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I. Introduction

As has often been pointed out in the scientific litera-
ture, a basic requirement for the successful operation of
any system is stability, i.e. that the system be insensitive
to small perturbations away from its desired or equilibrium
positions. Violations of this requirement lead to "catastrophes"
in the sense of Zeeman and Thom [1—3] which generally indicate
unsatisfactory system performance or, at least, some type of
extreme behavior. In a controlled system, where the controliing
action is generated upon the basis of measurements made upon
the state of the system, so-called "feedback control", once
it is established that it is possible to stabilize the system
by some control law, the next question to ask is what kind of
measurements are necessary. In other words, how many components
of the state need be measured to generate a stabilizing feed-
back law. The objective of this report is to answer this
question in the case of a linear, constant coefficent system
utilizing linear feedback laws. As will be seen, this version
of the problem will turn out to be sufficiently complex to re-
quire some new results in linear control theory for the solu-

tion, the primary obstacle being, of course, that the problem
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solution is not invariant under coordinate transformations.
Apparently the first formal statement of the general
"minimal measurement" problem was in the article [{], although
various versions of the problem have been treated in [5-7].
The results of the current report comprise a substantial ex-
tension of those presented in [8—10], although the results
of [10] are not included due to the linearity assumptions
on the feedback laws. In spirit, the current work is most
closely related to that of [ll-li], the basic (and impor-
tant) difference being that only stability and not pre-assignment
of the closed-loop system characteristic values is required.
As would be expected, the weakened assumptions of this paper
drastically alter the nature of the solution in that, in
general, less information about the system is necessary for

stabilization than that required for pole assignment.

II. Problem Statement

We begin with the linear system
x = Fx + Gu , (3

where x is an n-dimensional vector, F an nxn constant matrix,
and G is an nxm constant matrix. The basic problem is to
find a constant mxn matrix (control law) K possessing the
following properties:

i) the matrix (F - GK) has its characteristic values

in the left half-plane (closed loop asymptotic stability) and



ii) the matrix K has as many identically zero columns
as possible (the minimal number of components of x appear
in the feedback law -Kx).

To avoid complicating the exposition, in this paper we
treat only the single-input case (m = 1), deferring discussion
of the multiple-input problem to a future work. Basically
the same results are obtained, but under somewhat more re-
strictive algebraic assumptions. As it stands, the foregoing
statement of the minimal measurement problem is a difficult
question of linear algebra due to the lack of any computa-
tionally "clean" linear algorithms for characterizing a
stability matrix. To make progress, it is necessary to re-
formulate the problem in a more tractable form. We accomplish
this task by stating an equivalent linear regulator problem.

Consider minimizing the functional
J = J Cly,y) + (u,u)] at (1)
0

over all u where u and y are connected by the relations

He

= Fx + gu , (2)

y = sx

F, g, and S being constant matrices of sizes, nxn, nxl, and
pxn, respectively. It is well known that the minimizing u

is given by the expression

Ynin (t)

-g'Px(t)

-Kx (t)



where P is the positive semi-definite solution of the alge-

braic Riccati equation
S'S + PG + G'P - Pgg'P =0 . (3)

To see the equivalence between the above regulator problem

and the minimal measurement problem, we note that given any

stable law K, if we can find a positive semi-definite P satis-
fying the relation g'P = K, then we may use P in Eq.(3) to

generate the matrix S'S which, in turn, gives the matrix S.

This will always be possible without further assumptions for
single-input systems. The necessary and sufficient conditions

for solvability of the P, K relation in the multi-input

case are given in [13]. Thus, if we can characterize the

number of zero components in the law g'P for the regulator

prokblem, then by imposing the additional assumptions of stabi-

lity of (F,g) and detectability of (F,S), standard results will in-
sure that the law will be stable. The key issue will be to select a
measurement matrix S which has the dual properties of detect-
ability of the unstable modes of 2 and possession of as many

zero columns as possible.

ITTI. Diagonal Systems

First of all, we give the solution to the minimal measure-
ment problem in the case of a diagonal system, then show that
this solution suffices to answer the general case. To solve
the diagonal problem, we shall employ some new results first

given in [;{]. The results for the diagonal case validate



one's intuitive feeling that the number of components of the
state which must be measured equals, in general, the number

of characteristic roots of the system matrix having non-negative
real parts.

