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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 122

EEP

The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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Abstract 
 

The fitness concept of evolutionary ecology differs from that of population genetics. The former 

is geared towards dealing with long term evolution through the repeated invasion of mutants for 

potentially complicated ecological scenarios, the latter with short term changes in relative 

frequencies of types for heavily simplified ecological scenarios.  

After a discussion of the conditions allowing for the definition of a general invasion 

fitness concept, among which that reproduction should be clonal, a framework is built within 

which the definition can be formalized. Recipes are given for calculating (proxies for) fitness in 

a large variety of instances. 

 The main use of invasion fitness is in ESS calculations. Only under ecologically very 

special conditions ESSes can be calculated from optimization principles. These conditions are 

detailed, as well as the, even more special, conditions under which evolution maximizes r or R0. 
 The invasion fitness concept extends to any aggregates treatable as meta-individuals. 

Individual- and meta-individual-level invasion fitness coincide when the latter is larger than per 

capita within aggregate growth. Calculating invasion fitness through a meta-individual route 

often works beyond calculations based on inclusive fitness arguments, but provides less insight. 

 Mendelian diploids are aggregates of clonally reproducing genes. Conditions are given 

for when predictions for virtual cloning diploids coincide with those from gene-based 

calculations. 
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History and context 
 

Darwin  
Although fitness is generally perceived as the central concept of Darwinism, Darwin used the 

word only once in the first to the fifth, and twice in the sixth edition of the Origin of Species, 

and then only in the meaning of adaptedness. In the fifth edition, he, on the recommendation 

of Wallace, added the phrase “survival of the fittest”, due to Herbert Spencer, as synonym for 

natural selection. However, Darwin’s reasoning was throughout qualitative and he nowhere 

considered quantitative measures that might determine the speed of evolutionary change. 
 
The founders of the modern synthesis 
What may be the first use of the term fitness in its modern meaning, as a quantitative measure 

of the contribution of a particular type to future generations, occurs in 1922 in a paper by 

Fisher. However, mostly the three founders of theoretical evolutionary biology, Fisher, 

Haldane, and Wright, were unexpectedly reticent in their use of the term. When it comes to 

quantitative considerations, they use words like selective value, adaptive value, or selective 

advantage. One gets the impression that they avoided using the term fitness in specific 

contexts in order not to tie it to too specific a meaning: their verbal deliberations point at a 

strong awareness of the complications present in real life (such as overlapping generations, 

spatial differentiation of populations, fluctuating environments, frequency dependence caused 

by competitive interactions, and complicated genetic architectures) which are only very 

partially represented in specific models.  Although Haldane’s book “The causes of Evolution” 

contains a special chapter on fitness, the discussion there is wholly qualitative, stressing the 

dependence on the environment.  

In their later work, Fisher and Wright do use the term fitness, but only when referring 

to populations, as in Fisher's statement of his fundamental theorem “The rate of increase in 

fitness of any organism at any time is equal to its genetic variance in fitness at that time”, 

which in modern translation reads: The rate of increase of mean fitness of any closed 

population at any time is equal to the additive genetic variance in fitness present at that time. 

In the context of this entry it is relevant to note that Fisher was well aware of the 

incompatibility of a continuing increase of mean fitness (i.e., the instantaneous per capita 

growth rate of all different types together) with the ultimate boundedness of any population, 

and that he pointed to the dynamics of the community as a whole as the source of 

environmental deterioration compensating for such an increase. However, his attempt at a 

phenomenological formalization failed to capture that the feedback loop between population 

and environment necessarily on a community dynamical time scale brings the time averaged 

mean fitness of the population back to exactly zero. Precisely this consequence will be basic 

to the arguments below. 

Although the founding fathers were well aware of the complicated life histories 

occurring in the real world, Wright and Haldane to a large extent restricted their calculations 

to genetically ever more complicated variants of viability selection in populations with non-

overlapping generations (below called simple viability selection) in order to get more quickly 

at useful conclusions. For population dynamically more elaborate models, they compared the 

outcomes with those of simple viability selection models, but they made no attempts at 

arriving at more encompassing ecological perspectives, presumably since the genetics itself 

already proved sufficiently challenging. 

Fisher almost from the start attempted to incorporate age structure. However, he did 

this on the basis of the mistaken conviction that for general age structured populations it is 

possible by weighing individuals with their so-called reproductive values to arrive at the 

differential expressions that are nowadays standard used for uncovering the consequences of 

weak simple viability selection (with the Malthusian parameter substituted for the logarithm 

of the viabilities). Malthusian parameters and reproductive values are tied to clonal 

reproduction, and the properties that in the clonal case justify the derivation of the differential 

expressions unfortunately do not extend to the Mendelian case. 
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Population genetics 
Population genetics textbooks, for obvious didactical reasons, also tend to concentrate on 

scenarios akin to simple viability selection, with the relative viabilities independent of the 

population density and genetic constitution. In contrast with the early tradition, the textbooks 

refer to the viabilities as fitnesses, thus making in the minds of new generations of population 

geneticists fitness effectively synonymous with viability. The advantage of the so restricted 

universe of discourse is that one can consider fitnesses on an instantaneous and local basis. 

One may thus consider models in which fitnesses vary in time, over space, or with the local 

gene frequencies or population densities. The other advantage of the restriction to simplified 

life histories is that it allows population geneticist to concentrate on cataloguing the dynamic 

consequences of the variety of genotype to fitness maps, as well as mating and transmission 

rules.  
 

Evolutionary ecology 

The more recent research program of evolutionary ecology focuses on the evolution of 

behavioral and demographic parameters in ecologically less simplified situations. Yet, in 

textbooks on the subject, simple viability selection models figure heavily in any chapters 

devoted to genetics, although on a verbal level fitness tends to be identified unrestrictedly 

with expected lifetime offspring production (= average number of offspring contributed to the 

next generation). In addition, the Malthusian parameter, also called intrinsic rate of (natural) 

increase, is introduced as an appropriate measure of fitness. Usually it is left somewhat open 

when, and more importantly why, one or the other measure is relevant, although one finds 

statements to the effect that for arriving at evolutionary predictions one should maximize 

lifetime offspring production in the case of stable environments, and the intrinsic rate of 

increase in environments that are constant except for occasional decimating catastrophes. 

Although steps in the right direction, neither statement fully captures the intricacies of the 

issue. 

