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Abstract 

Theoretical models predict that parents should adjust the amount of care both to their own and 

their partner's body condition. In most biparental species, parental duties are switched repeatedly 

allowing for repeated mutual adjustment of the amount of care. In the mouthbrooding cichlid 

Eretmodus cyanostictus terms are switched only once with females taking the first share. The 

timing of the shift of the clutch between mates strongly determines both partner's brooding 

period and thereby their parental investment. Females signal their readiness to transfer the young 

several days before the male finally takes them suggesting sexual conflict over the timing of the 

shift. In a lab experiment, we reduced the body condition of either the female or the male of a 

pair to test whether energy reserves affect the timing of the shift, and whether female signalling 

behaviour depends on energetic state. Males with a lowered condition took the young later and 

incubated for a shorter period, which prolonged the incubation time of their female partners. 

When female condition was lowered, female and male incubation durations remained 

unchanged, although females signalled their readiness to shift more intensely. Our results 

suggest that males adjust their parental investment to own energy reserves, but are unresponsive 

to their mate's condition. Females appear to carry the entire costs for the male's adjustment of 

care. We propose that intrinsic asymmetries in the scope for mutual adjustment of parental 

investment and the costs of negotiation crucially influence solutions of the conflict between 

sexes over care. 

 

Key words: sexual conflict, parental care, negotiation games, cichlids 

 

Introduction 

Differences in relative costs and benefits of parental investment between sexes can generate 

conflict about parental care (Trivers 1972, Parker et al. 2002, Houston et al. 2005). Asymmetries 

between sexes in the costs of care can be caused, among others, if parents differ in the amount of 
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energy reserves they have available. Often brood care is energetically demanding (Golet & Irons, 

1999, Horak et al. 1999) and it can reduce the residual reproductive value of a caring parent 

(Daan et al. 1990). Parents in poor condition may be forced to terminate brood care and to give 

up their brood (reviewed in Clutton-Brock 1991; Szekely et al. 1996). Thus parents are expected 

to adjust the amount of care to their own and their partners' body condition. If both parents care 

but one mate is forced to reduce its share, e.g. by experimentally lowered reserves or increased 

workload, the partner usually compensates for this reduction to some extent (e.g. Aequidens 

paraguayensis, Mrowka 1982; Sturnus vulgaris, Wright & Cuthill 1989; Nectarinia osea, 

Markman et al. 1995, 1996; Parus major, Sanz et al. 2000; Charadrius alexandrinus, Szekely & 

Cuthill 2000; Eretmodus cyanostictus, Grüter & Taborsky 2004). 

 

Game theoretical models suggest two avenues how the division of labour for the current brood 

can be determined in developmental time by negotiation.  In 'competitive games' a parent should 

only partially compensate for a reduction of its partner's effort to prevent exploitation of its own 

effort by the partner. The equilibrium investment of both partners is then expected to be below 

the equilibrium of best responses in a game without prior negotiation (Houston & Davies 1985, 

McNamara et al. 1999). In 'cooperative games', partners bargain promises or threats about the 

investment they are willing to pay or to deny that are credible and fully binding. For example, 

the decision of a male to care for the brood may be influenced by honest signals of its female 

partner indicating that her body condition is too low to perform brood care alone (Barta et al. 

2002, Houston et al. 2005).  

 

In most biparental species, partners take turns in parental duties repeatedly. Parents incubate, 

defend or provision the young alternately, while their partners have the opportunity for recovery 

and self-maintenance (e.g. Szekely & Cuthill 2000), but also to adjust the mutual investment 

during a potential negotiation process (McNamara et al. 1999, McNamara et al. 2003). Only 
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rarely parents care for the brood in non-overlapping terms with each parent providing care 

during a single term only. This pattern occurs in a number of mouthbrooding cichlids of the East 

African Lake Tanganyika (Xenotilapia boulengeri, Tanganicodus irsacae and Eretmodus 

cyanostictus; Kuwamura et al. 1989). For example, E. cyanostictus females incubate the young 

for 7-10 days before transferring them to the male that broods for another 12-16 days after which 

young are independent. Mouthbrooding is energetically costly. No food is taken up during 

incubation, which results in substantial weight losses of male and female parents (Grüter & 

Taborsky 2004, 2005). Because of the peculiar sequence of care taking, female E. cyanostictus 

would only be able to reduce their share in brood care if males cooperate (i.e. take up the young), 

while they have no or little control over the duration of male care. Given the strong asymmetry 

in the potential to control decisions and given the fact that females can almost double the length 

of their incubation period if males are experimentally removed (Grüter & Taborsky 2004), it is 

surprising that usually males take the larger share of brood care in this species, and this may 

suggest a cooperative division of labour between partners.  