Consider the system
x = Fx + gqu , (N

where we now assume F is a normal matrix, g and x being as
defined in section II. Make the change of state coordinates z = Tx,
where T is the nonsingular matrix diagonalizing F. We must

now investigate the system

z = Az + bu , (0"

1

where A is the diagonal matrix A = TFT ~ and b = Tg. Recalling

the discussion of section II, we form the equivalent regulator

problem for (}') which leads to the algebraic Riccati equation
Q +PA+ AP - Pbb'P =0 , (4)

where Q = S'S is as yet undetermined. To simplify Eq.(4),

we utilitze the following result from [14]:

Theorem 1. Consider the algebraic Riccati equation

Q + F'P + PF - PGG'P = 0 ,

where F is a matrix having no purely imaginary complex roots.

Then the quantity H = PG is characterized by the equation

J(H) = (G'eT) (I8F' + F'e1) L fmH' - Q) (5)



where,efis the "stacking" operator whose action is to stack

the columns of an nxm matrix into a single nmxl vector.

Applying Theorem 1 to the algebraic Riccati equation
(4) (after imposing the additional constraint that F have no
purely imaginary roots), it is seen that the optimal feedback

law h = Pb is characterized by the equation
h = (b'®I) (A8l + I8A) Lfhh' - Q) . (6)
Next, we note that the nmxn2 matrix
1

A = (b'®I) (A®I + IQA) (7)

has the structure

221 Ny 1
by b, n
11792 2252 Aoo¥
A = 1 b, b,
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n {m-1) rows Q




It will be convenient to compress the n2 non-zero elements of

A into a new nxn matrix &= [aij] , where

uij=)\—_—‘—+3r7 , i,j=1,2,...,n . (8)

We may now state the first basic result:

Theorem 2. Let A and b be as above. Then a necessary

condition for Eq.(6) to have a solution h whose ith component

h. = 0 is
n, =01s

+ a + es+ + 0 .q =0 . (9)

13951 21932 ni9in

Proof. Let hi = 0. Forming the column vector,cﬁhh' - Q),

it is easily verified that the equation
h = A (hh' - Q)

may only be satisfied if the foregoing orthogonality relation

holds.

Remark. Theorem 2 imposes constraints on the choice of

the measurement matrix S which will be utilized below.

The question which now arises is to what extent condition
(9) is sufficient for Eq.(6) to have a solution whose ith
component is zero. The following result shows that condition
(9) is "generically sufficient" in that it is sufficient

for "almost every" system:

Theorem 3. The condition (9) is sufficient for the ith

component of a solution to Eg. (6) to be zero for almost every




linear system, i.e. the set of systems for which it fails

to suffice form a null set in the space of all linear systems.

Proof. If the condition holds, we must solve the set of

nonlinear equations

hylogghy +ayghy + oes +a b = 1] = 0yjay) +ayd,; + ta599m
PN - = + +
hylo,hy + ayyhy + +apoh = 1] = ag5ay, +oay,dy @n29n2
hy g oy, 5oqhy ¥ oy joqhy + oo +ap 5 gh -1]
= %y,3-191,4-1 F %2,i-190,5-1 77 F 9%, 519,51
r ® o -— =
hiLalihl + d2ih2 + + anihn l] 0
hnEj'inhl + OL2nh2 *ooee 0Lnnhn - l] = OLlnqln + OL2nq2n oo O‘nnqnn'

From the ith equation, we see that either hi

a solution vector h lying on the hyperplane o

-h
ni'n

+ e+ oa 1.

0 or there exists

h

11 * %o4hy

Since the system has only a finite number

of solutions, should the second case hold, an arbitrarily

small perturbation of the matrix Q, A, or b will insure that

it fails to hold without changing the number of unstable

modes of the system
tinuous functions of the matrix elements).

condition (9) implies hi

(since the characteristic roots are con-

0.

Hence, generically



Theorems 2 and 3 now allow us to resolve the measurement
problem for almost every diagonal system. The task is to
find a measurement matrix S with the following properties:

i) The pair (S,A) is detectable (the unstable modes of
F'are contained in the space generated by the columns of the
observability matrix 0 = (s' ,AS" ,Azs',...,An—ls')), and

ii) row k of the matrix Q = S'S is orthogonal to column
k of the matrix & for as many indices k as possible, 1 < k < n

(condition(9)). The resolution of this guestion is given by

]
Theorem 4. Let the system } be stabilizable (i.e. the

columns of the matrix (b,AbLAZb,...,A

n-lb) span the space

generated by the unstable modes of } ) and let every unstable

mode contain zeros in the same m components. Then a law h

L}
stabilizing § will measure n-m components of the state for

T
almost evervy system j .