Below it will be argued that for a fair collection of ecological scenarios and given 

certain minimal requirements, there exists a unique fitness concept, to be referred to as 

invasion fitness, that may serve as universal reference. This invasion fitness is in the first 

place a theoretical entity that earns its keep as tool in powerful deductive arguments and from 

being calculable from models fed with more concrete data. Measuring it directly is very 

difficult, except in the simplest possible ecologies. To make things worse, single 

measurements are of little use, as the interest of invasion fitness derives from what its values 

are for potential mutants and how these values change with changes in the environment. For 

general eco-evolutionary models, it is only possible to calculate invasion fitnesses by 

numerical means. Only under special circumstances and for purposes that are more restricted, 

invasion fitness can be expressed in a simple manner or replaced by simple proxies like 

lifetime offspring number. In a still smaller subset of cases it may even be possible to directly 

measure some component of fitness (say, survival probability or offspring number) that by 

invoking a ceteris paribus assumption can be argued to be monotone related to fitness. This 

proxy then may be used to rank types in order of increasing fitness. The section on uses 

discusses the theoretical restrictions on the application of such simplified procedures.  
 

 

Setting the stage 
 

Individuals and types 
Epistemologically, fitness is not a property of individuals, but of types. Individuals do not 

have a probability to die before maturity; they just die or survive. Moreover, the phrase that 

fitness is a property of types only makes sense under an implicit ceteris paribus condition, as 

the fitness of a type necessarily depends on the environment in which it lives. Hence, except 

in very restricted cases, fitness should be treated not as a single number, but as a function of 

two variables, type and environment.  

What objects should be considered individuals, as well as the attribution of types, 

depends on the evolutionary question. About the only restriction is that adaptive evolution 
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crucially depends on the almost faithfulness of reproduction, i.e., offspring should nearly 

always have the same type as their parents or at least a very very similar type. If this were not 

the case, the smearing out over type space would overwhelm any evolutionary dynamics due 

to selection. This also means that the appropriate reference frame for any definition of fitness 

is clonal reproduction. The connection with the Mendelian world is made by observing that 

alleles reproduce clonally.  
 

Environments  
When considering environments, a strict individual centered perspective is called for. Only 

individuals reproduce. Hence, the description of the environment should contain all 

information relevant for predicting that reproduction, including any direct influences exerted 

by conspecifics. A second restriction is that the environment should have some stability. It 

should not keep changing directionally over time, nor should one consider more 

environmental regimes occurring with nonzero probabilities that once realized exclude each 

other for all time. More technically expressed: environments should be ergodic. Ergodic 

environments comprise point equilibria, limit cycles, and most relevant chaotic and stochastic 

environmental regimes.  

Another point is that to cover the ubiquity of short-term environmental fluctuations, 

evolutionary environments should be considered as extended in time. To separate the 

evolutionary concept of environment from the instantaneous perspective common in 

ecological models, it is useful to refer to the instantaneous values taken by the evolutionary 

environment as environmental conditions. General evolutionary environments can then be 

characterized as ‘ergodic stochastic processes with as realizations functions of time to the 

environmental conditions’.  

A final restriction is that it makes only sense to look at environments that can occur in 

(some appropriate abstraction of) the real world, be it observed time series or the output of a 

community dynamical model. As this entry concentrates on the long-term view, this means 

that the only relevant environments are ones that can be realized as (outputs from) community 

dynamical attractors, including stochastic ones, either in ecological reality or in the world of 

ecological models. 
 

Population structure 
Usually individuals of the same type and exposed to the same environment are still not 

demographically equal; some are small, others large, some may be young, others old, with all 

these differences feeding through to their population dynamical behavior. Such diversity can 

be dealt with by introducing the idea of population structure. Here structure means that 

individuals are distinguished by their h(eterogeneity)-state. This h-state may be composed of 

a location in space and a physiological state. To classify as a state, (i) all population 

dynamical behavior of individuals at a particular point in time, be it dieing, giving birth, or 

impinging on the environment, should be fully determined by the current state and 

environmental condition, (ii) an individual’s future states should be fully determined by its 

present state and the intervening environmental conditions. Fully determined should be 

interpreted here in a stochastic sense, i.e., given the indicated information, the behavior or 

future states are independent of any further adducible information. Conditions (i) and (ii) form 

a restriction on the combined choices for describing h-states and environments. Arriving at 

good h-state and environment descriptions is an essential step in the craft of translating from 

the real to the model world. 

 Populations in turn should be defined by the requirement that all individuals share the 

same environment. Populations living under spatially heterogeneous conditions may be 

accommodated by making spatial position a component of an individual’s h-state and letting 

the environmental condition be a function of spatial locations to local environmental 

conditions, with individuals only being affected by a local environmental condition singled 

out according to their h-state.  

 The definitions of population, h-state and environment have as consequence that 

given the course of the environment individuals proceed through their lives independently. 

This conditional independence property forms the basis of all further deliberations. 
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Infinite dilution 
The previous deliberations dealt with concept engineering. To arrive at a general fitness 

definition also an assumption is needed: any influences of the focal population on the 

environment can be neglected. This will be referred to as the infinite dilution assumption. It is 

needed to justify speaking of the environment as a second independent variable coordinate 

with the traits.  

 Although infinite dilution of population effects is sufficient for delimiting a 

framework within which to define invasion fitness, to make the resulting concept into a useful 

tool a more refined variant is needed: The influence single individuals exert on the 

environment is negligible, although for large populations the effect of the added individual 

contributions may be substantial. This individual-centered concept of infinite dilution has the 

advantage that it encompasses both large resident and small invader populations. Under the 

assumption that individual effects are infinitely diluted, the effect of any small focal 

(sub)population, be it a mutant population or any other subpopulation having our attention, 

will also be infinitely diluted. The individual-centered infinite dilution assumption will be 

operative throughout the next three sections, to be replaced by slightly extended version 

thereafter. 

Of course, a growing focal population will not forever stay infinitely diluted. Yet, for 

populations starting from only a few founders, as is i.a. the case for mutants, the infinite 

dilution approximation often is sufficiently good for a sufficiently long time that many 

biological conclusions can be based on it. The fact that in most modeling contexts small 

invader populations as well as populations on the brink of extinction are close to infinitely 

diluted, allows bringing many fluctuating physiologically and spatially structured population 

models almost fully in line with simple viability selection counterparts. 
 

 

Invasion fitness, fundamentals 
 

Underlying mathematical structure 
For expository purposes, assume for the time being that the number of h-states is finite. In that 

case, the expected numbers of individuals in different h-states at time t for a given realized 
environment E can be written as a column vector N(t). If it is moreover assumed that time 

runs in steps, the definitions of state and environment introduced above make it possible to 

write 

N(t +1) = A E(t)( )N(t) ,    (1) 

while for continuous time  

d
dt
N(t) = B E(t)( )N(t) .    (2) 

The i,j-th component of the matrix A equals the probability of a transition from h-state j to h-
state i, multiplied with the corresponding survival probability, plus the average number of 

offspring with h-state i produced by an individual in h-state j. The matrix B is built up from 

per capita rates. The off-diagonal components equal the transition rates between the 

corresponding h-states plus the h-state dependent average rates of offspring production 

differentiated according to their birth h-state. The diagonal components equal minus the 

overall rates of state transitions from the h-states, minus the h-state dependent death rates, 

plus the average rates of giving birth to offspring with the parental h-state.  