 

However, earlier observations on the behavioural interactions between pair members during 

incubation casts doubt on a cooperative share of duties in E. cyanostictus (Grüter & Taborsky 

2005). Females signal their readiness to transfer the young to their partner repeatedly already 

several days before the shift takes place by showing a peculiar display behaviour. During this 

'Female-to-Male Shift display' or 'FMS-display' females take a head-down position, open the 

mouth and shake the body for a short moment to several seconds. During the display, females 

sometimes drop a young, which they quickly catch before it reaches the ground (see Grüter & 

Taborsky 2005 for a graphical illustration of this behaviour). The shift of duties between pair 

partners occurs, when the male finally catches the dropped young and keeps it in its buccal 

cavity. Apparently, a behavioural negotiation process between partners takes place, where males 
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do not respond immediately to the transfer signals of females. Nevertheless, females might gain 

partial control over the timing of the shift of young by varying the intensity of FMS displays. 

 

To explore the roles and the potential for control of males and females in this negotiation 

process, we aimed to perturb the equilibrium division of labour experimentally. We achieved this 

by manipulating the energy reserves of breeders, as incubating parents continuously lose weight 

and therefore incubation duration should be critically limited by available reserves. We food-

deprived either male or female of a pair independently of each other for a limited period of time 

to lower their body condition, and recorded incubation durations, intensity of female signalling 

behaviour and potential fitness consequences of lowered condition on parents and offspring.  

 

As a reaction to lowering the body condition, we expected females to attempt to transfer the 

clutch earlier than females in good condition by signalling their increased need by a higher rate 

of FMS-displays. Accordingly, we expected males in low condition to take the young later and 

incubate shorter than when in good condition. Predictions about the responses of partners to their 

mates' lowered condition differ for cooperative and competitive games between partners. If the 

interactions we observe result from a cooperative adjustment of the level of effort, females 

should reduce the rate of FMS-displays when male condition was experimentally lowered, 

thereby signalling their readiness to incubate for a longer period. When female condition had 

been reduced, males should readily respond to increased female signalling by taking the young 

earlier and they should then incubate for a longer period. If partners engage in a competitive 

game over care, females should maintain their signalling rate even when male condition is 

reduced in order to prevent males from exploiting female effort. Similarly, when female 

condition is reduced, males should not or only hesitantly respond to their females' increased 

signalling effort.  
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Methods 

Experimental set-up 

The experiments were conducted at the University of Bern using wild caught fish and their first 

and second generation offspring. Before and after experiments, fish were kept in 250 to 450-litre 

stock tanks, where they formed pairs and co-defended all purpose territories against conspecifics, 

similar as in the natural habitat of this species. All fish were kept at a water temperature of 

27±1°C and a L:D cycle of 13:11h with 10 min twilight at the beginning and end of the light 

phase to mimic the day lengths at Lake Tanganyika.   

 

For the experiments, we divided six 200-l aquaria into 12 similar sized 100-l compartments by 

transparent Plexiglas partitions. The compartments were equipped with a 3-cm layer of river 

sand and an internal biological filter. Eight flower pot halves, a PVC tube, a PVC plate and 

coarse gravel provided shelters for adults and young. Each compartment was stocked with one E. 

cyanostictus pair that had been taken from the stock tanks (females: 6.3-7.3 cm standard length 

(SL), weight 8.35-12.64 g; males: 6.9-7.8 cm SL, weight: 10.28-14.45 g). The transparent 

partitions between the compartments allowed visual contact between the two pairs of a tank, but 

almost entirely prevented water flow and thereby the exchange of olfactory cues between them. 

This should help to stabilize the pair-bonds before and between the actual experimental periods 

(Itzkowitz & Draud 1992), as from earlier observations we knew that pairs divorce more likely 

when kept in complete isolation from conspecifics (C. Grüter and M. Steinegger, pers. obs.). 