Proof. First of all, note that the unstable modes of

1
f comprise a subset of the usual basis vectors SR PYRRRN

n
since A is diagonal. Thus, m equals the number of characteris-
tic values of A with negative real parts. Assume that the
unstable modes of zl contain common zeros in rows il’iz""im'
We choose the same rows of S' equal zero, the remaining rows
being chosen to satisfy the detectability requirement. Since
A is diagonal, it is clear that no further rows of S' may be

chosen zero and still have the pair (A,S) be detectable. But,

the above choice of S' implies that m rows of Q = S§'S are
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identically zero, thereby satisfying condition (9) for the

m indices il’i2"“’im’ Hence, by Theorems 2 and 3, m com-
ponents of h are zero and, by stabilizability and detectability
of 7', such an h will be a stable feedback law for almost

every j'.

Theorem 4 characterizes the solution of the measurement
problem for almost every diagonal system. Let us recapitu-
late the assumptions and the steps of the solution:

Assumptions: (1) A is diagonal, i.e. F is normal,

(2) A has no purely imaginary entries on
the diagonal,
(3) the pair (A,b) is stabilizable.
Under these assumptions, we construct a minimal measurement
matrix by the procedure:

i) determine the unstable modes of A,

l,iz,...,im be the indices where the unstable modes

all have zero entries and select the matrix S such that

ii) let i

a) row k of S is zero, k = il’iz"'°’im'
b) the non-zero elements of S are chosen so that

(A,8) is detectable and generic.

IV. An ExamEle

To illustrate the foregoing results, let the system

be given by

=

l
[ R TSN
S
P RN
< -y

-

Q

il
o o o
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The relevant diagonalizing transformation is

1 -1 -1 1
1 -1 1-1
T=%1 1 -1 -1
1 1 1 1

giving the diagonal system

z = Az + bu , ()
where

A = diag (15 5 5 -1)

b=2%x(1111)"

L}
The system Z is stabilizable (in fact, controllable) since

the unstable modes are

e, = (rtoo0o0)" , e, = (o 100" , ey = (001 0)'

which are contained in the space generated by the matrix

[b Ab A%b A3ﬁ],and X‘ satisfies the other assumptions (1) and
(2). Since the three unstable modes have only the fourth
entry as a common zero, we have m = 1 and i = 4. Let us as-

sume that } has two output terminals. Then we choose an S of

the form
- -
S11 S12
521 S22
st = .
831 32
0 0
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The six independent constants are to be chosen such that
(A,S) is detectable and generic. It's easy to see that the

choice (one of many possible) Sll = S21 = S31 = 512 = 832 =1,

Sy9 = 2 satisfies all conditions.

The above example is interesting since it illustrates
the fact that the number of output terminals (p) may be cri-
tical since, for example, a single output channel (p = 1)
will not suffice in the above example as in that case no choice
of S will make 5' detectable. This is due to the multiple
root » = 5. However, if A has distinct roots, then a single

output will always suffice.

V. The General Single-Input Case

Let us now return to the original system E:
X =Fx + gu . (X)
L]
Recall that ) and ] are related through the coordinate
transformation z = Tx. Thus, if we know which components of

z appear in a stabilizing law, then for almost every ) we

will also know which components of x occur since
n
z, = Y t,.x. , t=1,2,...,n . (10)

However, it should be noted that we may have cancellation in

some particular control law. That is, i we have a law

1

u = leil + Y22i2 + s 4+ YmZ.m ’

then the choice of the y's may result in cancellations when
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substituted back into (10). But, since the y's are determined
by the choice of S, a slight verturbation of the components of
S will eliminate cancellations while still preserving the
other requirements. Thus, generically the number of compo-
nents of x which appear is determined by which components of z
appear and the zeros which appear in the transformation T.

For example, in the problem of the previous section,
even though z, did not appear in the diagonal system, since
T has no zeros in rows 1-3, all components of x occur in the

generic control law generated by the diagonal system.

VI. Discussion

In this work, we have given conditions for solubility
of the minimal measurement problem for linear, single-input,
constant coefficient systems. The results have relied on
various assumptions which are often met in practice. Unfortu-
nately, as is often the case in mathematics, the result could
only be established for almost every system which is
satisfactory as long as one isn't in one of the sinqular cases.
However, for practical purposes, it is sufficient since no
physical system is known precisely enough that it could not be
perturbed by a small amount to make it generic.

In subsequent articles, various extensions and modifica-
tions of the above results will be investigated, among them
the multiple-input case, the case of an infinite-dimensional

state vector, and some numerical aspects.
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