 Equations (1) and (2) apply to populations of all sizes, large as well as small, but with 

different interpretations. Small populations do not influence the environment, but are subject 

to demographic chance fluctuations. Hence N in Equations (1) and (2) refers only to the 

expected and not to the realized population state. For large populations, the components of N 

may be interpreted as realized population densities in a large spatial area or volume. The step 

from expected numbers to realized densities is based on law-of-large-number considerations. 

Moreover, for large populations the assumption that E is given independent of N takes on the 

status of a thought experiment and not that of an idealized representation of reality. In reality 
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the feedback loop is closed, that is, E is determined at least in part by N. (As example let 

E(t) = F O(t)( )  with the population output O given by O(t) = HN(t) , with H a matrix 

consisting of weight factors telling the extent to which individuals in different h-states 

impinge on various aspects of the environment and F determined by a fast dynamics of the 

environmental state plus the map from environmental states to the environmental conditions 

experienced by the focal individuals.) 

 The situation for infinitely many h-states is not different in principle, except that to 

deal with it more powerful abstract machinery has to be invoked. This is still an active 

research area. In the general case, even the appropriate law-of-large-number theorems have 

not been proven. However, all evidence indicates that under biologically reasonable 

restrictions the picture will be similar to that for finitely many h-states. Below, little 

distinction will be made between finite and infinite h-state spaces. However, the reader should 

bear in mind that the most general statements have in the strict mathematical sense only the 

status of conjectures. 
 

Notational conventions 
The need to keep track of many different mathematical objects could lead to a notational 

explosion. Adherence to strict mathematical consistency throughout the entry would have 

necessitated writing equation (1) as e.g. 

         N Xm |Eattr (Xr )( )(t +1) = A Xm |Eattr (Xr )(t)( )N Xm |Eattr (Xr )( )(t) ,  
with ‘|’ to be read as ‘for the given’, Xm  and Xr  the mutant respectively resident trait 

vectors, Eattr (Xr )  the environment produced by Xr , and Eattr (Xr )(t)  the corresponding 
environmental condition at t. This notational explosion is prevented by only displaying the 
symbols figuring in the specific argument at hand. For example, A Xm |Eattr (Xr )(t)( )  is 
written as just A(t)when the argument is only about temporal fluctuations. 

Vectors are assumed to be written as columns, with the transposition operator 
T
 

transforming columns into rows. Differentiating a scalar for a column produces a row. In 

products, row vectors will be treated on equal footing with matrices. 1T  denotes (1,�,1)  and 
n = 1TN  total population size or density. Angular brackets, , denote averaging. 
 

Definition 
Thanks to the preceding conceptual dissection of population dynamical processes it is now 

possible to arrive at a general fitness definition by falling back on a mathematical result that is 

easy to state but very difficult to prove. Luckily, a suite of mathematicians has done the latter 

already and the result is known as the multiplicative ergodic theorem. This theorem deals with 

general ergodic sequences of matrices. The matrices in (1) are restricted to having 

nonnegative components, and a similar result applies to the solutions of (2). From this 

combination the following fact emerges: Under some technical conditions 
 

in ergodic environments  

lim
t→∞

1
t
ln n(t)( ) = ρ          (3) 

with ρ  a unique real number, which mathematicians call the dominant Lyapunov 

exponent and that here will be called invasion fitness (on the presupposition that E 

is generated as the output of some community dynamics).  
 

The technical conditions are somewhat involved, but are generally fulfilled in biological 

applications. For example, it suffices that all the components of the matrices A  are smaller 

than some uniform upper bound, and that for any initial condition after sufficient time all 

components of N are bound to be positive. 
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Phases of the invasion process 
Invasion fitness summarizes the essential features of the initial stages of any invasion process. 

Two possibilities have to be distinguished. The general mathematical theory of branching 

processes tells that the prospective invader will die out when ρ  is negative or zero, and has 

positive establishment probability when ρ  is positive. In the latter case, there will be a short 

initial phase during which the effects of the initial chance fluctuations on the population 

structure still are discernable in the form of the population trajectory. After that phase the 

population grows roughly exponentially with rate constant ρ , although with possibly a good 

amount of wobble due to the variations in E(t) . (This clear differentiation in phases only 
holds good under some technical conditions, which, however, are sufficiently relaxed that 

from a practical point of view there is little to worry about.) The exponential phase ends only 

when the infinite dilution Ansatz starts to fail due to the increase of invader numbers.   
 

 

Invasion fitness, general calculation procedures 
 

Without population structure 
For a start consider the case without any population structure and with time running in steps, 

i.e., generations do not overlap and newborns are stochastically equal (i.e., parents do not 

bequeath any properties other than long term heritable traits). Then 

                      ρ = r E(t)( ) time
        (4) 

with    

r = ln R( )      (5) 

and    

      R E(t)( ) = individual offspring numbers individuals E(t) .  (6) 

Formula (4) also applies for unstructured populations in continuous time described by  

        
dn
dt

= r E(t)( )n .     (7) 

(Note that here r E(t)( )  is itself an average over the stochastic behavior of individuals, which 
themselves just give birth and die.) 

By letting µ{dE}  denote the fraction of time E(t)  spends in a small set {dE} , the 
time average in (4) can be re-expressed as 

   ρ = r E( )µ{dE}∫ .     (8) 

Formula (8) is particularly useful in the context of stochastic population models where it may 

be relatively easy to calculate µ . 
 

Non-fluctuating environments  
As next simple case, consider a structured population in a constant environment. Then in 

discrete time 

    ρ = ln dominant eigenvalue of A( ) ,   (9) 

and in continuous time  

      ρ = dominant eigenvalue of B .    (10) 

For constant environments ρ  is sometimes called Malthusian parameter, in which case it is 

often written as m, or intrinsic rate of increase, in which case it is usually written as r. The 
corresponding right eigenvector of A , or B , is called stationary h-state distribution, with 

usually some more germane expression substituted for ‘h-state’, while the components of the 

left eigenvector are called reproductive values. 