However, as soon as one or both experimental pairs had spawned, an opaque PVC partition was 

placed between the compartments in addition to the transparent partition preventing further 

visual contact between pairs until incubation was terminated to avoid the influence of 

conspecifics on incubation durations (see Grüter & Taborsky 2005). 
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Experimental pairs were checked daily for pairing and breeding status. If a pair member showed 

continued aggression against its mate or if a fish had signs of injury, we separated the pair 

members immediately. Before, between and after experiments fish were fed twice per day. They 

were fed TetraMin flake food (4 days a week), frozen zooplankton (2 days) and TetraPhyll flake 

food (1 day; both flake food types produced by Tetra, Blacksburg, VA, USA). 

 

Main experiment 

Fifteen pairs were allocated successively to three treatments: (1) male and female body condition 

not manipulated during incubation (control treatment); (2) male body condition reduced before 

incubation (male treatment); (3) female body condition reduced before incubation (female 

treatment). The sequence of the three treatments was randomly assigned to each pair. 

 

Control treatment: Male and female of a pair were separated daily for 90 min by a coarse plastic 

mesh during the entire female incubation period. During this time the male was fed ad libitum 

with a food cube made of TetraMin, zooplankton and agarose gel as carrier medium. At the end 

of the 90 min period, the remainders of the food cube were removed. Females were not offered 

food, because they do not feed during incubation (Morley 2000, Grüter & Taborsky pers. obs.). 

During male incubation, females were fed following the standard feeding regime (see above), 

while males do not feed when mouthbrooding. 

Male-treatment: Like in the control treatment, males and females were separated every day for 

90 min by the plastic mesh during female incubation. However, in this treatment no food was 

provided for the male. This treatment aimed to reduce the male’s body condition before he 

started to incubate. The experimental starvation period of about 10 days (i.e. during the female 

incubation period) is not expected to harm the fish as (i) fish of this size can be easily kept 

without food for up to 30 days without negative effects on their health (e.g. incubating females 

of the cichlids Tropheus moori and Ctenochromis horei starve deliberately for up to six weeks 

 7



 

and four weeks, respectively, Yanagisawa and Sato 1990; Taborsky and Foerster 2004), and (ii) 

some E. cyanostictus starve naturally during incubation for maximum periods that can be longer 

than 10 days (Morely 2000). As in the control treatment, females were fed normally during male 

incubation. 

Female-treatment: To lower the body condition of females before they start to incubate, we 

aimed to reduce their ration for approximately 10 days before spawning. In the laboratory, the 

period between the shift of young from females to males and next spawning is on average 20 

days (Grüter & Taborsky 2004). Therefore we starved females from the 10th day after the shift of 

a brood until next spawning occurred, while males received a  food cube every day during a 90- 

min period of separation from the female. However, as we did not know whether female 

starvation may inhibit oocyte maturation, we provided females with food ad libitum once every 5 

days during the female treatment until spawning took place. All spawning occurred within 28 

days after the onset of the female treatment. During female and male incubation the set-up and 

feeding procedure was identical to the control treatment. 

 

On the day young were released by the male and were independent, we measured adult SL 

(nearest 0.5 mm) and weight (nearest 0.01 g). We counted the young, measured their SL (nearest 

0.1 mm) and weighed them to the nearest 0.1 mg with a high-precision balance. For weighing, 

we placed each individual young in a small Petri dish containing a moistened cotton pad, which 

removed spare water from the body surface but prevented it from becoming dry. Then the young 

was placed back in a holding container. The difference between the dish with and without fish 

was used as wet weight of the young. Afterwards adults were placed back in their experimental 

compartment and the young were transferred to a separate stock tank for juvenile fish. 

 

When a pair had completed all three treatments, it was transferred back into its original stock 

tank. Pairs that divorced before completing all three treatments were moved to stock tanks 
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containing juvenile fish. In most cases the divorced partners re-mated soon again and were used 

again for the experiments. 

 

Six pairs completed incubation successfully in all three treatments, one pair completed control 

and female treatment and six pairs completed only one treatment (three female treatments, two 

male treatments, one control). Brood failures were caused by male aggression (female 

abandoned eggs or had to be separated from male) or by male handicaps obliging the female to 

incubate alone (one male got blind and one male had a deformed mouth). 

