗,x∗) is a normalized fundamental solution matrix of (5.10) and
K(s, t) = Y∗(s)[Y∗(t)]

−1 is the Cauchy matrix of (5.10). Hence, by (A6), (A7), and
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(5.9), for any 0 < ε < min{ρ− λ, ρ− (r + 1)λ}, we have

‖ψ(t)‖ ≤
∫ ∞

t

e−ρs‖[K(s, t)]∗‖
∥∥∥∥∂g(x∗(s), u∗(s))

∂x

∥∥∥∥ ds
≤ C12

∫ ∞

t

e−ρseλ̄(s−t)eεs(1 + erλs)ds

≤ κ2(e
−ρt+εt + e−(ρ−rλ)t+εt),

where C12 ≥ 0 and κ2 ≥ 0 depend only on ε. Hence, estimate (5.11) holds for any
ε > 0.

Note that if ρ > 0, then Corollary 6 implies the validity of both (2.1) and (2.2).
Now, let us consider the situation where the control system (1.1) is linear and

stationary. Problem (P) is specified as follows.
Problem (P1):

ẋ(t) = Fx(t) + u(t), u(t) ∈ U ;(5.12)

x(0) = x0;

maximize J(x, u) =

∫ ∞

0

e−ρtg(x(t), u(t))dt;

here F is a real n× n matrix.
Let λF be the maximum of the real parts of the eigenvalues of F . Then λF is the

maximal number from the Lyapunov spectrum of the linear homogenous differential
equation corresponding to (5.12), and for any ε > 0, we have

‖eFt‖ ≤ C13e
(λF +ε)t for all t ≥ 0.

Here, eFt is the exponential of matrix F and C13 ≥ 0 is a constant depending only
on ε (see [20]). A standard representation of a solution to (5.12) through the matrix
exponential eFt (see [25]) implies that for any ε > 0 and for any admissible trajectory x
of system (5.12), it holds that

‖x(t)‖ ≤ C14 + C15e
(λF +ε)t for all t ≥ 0,

where C14 ≥ 0 and C15 ≥ 0 depend only on ε. Thus, for an arbitrary λ > λF ,
assumption (A7) is satisfied. The latter observation and the fact that every linear
stationary equation is regular [20] imply the following specification of Corollary 6 for
problem (P1).

Corollary 7. Let assumptions (A3), (A4), and (A6) be satisfied and let ρ >
(r + 1)λF . Let (u∗, x∗) be an admissible pair optimal in problem (P1). Then there
exists an adjoint variable ψ associated with (u∗, x∗) such that

(i) (u∗, x∗) satisfies relations (1.7) and (1.8) of the normal-form core Pontryagin
maximum principle together with ψ;

(ii) (u∗, x∗) and ψ satisfy the normal-form stationarity condition (3.18);
(iii) for every ε > 0, it holds that

‖ψ(t)‖ ≤ κ3(e
−ρt+εt + e−(ρ−rλF )t+εt) for all t ≥ 0,

where κ3 ≥ 0 is a constant depending only on ε.
Note that if ρ > 0, then Corollary 7 implies the validity of both (2.1) and (2.2).
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