Expressions (9) and (10) lead to useful algebraic procedures only when either the 

numbers of h-states is very small or when the matrices A or B have some special structure, as 

is for example the case when the h-state is age. Otherwise it is necessary to take recourse to 

numerics.  
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The most efficient numerical procedure for calculating the dominant eigenvalue of a 

large nonnegative matrix is by iteration: 
 

• Start from some positive vector M(0)with 1TM(0) = 1 . 
• Successively calculate M(t) from 

     L(t +1) = AM(t) ,    w(t) = 1TL(t +1) ,    M(t +1) = 1
w(t)L(t +1) . 

• w(t) then converges to the dominant eigenvalue of A: ρ = ln lim
t→∞

w(t)( ) .  
 

Since for a population state N, 1TN  corresponds to the total population size, w(t)  can be 
interpreted as a per capita increase in population size. Therefore, this iterative procedure is 

equivalent to estimating an asymptotic population growth rate from a deterministic 

simulation. 

 The continuous time case can be dealt with numerically by first calculating the 

dominant eigenvalue of the nonnegative matrix B + βI , with β  minus the most negative 

diagonal component of B , and subtracting β  from the result. 
 

Periodic environments 

The previous formulas extend to T-periodic environments by the following ploy:  
 

• For discrete time, define       C(T ) = A(T −1)�A(0) . 
• For continuous time, calculate C(T )  by numerically solving     

                  
dC
dt

= B(t)C ,   C(0) = I . 

• Calculate ρ =
1
T
ln dominant eigenvalue of C(T )( ) . 

 

 

General fluctuating environments 

For general fluctuating environments ρ  can be calculated through the following scheme: 
 

• Start from some positive vector M(0), with 1TM(0) = 1  
• Successively calculate vectors M(t) and numbers w(t) , t = 1,2,� , from: 

- As an intermediate step, first calculate a vector L(t +1)  from 

  for discrete time, 

  L(t +1) = A(t)M(t) ,     
  for continuous time, 

  
dL
dτ

= B(τ )L   with τ  running from t to t +1 and L(t) =M(t) . 

- From L(t +1)  calculate the average per capita population growth w(t)  over that step 
w(t) = 1TL(t +1) . 

-  Normalize to 

M(t +1) = 1
w(t)L(t +1) . 

• Calculate fitness as 

ρ = lim
T→∞

1
T ln w(t)( )

t=0

T −1

∑ . 

 

 

Beyond matrix models  
For general structured population models a procedure similar to the last described one may be 

used, with M(0)  any normalized h-state distribution, from which then the h-state distribution 
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L(t +1)  and the total population growth over one time step, w(t) , are calculated by some 

numerical technique appropriate for that model.  For constant environments the last step can 

be simplified to ρ = ln lim
t→∞

w(t)( ) .   
The section on constant environments treats a number of halfway analytical 

procedures pertaining to restricted model classes. 
 

 

A fitness perspective on the resident environment 
 

Residents have fitness zero 
For any long existing community, at the E generated by that community the invasion fitnesses 

of all composing types equal zero. This is because any type that has invasion fitness different 

from zero either explodes or dies out, and therefore cannot be a permanent member of the 

community. For community models having equilibria corresponding to non-fluctuating 

environments, setting the invasion fitnesses of all types equal to zero produces as many 

equations for E as there are types. These can be combined with the equilibrium equations 

derived from the mechanisms that produce the environmental condition from the population 

outputs to the environment. The latter output can be calculated from the population sizes 

times the corresponding normalized stationary h-state distributions. The resulting set of 

equations precisely matches the set of unknowns, so that it is possible in principle through this 

route to determine the environments that can be generated by the community. 
 

Generalized Lotka-Volterra communities 
Generalized Lotka-Volterra communities are toy models for which it is very easy to calculate 

the invasion fitness for new potential community members. Although these models are 

biologically rather unrealistic, their easy accessibility makes them ideally suited for the initial 

exploration of ideas, and the construction of examples or counterexamples. In continuous 

time, for i = 1,�,k , 
dn Xi( )
dt

(t) = b Xi( ) − c Xi ,X j( )
j=1

k

∑ e X j ,n X j( ),E1( )(t)







n Xi( )(t) , 

with E1  consisting of some additional environmental variables, like the weather, various 

weighted sums of the n Xi( ) , etc., and e  some recipe that when fed with a trait vector X  

and scalar and vectorial time functions n  and E1  produces a scalar time function 

e X,n,E1( ) . Similarly in discrete time 

n Xi( )(t +1) = e
b Xi( )− c Xi ,X j( )e X j ,n X j( ),E1( )(t )j=1

k∑



n Xi( )(t) . 

For these models the invasion fitness for a new type Xk+1 = Y  equals 

ρ(Y) = b Y( ) − c Xi ,X j( )
j=1

k

∑ ej , 

with the ej = e X j ,nj ,E1( )(t)
time

 determined from the k linear equations in k unknowns 

resulting from setting ρ(Xi ) = 0  for i = 1,�,k . 
 

 

Uses 
 

Predicting individual characteristics 
The reason to spend effort on arriving at a proper fitness definition is primarily pragmatical. 

Prediction of evolutionary outcomes by maximizing fitness is a huge industry. Literally 

interpreted, a fair part of the older evolutionary ecology literature makes no sense as it (a) 

recommends maximizing the Malthusian parameter without ever mentioning environments 

and (b) invokes Fisher’s fundamental theorem as justification. Yet, in practice it did a good 
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job. The reason is that at evolutionary stops, invasion fitness cannot be but maximal for the 

environment generated by the corresponding population dynamics, for if it were not, there 

would be many possible mutants that by invading could set evolution moving again (an idea 

first put forward by Hamilton, and made popular through the efforts of Maynard Smith). 

Hence, if one does not account for the dynamics of the environment but just measures it, it is 

possible to predict the properties of organisms through fitness maximization. Such predictions 

can work when environments stay unperturbed, but not if one wants to predict the 

consequences of e.g. climate change, as then any evolutionary change necessarily carries 

population dynamically generated environmental change in its wake. 

The above characterization of evolutionary stops is usually referred to as the ESS 

criterion. ESS is an abbreviation of “Evolutionarily Stable Strategy”, which, however, is a 

misnomer as the so defined strategies need not be evolutionarily stable in the standard 

meaning of the word stable. The latter requires that the ESS through the continued 

substitution of mutations be approached from nearby strategies. Evolutionary attractiveness 

can only be judged by seeing how the fitness landscape changes with a change in the resident 

strategy. Hence, the abbreviation will here be supposed to read Evolutionarily Steady 

Strategy. For evolutionary predictions only attracting ESSes, often called CSSes, matter.  
 