   

Effect of food deprivation on female condition and egg production  

In an additional series of experiments, we tested for a potential effect of food deprivation on 

female clutch size, egg mass and interspawning interval (defined here as interval between end of 

female incubation and next spawning; see Grüter & Taborsky 2004). Ten pairs were exposed to a 

female treatment (female body condition reduced) and a control treatment (no manipulations of  

condition) in random order. Experimental set-up and procedure until spawning were identical to 

the main experiment, but in these experiments we removed the eggs from females shortly (2.65 d 

± 0.70 s.d.) after spawning. Females were coaxed to release their eggs in a plastic dish with 

water by holding the fish almost in a head-down position and dipping their head in and out the 

water one or two times (cf. Morley 2000). Females started to release their eggs immediately, and 

the entire procedure takes between 10 and 20 s depending on clutch size. We measured female 

SL and weight as described above and weighed each individual egg. To take the fresh weight of 

an egg we placed it on a piece of aluminium foil, dried its surface gently with a piece of tissue, 

waited for 3 min to let the remaining water evaporate and then weighed it to the nearest 0.1 mg 

with a high-precision balance. Subsequently each egg was dried at 75°C for 24 h and weighed 

again. 
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Video analyses 

According to Grüter & Taborsky (2005), the FMS-display is not shown before day 4 after 

spawning. Therefore we took real-time video-recordings during the daily 13-h light period from 

day 4 after spawning until all young had been shifted to the male. Indeed, in our experiments, the 

earliest FMS-displays occurred on day 5 after spawning, but most females started even later (see 

results). One pair shifted the young already on day 4 during the first treatment, and therefore this 

pair was filmed from day 1 after spawning in the two subsequent treatments. No FMS-display 

was shown in this pair during these trials. The recordings suggest that the male aggressively 

forced the female to shift the young. The recordings of pairs successfully breeding in all three 

treatments were analyzed in real time to count the number of FMS-displays. To avoid observer-

bias, videotapes were analyzed in a random order while the observer (MS) was blind with regard 

to treatment and date. 

 

Statistical analysis 

Statistical analysis was carried out using SPSS 12.0. All statistical tests are two-tailed unless 

otherwise mentioned. In all tests our sample sizes were ≤12. We used non-parametric tests 

throughout, as  we cannot test reliably for a deviation from a normal distribution of data for such 

small sample sizes. Medians and quartiles (in square brackets) are given for descriptive statistics. 

 

Results 

Main experiment 

When males were food-deprived, females incubated on average 2.5 days longer than in control 

treatments (Wilcoxon matched-pairs signed ranks test, T=0, N=6, P=0.043; Fig. 1), while  males 

incubated on average 1.5 days shorter (Wilcoxon test, T=0, N=6, P=0.043) compared to controls. 

At the end of incubation, males were on average 3.3% lighter after a male treatment (11.26 g 
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[11.16, 12.45]) than after a control treatment (12.18 g [11.52, 13.10]), but this difference was not 

significant (Wilcoxon test, T=1, N=5, P=0.08). 

 

In contrast, in the female treatment, neither female nor male incubation times differed 

significantly from the control treatment (female incubation time: T=4, N=7, P=0.72; male 

incubation time: T=0, N=6, P=0.11; Wilcoxon tests; Fig. 1).  

 

Total incubation time did not differ between treatments (female treatment: 23 days [22, 24], male 

treatment: 23.5 days [22.25, 25.5], control: 24 days [21.5, 25], N=6 in all cases; female treatment 

vs. control: T=4, P=0.17; male treatment vs. control, T=2, P=0.14; Wilcoxon tests). 

 

As expected, independent young were larger when they had been incubated for longer periods 

(regression analysis for SL, R2=0.41, N=15, P=0.01). This corresponds to an estimated growth 

increment of 0.13 mm for each extra day of incubation assuming an approximately linear growth 

of larvae. Clutch sizes and offspring lengths and weights did not differ when comparing female 

and male treatments with the control treatment, respectively (Tab. 1).  

 

Usually, females started to show FMS-displays from day 7 (=median; quartiles: 6, 8 days; 

minimum: 5 days) after spawning. During controls, a maximum total number of 188 displays 

was observed (daily maximum: 166 displays), while the highest total display frequency (372 

times) occurred in a female treatment (daily maximum in female treatments: 214 displays). In 

female treatments, FMS-displays were shown at a significantly higher daily rate (Wilcoxon test, 

T=0, N=6, P=0.028; Fig. 2) and in higher total numbers during female incubation (Wilcoxon test, 

T=0, N=6, P=0.028), while neither the daily rate (Wilcoxon test, T=1, N=5, P=0.14; Fig. 2) nor 

the total frequency of displays (Wilcoxon test, T=4, N=5, P=0.72) differed between male 

treatments and controls. 
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Effect of food deprivation on female condition and egg production  

On the day after spawning, females were on average 3.9% lighter when having been in a female 

treatment during the previous breeding cycle than when having been in a control treatment 

before (Wilcoxon test, T=1, N=8, P=0.017; Fig. 3). Interspawning intervals, clutch sizes and 

fresh and dry egg weights were not significantly affected by the female treatment (Tab. 2). 