When will long-term evolution maximize some fitness-related measure? 
Given the stress on fitness maximization in the literature, it is relevant to know when there do 

exist properties of types that are maximized at CSSes. This is the case if and only if ‘the trait 

values affect fitness effectively in a one-dimensional monotone manner’. The term 

‘effectively’ here means that the specified properties only need to pertain to the range of 

fitness values closely surrounding the change from negative to positive. More precisely, if X  

denotes the potential trait vectors, E  the realizable environments and  �  the real numbers:  
 

  An eco-evolutionary model is governed by an optimization principle if and only if 

(A)  there exists a functionψ : X → �  and a function g : � ×E → � , increasing in 

its first argument, such that 

 sign ρ(X |E) = sign g ψ (X),E( ) .                (11) 

 

Condition (A) can be proved equivalent to 

 (B)  there exists a function φ : E → �  and a function h : X × � → � , decreasing in 

its second argument, such that 

 sign ρ(X |E) = sign h X,φ(E)( )  ,                (12) 

 

which can be paraphrased as ‘the environment acts effectively in a one-dimensional monotone 

manner’.  

Relations (11) and (12) can be related to each other by the observation that,  
 

if an optimization principle exists,  

(C)  it is possible to choose the functions φ  and ψ  such that 

 sign ρ(X |E) = sign ψ (X) −φ(E)( )  ,      (13) 

where φ  and ψ  are connected through the relation 

    ψ (x) = φ Eattr (X)( )  .            (14)  

Of course, results (A) to (C) hinge on the interpretation of the term ‘optimization 

principle’. The latter should be interpreted as a function from trait values to real numbers such 

that for any possible constraint on the traits the ESS(es) can be calculated by maximizing this 

function. The proviso in the previous sentence mirrors the usual practice of combining an 

optimization principle, derived from the population dynamics, with a discussion of the 
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dependence of the evolutionary outcome on the possible constraints. What matters here is that, 

while condition (A) is close to trivial, the equivalent condition (B) and relation (14) provide a 

useful tool for either deriving optimization principles or proving the non-existence of such 

principles for large families of eco-evolutionary models.  
 

What do optimization principles tell? 
If an optimization principle ψ  exists, each successful mutant increases ψ (X) , and 

hence any ESS attracts. Moreover, φ Eattr (X)( ) increases with each increase in ψ (X) . Since 
fitness decreases with φ  where it counts, i.e., around zero, φ  may be dubbed pessimization 

principle. When a pessimization principle exists, in the end the worst attainable world 

remains, together with the type(s) that can just cope with it. 

The following example may give a more concrete feel for the issue. Consider a 

structured population in continuous time regulated through an additional h-state independent 

death rate dE  and with all other demographic parameters independent of E. Then the mean 

death rate dE E(t)( ) time
 associated with an environment provides a pessimization, and the 

asymptotic relative growth rate ρ0  calculated on the assumption that dE = 0  an optimization 

principle. A special case is where the environment is constant except for occasional 

decimating catastrophes, provided the latter kill totally indiscriminately (so that ρ0  may be 

identified with r for that constant environment). But for the (essential, but generally 

unmentioned) indiscriminateness, this is the condition touted in the textbooks as supporting r-
maximization. 

Optimization principles come closest to the textbook intuition for the meaning of 

fitness, which generally fails to account for the fact that the fitnesses of all possible types are 

bound to change with any change in the character of the residents. The results above show 

that optimization principles, although frequently encountered in the literature, are exceptions 

rather than the rule. 
 

When will evolution just maximize the Malthusian parameter, average offspring number? 
The results from the previous subsection can be used to characterize the ecological scenarios 

for which evolution will just maximize the Malthusian parameter or lifetime offspring 

number. Here ‘just maximizing a function of X and E’ should be interpreted as maximizing 

that function by varying X for an unspecified choice of E (the latter as reflection of the 

absence of any mention of E in the usual statements in the non-epidemiological literature). 

Under the presupposition that the community dynamics engenders constant environments so 

that the Malthusian parameter r and the lifetime offspring number R0  are well defined, it can 
be proved that  
 

  evolution just maximizes r if and only if  
(D)  the combination of life histories and ecological embedding is such that r can be 

written as r(X |E) = g r(X |E0 ),E( )  for some function g  that increases in its 
first argument, and E0  some fixed, but otherwise arbitrary, environment, 

and 

 evolution just maximizes R0  if and only if  
(E)  the combination of life histories and ecological embedding is such that ln(R0 )  can 

be written as ln R0 (X |E)( ) = g ln R0 (X |E0 )( ),E( )  for some function g  that 
increases in its first argument, and E0  some fixed, but otherwise arbitrary, 

environment. 
 

In contrast to the criterion for the existence of an optimization principle, the present criterion 

is relatively easy to check in specific situations.  
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Individual level conditions 
A fair fraction of textbook statements, if taken literally, applies only when condition (D) or 

(E) is fulfilled. Condition (D) is fulfilled on the rare occasions that the only influence of the 

environment is through an h-state- and type-independent death probability, or rate, on top of 

any h-state- or type-dependent ones. Condition (E) is fulfilled in the rather more common 

cases that the life history can be decomposed into a number of subsequent stages that connect 

only through single h-states (so that no information about the past is carried over between 

stages) and no stage is influenced by both X and E together. 
 

 

Non-fluctuating environments: proxies and approximations  
 

From lifetime offspring number to intrinsic rate of increase and invasion probability  
Most ESS calculations consider situations where the environment can be assumed constant 

over community dynamical time, as these are about the only cases where analytical results 

can be obtained. For the remainder of this section the same assumption will be operative. 

 In non-fluctuating environments, life histories with everybody born equal always 

allow an age representation, characterized by an average age-dependent effective birth rate (or 

ratio) λ(a)  (often seen decomposed into an age-dependent survival l(a)  and conditional 
fecundity b(a)  as λ(a) = l(a)b(a) ), from which the intrinsic rate of increase r can be 
calculated by solving 

1 = e−ra λ(a)da
0

∞

∫         (respectively         1 = e−ra λ(a)
a=1

∞

∑  .  (15) 

From here on only the continuous time formulas will be displayed.) Lifetime offspring 

production equals 

        R0 = λ(a)da
0

∞

∫ .     (16) 

The two quantities are related through 

.   (17) 

For not too large R0 , or when births concentrate around a single parental age, 
          r ≈ ln R0( ) Tb ,                    (18a) 

with Tb  the average age at giving birth, 

Tb = aλ(a)da
0

∞

∫ λ(a)da
0

∞

∫ ,                     (18b) 

For small positive ln(R0 )  the establishment probability, p, can be approximated, 

under some mild conditions on the offspring number distribution, as 

p ≈ 2 ln R0( ) σ 2
,             (19a) 

with  σ 2
 the variance of the lifetime offspring numbers. For mutations with small effect the 

more easily determined resident values can be substituted for Tb  and σ
2
, without affecting 

the order of the approximation. 
 

More than one birth state 
When individuals can be born in different birth states (think e.g. of different patches), 

the previous results generalize with little change. Let λij (a)  be the average rate (or ratio) at 

which an individual born in state j gives birth to offspring in state i, and Λ(a) = λij (a)( ) . 
Then r has to be determined from 

     
 
dominant eigenvalue of �Λ(r)  = 1 ,            (20a’) 

or as the rightmost solution of 

     determinant I − �Λ(r)( ) = 0                         (20a’’)     
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with      

         �λij (r) = e−ra λij (a)da0

∞

∫ .               (20b) 

For ease of reference, denote �Λ(0)  as A , and denote the dominant right eigenvector 

of A  as U  and the dominant left eigenvector as VT
. Both eigenvectors are supposed to be 

normalized such that 1TU = 1  and VTU = 1 .  U  can then be interpreted as a generationwise 

stable birth state distribution, and the components of V  as generationwise reproductive 

values.  

The average lifetime offspring number can be found by averaging the total number of 

offspring begotten by individuals born in the various birth states: 

R0 = 1TAU    =   dominant eigenvalue of A .   (21) 

Relation (17) applies without change, while (18b) and σ 2
in (19a) have to be 

modified. In the case of mutants that are not too different from the resident:  

Tb = aVr
TΛ r (a)Urda0

∞

∫ Vr
TΛ r (a)Urda0

∞

∫ ,                   (18b′) 

with the index r indicating the resident values, and  

σ 2 = uh
h
∑ Var viξih

i
∑



,              (19b) 

where ξih , vi  and uh  denote the stochastic number of offspring in state i produced by a 
resident individual that itself was born in state h, respectively the corresponding components 

of Vr  and Ur .  

 Cyclic environments can be treated like constant ones through the ploy of making the 

phase of the cycle a component of the birth state. 
 

Applications 
In ESS calculations, including the calculation of population dynamical equilibria, any 

function of X and E that has the same sign as invasion fitness may be substituted for it 

without affecting the answer. Hence, 
 

for the calculation of evolutionary outcomes ln R0( )  does as good a job as 
invasion fitness.  

 

More quantitative precision is needed for dealing with evolutionary transients. The time 

needed for a gene substitution is largely determined by the initial fitness of the mutant allele 

and the final fitness of the allele it replaces, with the two fitnesses determined by the 

heterozygote’s demographic behavior in the resident environments set by the two 

homozygotes. For mutants that are sufficiently similar to the resident, both quantities can be 

determined by means of (18). The speed of long-term evolution is largely determined by the 

establishment probabilities of favorable mutants. For mutants with small effect these 

probabilities can be determined from (19). 
 

A still simpler proxy 
Multiple birth states still necessitate the calculation of an eigenvalue.  Luckily, for a number 

of calculations it is possible to use as fitness proxy the explicitly calculable quantity  

    q(Xm |Xr ) = P(Xm |Xr )(1)        (22) 

with   

    P(Xm |Xr )(z) = −determinant zI − A(Xm |Xr )( )     (23) 

In particular, 
 

provided the set  X  of potential trait vectors is connected, 

X*
 is a global ESS if q(X |X*) < 0  for all X ≠ X*

, and only if q(X |X*) ≤ 0  
for all X. 
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 (A strategy is called a local ESS when it cannot be invaded by nearby mutants and a global 

ESS when it cannot be invaded by any mutant.) Moreover,  
 

any local ESSes can be calculated and their attractiveness determined by 

substituting q  for invasion fitness.  
 

Only when it comes to the calculation of evolutionary transients there is a difference. For 

small mutational steps 

r(Xm |Xr ) ≈
∂r
∂Xm

(Xr |Xr )(Xm − Xr ) ≈κ
∂q
∂Xm

(Xr |Xr )(Xm − Xr )  with  κ =
1

Tb (Xr )
1

dP(Xr |Xr )
dz

(1)
> 0  

(24) 

with progressively more complicated corrections appearing in the higher order terms.  
 

 Similar results hold good for models described in terms of (1) or (2), with Tb = 1  and 
in the case of  (2):  

q(Xm |Xr ) = P(Xm |Xr )(0)   and  P(Xm,Xr )(z) = −determinant zI − B(Xm |Xr )( ) . 
Matrix models with T-Periodic environments can be brought into the fold by in (23) 

replacing A with C(T ) , as defined in the subsection on calculation procedures, and in (24) 
replacing Tb  with T . 
 

 

Aggregates 
 

Meta-individuals 
The infinite dilution assumption allows proving the asymptotic exponential growth of the 

focal population. The definition of invasion fitness only requires this growth pattern. Such a 

pattern also occurs when individuals aggregate, with individuals in an aggregate interacting 

with each other for extended periods of time, provided the aggregates are infinitely diluted (so 

that, although the individuals appreciably influence their immediate environments, they only 

infinitesimally influence the environment outside the aggregate). Some examples of 

aggregates are (i) diploid individuals, or more generally genets, (ii) family groups (with 

singles treated as families of size one), (iii) patches in a structured meta-population, and (iv) 

pairs in so-called pair approximation calculations for a population supposedly living on the 

nodes of a graph. For the invasion problem only aggregates with at least one individual of the 

focal type count. Such aggregates will be referred to here as meta-individuals.  

It is always possible to define an h-state of a meta-individual in the form of a list of 

the types and h-states of all individuals in it, plus a scheme of their possibilities for 

interaction. In the case of a mutant, one other type of individuals are the residents, but in (i) 

they may in addition be alleles on additional polymorphic loci, and in (iii) and (iv) any other 

species in the meta-community. The existence of at least one h-state representation, however 

impractical, allows invoking the multiplicative ergodic theorem. In special models more 

practical simplified representations may be possible. For instance, when the individuals in (iii) 

are all the same but for a distinction between mutants and residents, a patch can be 

characterized with just the mutant and resident numbers, and when moreover the total number 

of individuals in a patch is constant, only the number of mutants is needed.  

The disappearance of all focal types from an aggregate can be interpreted as a meta-

death, the new appearance of aggregates with at least one individual of the focal type as meta-

births. In (i) meta-births correspond to fertilizations, in (ii) to the splitting of families, in (iii) 

to the immigration of an individual of the focal type into a patch not yet containing such 

individuals (the infinite dilution assumption guarantees that a meta-individual once born does 

not experience further immigrations of the focal type), and in (iv) to having a pair of adjacent 

nodes on the graph filled with non-focal type individuals replaced by a pair with at least one 

focal type. 
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 Since meta-individuals reproduce clonally and are infinitely diluted, 
 

all recipes for the calculation of invasion fitness and of proxies thereof equally apply 

to meta-individuals.  
 