 

Discussion 

As expected, Eretmodus cyanostictus males incubated the clutch for shorter periods when their 

body condition had been reduced experimentally, suggesting that they adjusted parental 

investment to their body reserves (see Barta et al. 2002). In general, potential costs of being of 

lower body condition are an increased risk of predation and a higher probability of catching 

diseases (reviewed in Smith & Wootton 1995). The reduction of male incubation period occurred 

by young being shifted later than in controls, resulting in longer female incubation. Thereby, the 

total brood care period remained unchanged and, consequently, we did not detect any adverse 

effects on offspring fitness. 

 

Contrary to our expectation we found no effect of food deprivation on the female incubation 

period. There are several possible explanations why male but not female incubation was affected 

by food deprivation. (i) Males may be more sensitive to a lowering of energy reserves before 

incubation, because males incubate for a longer period than females and therefore any additional 

energetic costs might be more detrimental for them. However, our results render this possibility 

unlikely, as the relative weight differences of fish after the control treatment and after a 

starvation treatment was similar in males and females. (ii) The fitness consequences of starvation 

may differ qualitatively between sexes and a reduction of care may only be observed in the more 

strongly affected sex. This was suggested for great tits, Parus major, in which brood care seems 
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to affect male survival more strongly than female survival (Sanz et al. 2000). In these birds 

males reduced care after being experimentally handicapped by feather-clipping and females fully 

compensated for reduced male care, while males did not increase care after females had been 

handicapped. In E. cyanostictus females, food limitation during a reproductive event is likely to 

affect future reproductive output under natural conditions, although we did not find evidence for 

this under lab conditions; neither inter-spawn intervals nor number or weight of eggs were 

affected by the female treatment. Under natural conditions, males with a reduced condition may 

be less able to defend the pair territory, which may result in territory loss as in E. cyanostictus 

males take the more active role in defence (Morley and Balshine 2002). Hence, although the 

potential costs for males and females are not directly comparable, male costs may be regarded to 

be more severe as a loss of the territory during incubation may result not only in the loss of the 

current brood but also of a secure place for both partners to produce future clutches. (iii) Females 

may be coerced to incubate for the same duration as in control trials, if males do not respond to 

the reduced condition of their mate and refuse to take the young earlier. Our results suggest that 

this may indeed be the case. Females with an experimentally reduced condition showed the 

FMS-displays more often than controls, probably to signal their higher need to shift the young, 

but apparently this did not motivate males to take the clutch earlier. 

 

Similarly, it is possible that males with reduced condition coerced females to incubate longer in  

male treatments by not taking the young in time. Alternatively, compensation for reduced 

paternal care may have been a strategic decision of females in order not to compromise growth 

(Grüter and Taborsky 2004, this study) and thereby survival chances (McCormick & Hoey 2004, 

Schürch & Taborsky 2005) of offspring. If this was true, we had expected that females signal 

their readiness to incubate longer by reducing the rate of FMS-displays. However, the frequency 

of FMS-displays did not differ between male and control treatment suggesting that females may 

have compensated forcibly.  
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Based on these results, it is difficult to judge the role of FMS-displays in the negotiation about 

the amount of parental care, as we did not find an effect of female signalling on male incubation 

duration or of male condition on signalling frequency. However, the latter test had low power 

because of a very small sample size. In addition to the presumed role in negotiation, the display 

seems to be involved in the agreement between partners about the place of the shift (Steinegger 

& Taborsky in prep.). This may be crucial for a quick transfer of young, as in the natural habitat 

numerous potential egg and larvae predators are abound (B. Taborsky, pers. obs.) and the risky 

time outside the parental buccal cavities should be minimized.   

 

In summary, our results suggest that E. cyanostictus males do adjust their parental investment to 

their own energy reserves, the costs for this adjustment being carried entirely by the female. Both 

sexes appeared to be largely unresponsive to the energetic state of the partner, which renders 

cooperative bargaining over duties unlikely in this species, and suggests the existence of strong 

sexual conflict over parental care (see Houston et al. 2005). Still E. cyanostictus males incubate  

always longer than females and remain faithful even if alternative mating partners are presented 

in excess (Grüter & Taborsky 2005). If males could indeed decide to a large extent about both 

partner's investment, why do they not exploit their mate's effort more strongly or even desert 

mouthbrooding females to seek alternative matings?  