In addition,  
 

if the asymptotic per capita growth of the expected number of focal individuals in 

meta-individuals is less than the invasion fitness of the latter, the asymptotic per 

capita rate of initial increase of a type equals the invasion fitness of meta-individuals 

for that type, and hence can rightfully be called the invasion fitness of the type. 
 

 

More general compounds 
For non-fluctuating environments, births were given a special role in the bookkeeping. This 

focus allowed a considerable simplification of the calculations thanks to the fact that at birth 

individuals usually pass through a subset of states that is much smaller than the h-state space 

as a whole. Birth thus provides a bottleneck for the passing on of information from previous 

stages through the life cycle. Such bottlenecks may sometimes also occur elsewhere. For 

example, when in (ii) families may split only when above a certain size, the most 

parsimonious calculations result from treating the reaching of the size threshold as if this were 

the birth-events. There often is considerable freedom in the compounds that can be chosen for 

the role of meta-individual. In making such choices, it pays to build in the severest possible 

bottlenecks.  

In meta-populations consisting of clonally reproducing individuals, the calculations 

are simplest for meta-lifecycles going from new disperser to local colonies founded by 

dispersers to the dispersers produced by such colonies. This leads to taking as fitness proxy 

for constant environments (of the meta-individuals) the probability of surviving dispersal 

times the average number of dispersers produced over the lifetime of an invader colony. For 

diploid meta-populations with small local population sizes the new dispersers are no longer 

equal but should be distinguished according to their birth state: heterozygote or homozygote. 
 

Inclusive fitness 
Although the concept of meta-individual is mathematically elegant, arguments expressed in 

more conventional biological terminology are usually more cogent. The concept of inclusive 

fitness is based on a decomposition of the (exponential of) invasion fitness into an individual 

component and a component that derives from the change in the reproductive output of other 

individuals of the same type caused by interactions with the focal individual. At the invasion 

stage, infinite dilution guarantees that other individuals in a meta-individual only have the 

focal type when those individuals are related by descent. The idea then is that the change in 

reproductive output of non-focal individuals is weighed with the probability that these 

individuals are identical by descent to the focal one.  

For simple ecological scenarios, with e.g. non-overlapping generations, fixed size 

aggregates and mutants that closely resemble the residents, it is possible to separately 

calculate the various contributions before combining them.  (The close resemblance is needed 

to guarantee that selection does not affect the probabilities of identity by descent and that 

fitness effects are approximately additive.)  

When possible, calculations through the inclusive fitness route are preferable, as the 

resulting decomposition helps in interpreting trait evolution. When higher cognitive abilities 

do not come into play, meta-individual-based techniques usually have a larger reach than 

inclusive-fitness-based ones. When meta-individual-based techniques work, it is possible in 

principle to reconstruct the ingredients occurring in an inclusive fitness calculation, at least 

numerically. However, doing so often is far more complicated than directly calculating 

invasion fitness, and hence may contribute less insight than one has come to expect from the 

simple cases. 
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Mendelian diploids 
 

Setting the stage 
Many biologists’ prime concern are traits characterizing the sort of individuals they can hold 

in their hand instead of traits of underlying clonally reproducing genes, of which the visible 

bearers are but uneasy coalitions. This section considers how the invasion fitness of genes 

relates to the traits of their carriers. Part of that story is contained in the developmental map 

from genotypes to traits and in the ecological processes translating traits into demographic 

parameters. Here, it is only considered how transmission genetics and demography conspire 

in determining invasion fitness. And that only for a few ecological scenarios akin to those 

usually considered in population genetics: unstructured populations in discrete time or 

structured ones with a single birth state and non-fluctuating environmental attractors, all with 

randomly uniting gametes.  

 A second aim of this section is exemplifying the calculation of invasion fitness when 

there is more than one birth state. 

The arguments will be couched in the well-honed formalism of population genetics, 

as this is far more efficient than working in terms of the population dynamics of alleles. (The 

reason for the earlier stress on the population dynamical viewpoint is that the latter is 

conceptually more encompassing.) The initial growth ratio of a population of mutant alleles is 

independent of whether this ratio is calculated from the approximate dynamics of low allele 

frequencies or from the dynamics of expected population sizes.  

The trait vector produced by a genotype G will be denoted as XG , with f (XG |E) , 
also abbreviated as fG , the corresponding average per capita lifetime macrogametic output, 

and m(XG |E) , abbreviated as mG , the average per capita lifetime output of microgametes 

times their fertilisation propensity. Thus, fG  equals the average number of kids mothered by 

a randomly chosen G-individual and mG  is proportional to the average number of kids 

fathered. 
 

Monomorphic residents 
Let the mutant allele be denoted as A, the resident allele as a, and their frequencies in the 
micro- and macrogametes as pA , pa  respectively qA , qa . The recurrences for the 
unstructured case are, with the next generation indicated by a prime,  

   ′n = f  n , 
   m ′pA = mAA pAqA + 1

2 maA (pAqa + paqA ) ,  
    f ′qA = fAAqA pA + 1

2 faA (qA pa + qa pA ) , 
with           (25) 

   m = pAqAmAA + (pAqa + paqA )maA + paqamaa , 

     f = qA pA fAA + (qA pa + qa pA ) faA + qa pa faa . 
 

Substituting  pa = 1− pA  and qa = 1− qA  and dropping quadratic terms gives for the 

frequencies of the two states in which allelic meta-individuals can be born 

         ′pA ≈ 12
maA

maa

pA + qA( ) ,      ′qA ≈ 12
faA
faa

pA + qA( ) ,   (26) 

which on adding give 

pA + qA( )′ ≈ 12
maA

maa

+
faA
faa






pA + qA( ) .   (27) 

Hence, in unstructured populations 

ρ XaA |Xaa( ) = ln 1
2

m(XaA |Xaa )
m(Xaa |Xaa )

+
f (XaA |Xaa )
f (Xaa |Xaa )













time

,  (28) 
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and in non-fluctuating environments 

      R0 XaA |Xaa( ) = 12
m(XaA |Xaa )
m(Xaa |Xaa )

+
f (XaA |Xaa )
f (Xaa |Xaa )






,  (29) 

a result known as the Shaw-Mohler formula. Formulas (28) and (29) lie at the hart of the 

calculation of phenotypic ESSes and evolutionary trajectories (on the suppositions that the 

former are effectively genetically homozygous, respectively of effective mutation limitation). 
 

Polymorphic residents, allelic evolution  
Now assume that the resident population is dimorphic on the A-locus, and that the traits of the 

three corresponding genotypes are subject to modification either by the invasion of other 

alleles or by new alleles on other, previously monomorphic, loci, generically called B. To 

keep the formulas simple, the standard textbook assumption is made that m and f are 
proportional for all values of their arguments. Moreover, it will be assumed that the resident 

environment does not fluctuate. In that case, if mr  and fr  denotes the values of m  and f  at 
the resident equilibrium, m mr = f fr = f  (since at equilibrium fr = 1 ). Their common 

value is indicated as w in accordance with population genetical tradition. 
 First consider allelic evolution, with the mutant allele denoted as α . For small pα  
     ′pα = w•α pα   with  w•α = w Xaα |Xaa ,XaA ,XAA( ) pa + w XAα |Xaa ,XaA ,XAA( ) pA . (30) 
Hence,   

R0

Xaα

XAα







 
Xaa

XaA







,
XAa

XAA












= w•α ,   (31) 

where the form of the formula brings out that the phenotype engendered by an allele consists 

of two components, expressing the dependence on the two intra-aggregate environments that 

it may encounter.  In population genetics w•α  is known as the marginal fitness of the α -

allele. 
 

Polymorphic residents, modifier driven evolution  
The final example considers a mutant B  on a so-called modifier locus that previously was 

monomorphic for b . The rule that symbols playing no role in the argument are dropped lets 

aa  stand for aabb , aaB  for aabB , etc. When B  is rigidly coupled to a  the pair aB  

behaves like a new A-allele, with invasion fitness w•aB  defined by (30) with α = aB . A 

similar consideration applies to a pair AB . In general the standard rules of transmission 

genetics give for the gamete frequencies paB  and pAB  

    
′paB = waaB pa paB + waAB (1− c)pA paB + waABcpa pAB
′pAB = wAAB pA pAB + waAB (1− c)pa pAB + waABcpA paB

   (32) 

with c the recombination probability and pa  and pA  calculated from the equilibrium 

equations corresponding to (25). In vector-matrix form: 

    
paB
pAB






′
= A

paB
pAB






   with   A =

w•aB 0
0 w•AB






+ cwaAB

−1 1
1 −1






.  (33) 

Hence  

   q
XaaB

XaAB

XAAB













  

Xaa

XaA

XAA




























= − w•aB −1( ) w•AB −1( ) + cwaAB w•aB + w•AB − 2( ) . (34) 

 A polymorphism is evolutionarily steady if it is uninvadable by both alternative 

alleles and modifiers. The first can be judged from (31). Since q  is linear in c , q  is maximal 

for c = 0  or c = 1
2 . Therefore, it suffices to consider q  for those values of c only. The case 
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c = 0  is already covered by the condition that no alternative allele is able to invade. So all 
that has to be done to deal with modifiers is to consider q  for c = 1

2 . 
 

Ideal free evolutionarily steady polymorphisms  
ESS arguments may often be further simplified by the observation, due to Eshel and Feldman, 

that (c.f. (21)) 
 

   R0 (B) = 1
TAU = uaBw•aB + uABw•AB = pauaBwaaB + (pAuaB + pauAB )waAB + pAuABwAAB . (35) 

 

Hence, if w(X | Xaa ,XaA ,XAA )  is maximal and equal to 1 at X = Xaa , X = XaA  and 

X = XAA , the triple (Xaa ,XaA ,XAA )  is evolutionarily steady. Evolutionarily steady 

polymorphisms that equalise the reproductive output of the morphs are called ideal free. 

Hence, 
 

ideal free evolutionarily steady genetic polymorphisms can be calculated by treating 

each phenotype as if it reproduces clonally, with the additional constraint that at birth 

the phenotypes should occur in Hardy-Weinberg proportions. 
 

Similar statements apply to the sexually differentiated case and to polymorphisms in more 

than one locus. 
 

 

Coda 
 

Why initial growth rates? 
One consideration behind the definition of invasion fitness is that the resulting quantities 

should link evolutionary features for arbitrary ecological scenarios with similar features for 

the classical simple viability selection model. In the latter model with viabilities 

vAA > vaA > vaa , the time taken for a gene substitution is largely determined by the initial and 

final exponential phases, which have as time constants the invasion fitnesses ln vaA vaa( ) > 0  
and ln vaA vAA( ) < 0 . Gene substitutions in more general ecologies generally follow the same 

pattern. Similarly, two alleles will coexist if they have positive invasion fitness in the 

environment set by the other allele, which for simple viability selection reduces to the 

classical vaA > vaa  & vaA > vAA . Making the quantitative links requires (invasion) fitness to 

be defined as the asymptotic per capita growth rate. 

For long-term evolution, invasion probabilities are the most important. However, for 

their full quantitative determination less accessible life history details are needed, while the 

essential qualitative information, as well as a good quantitative estimate for small mutational 

steps, can be extracted (up to a proportionality constant) from invasion fitness.  
 

Under weak selection invasion fitness even does the full job of population genetical fitness  
When the phenotypes under consideration are sufficiently similar, a case can even be made to 

drop the epithet ‘invasion’. Under the similarity assumption, for fairly general classes of eco-

genetic models the change in the genetic make-up of the population approximately follows 

the differential equations standard derived for simple viability selection, with log-viabilities 

replaced by invasion fitnesses in the environment that would be generated by a clonally 

reproducing population with the average phenotype. This in retrospect vindicates Fisher’s use 

of differential expressions mentioned in the introductory section, but only under the 

assumption of like phenotypes, and with a reference to the environment thrown in. (Note also 

that under the similarity assumption alleles on the different loci and h-states are all (almost) 

independent, so that there is no need to consider reproductive-value-weighted allele 

frequencies; moreover, ln R0( ) Tb  can replace the Malthusian parameters.) Under the same 

assumption, although the mean fitness of the population stays (approximately) zero, this lack 

of change can be decomposed into two opposing terms, the first corresponding to the 

expression brought to the fore in Fisher’s fundamental theorem, and the second equal to the 

average change of the phenotypic fitnesses caused by the environmental change resulting 
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from changes in the population composition, consonant with Fisher’s verbal exegesis of his 
theorem. 
 

Not the last word 
Apparently, invasion fitness, as defined in this entry, does a good job. Only one assumption, 
infinite dilution, was needed for its definition. Perhaps the reach of the concept can be 
extended still a little further. However, there will certainly remain ecological scenarios where 
the extension fails. This does not mean that under those scenarios there never will be adaptive 
evolution, only that it is not possible to deduce its outcomes by means of the conceptual 
precision tool called invasion fitness. 
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