 

Several circumstances may limit the males’ potential to exploit their mate’s effort. (i) E. 

cyanostictus females experimentally forced to incubate alone release smaller, less developed 

young with reduced survival chances than after biparental care (Grüter and Taborsky 2004). This 

is in accordance with the predictions of a model by Barta et al. (2002) that biparental care can 

only be evolutionary stable, if none of the partners has enough reserves to care for the young 

alone. (ii) Barta et al. (2002) had also predicted that under certain conditions females may 
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impose a handicap on themselves by reducing their energy reserves deliberately below a level at 

which they cannot raise offspring alone thereby forcing males to provide brood care. The FMS-

display could be regarded as a possible candidate for such a self-inflicted handicap, as it can be 

assumed to be costly both energetically and in terms of predation risk for mother and young. 

Females might show the display frequently to force males to take over the clutch soon in order to 

prevent females from lethal exhaustion and/or to reduce the risk for young. However, our results 

do not support this hypothesis, as males did not respond to higher FMS-display rates. (iii) The 

amount of conflict over care may be reduced if mates have common interests, for example when 

mates remain mated monogamously over several breeding seasons. In this case, mates should 

have an interest to maintain their partners in good condition to enhance their survival and 

fecundity during following breeding events (reviewed in Mock & Fujioka 1990; see also 

Houston et al. 2005). Field data suggest that in a high proportion pairs stay together for 

successive broods, but that monogamy is not lifelong (B. Taborsky, unpubl. data). (iv) Finally, a 

deserting male may have a low chance to occupy a new territory or to find unmated females due 

to a male-biased sex ratio (Morley & Balshine 2002).  

 

E. cyanostictus is one of the few biparental species where brood care is performed strictly in 

non-overlapping periods with only one shift of parental duties from the female to the male. The 

peculiar female display behaviour may make this species an ideal model for direct observations 

and manipulations of the process of negotiation over parental care (McNamara et al. 1999). 

There are two qualitative differences from the assumptions made in the model by McNamara et 

al. (1989). (i) In E. cyanostictus, most likely the negotiation process is costly, and (ii) the options 

of partners during negotiation are intrinsically highly asymmetric. Besides differences in quality 

between partners as considered by McNamara et al. (1999), we propose to include costs of 

negotiation and the role of intrinsic asymmetries in the scope to respond to partners in future 

theoretical work on the negotiation about the amount of care between mates.  
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Table 1  Comparison of clutch size, offspring size (SL) and offspring weight after release between the control vs. female and male treatment, 

respectively (Wilcoxon matched-pairs signed-ranks tests). 

 Control treatment  Female treatment T P N Male treatment T P N

Clutch size 13 [4.75, 16.75] 9.5 [6.25, 12.75] 6 0.69 6 5.5 [3.25, 16.75] 7.5 1 6 
SL (mm) 10.64 [10.23, 11.30] 10.51 [10.39, 11.30] 5 0.25 6 10.59 [10.27, 11.32] 3 0.22 6 
Weight (mg) 25.9 [24.5, 27.6] 25.7 [24.0, 30.7] 9 0.75 6 28.4 [25.9, 31.0] 6 0.35 6 

 

 4 



 

Table 2  Comparison of interspawning interval, clutch size, fresh weight and dry weight between 

control and female treatment (Wilcoxon matched-pairs signed-ranks tests). 

5 

6 

7  

 Control Female treatment T P N 

Interspawning interval 24.5 [21.2,30.2] 25.0 [22.0,30.5] 29.5 0.46 12 

Clutch size 27    [24, 36] 32    [30, 36]   6.5 0.2 8 
Fresh weight (mg) 14.3 [12.8, 16.0] 14.0 [13.0, 14.8] 14.0 0.58 8 
Dry weight (mg) 7.6   [7.0, 8.0] 7.0   [6.8, 8.3] 10.0 0.26 8 
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Figure Legends 27 
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Fig. 1  Female (light grey bars) and male (dark grey bars) incubation time during control, male 

and female treatments. Medians and quartiles are shown. * p < 0.05 

 

Fig. 2  FMS-display rate in the control, male and female treatments.  Medians and quartiles are 

shown. * p < 0.05     

 

Fig. 3  Weight of females after spawning following a female treatment or a control treatment.  
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Fig. 1, Steinegger & Taborsky 
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Fig. 2, Steinegger & Taborsky 
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