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ABSTRACT

The values of the players in an n-person cooperative game
are analyzed by considering a simple auction model in which
outside "entrepreneurs" bid to acquire control of the players.
This bidding procedure always has a Nash equilibrium in pure
strategies, thus yielding a concept of "market values" for the
players. This class of values is easy to characterize and con­
tains the core of the game. The model applies to various val­
uation problems (such as estate auctions, the setting of wage
structures for laborers, or the valuation of divisions of a
corporation) in which indivisible factors are present and there
may be increasing returns to scale.
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An Estate Valuation Problem

Uncle Rufus, a bachelor, dies leaving his estate to his

three maiden sisters, Irma, Ora, and Mildred. The estate con­

sists of three farm properties plus cash in the bank. Rufus's

will specifies that Irma is to get the hill farm, Ora the prairie

land, and Mildred the main house and surrounding pasture. How­

ever the will also specifies that each sister is to receive an

equal share of the total estate, any differences in the value of

the parcels being made up by a suitable distribution of the cash.

Unfortunately, a dispute arises concerning the value of the

three properties. An appraiser is called in, and gives the fol­

lowing values:

(1)

HF

MH

PL

$130,000

$148,000

$155,000 .

But Irma maintains that the appraisal underestimates the

value of her sisters' shares: the main house and prairie land

together are worth much more than $303,000, since they can be

farmed as a unit, realizing economies of scale. Irma contends

she is being treated unfairly because of the way the property

was divided. But Ora notes that the same argument can be made

against the valuation of Irma's and Mildred's shares, since the

hill farm could also be combined advantageously with the main

house and pasture. Mildred has a similar complaint.

The fact is that the property kept all together as Rufus had

it would be considerably more valuable than the appraised values

of its parts.

So the appraiser is recalled and gives the following esti­

mates:

(2 )

HF & HH

HF & PL

PL & MH

HF & PL & 11H

$310,000

$320,000

$420,000

$550,000 .
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The greatest loss in efficiency is in dividing the main

house from the prairie land, but all combinations of two proper­

ties realize some economies of scale. The conjunction of the

hill farm with the main house/prairie land combination does

not produce any further economies of scale however. The problem

is how to determine the relative values of the three individual

parcels specified in Uncle Rufus's will.

This anecdote illustrates a very general problem: how to

put a value on productive factors individually, given that these

factors have value jointly.

In this paper we propose a way of valuing a collection of

indivisible factors used to produce a single divisible output.

A particular application is the valuation of players in cooper­

ative n-person games with transferable utility.

Production Functions and Games

Let the numbers {1,2, ... ,n} = N denote the available

factors of production, which may be completely indivisible.

The production function is a function v on all possible subsets

of N. We assume that

v (<p) = 0 and v (8) ~ 0 for all 8 eN

(4 ) v(8UT) > v(8) + v(T) for all 8 , TeN

(1) asserts that production is valuable but we need not

produce, (2) asserts the possibility of joint production. This

format is quite general, and allows for production functions

of virtually any degree of combinatorial complexity, and for any

amount of factor differentiation.

v may also be interpreted as the characteristic function

of a cooperative n-person game with transferable utility. In

this case the players are the factors, and the output of a co­

alition is the total utility it can achieve, which is assumed

to be completely transferable--not only among the players, but

also to agents outside of the game.
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Valuation by Auction

We propose to determine the fair value of the factors by

holding a simultaneous competitive auction for them. By "simul­

taneous" is meant that all factors are bid for simultaneously;

by competitive is meant that there are at least two buyers.

Each of the m buyers (m ~ 2) is assumed to perceive exactly the

same production function v, i.e. the "true" value of the possible

combinations. The nontriviality of the auction results from the

fact that the values this implies for the individual factors may

not be at all obvious. The competitive bidding process estab­

lishes bounds on what those values should be.

The bidding procedure is the natural one: each bidder k names

k k h h' '11' f h f hthe amounts P1, ... ,Pn t at e 1S W1 1ng to payor eac 0 t e

factors; he is also free not to bid, or to bid for only some of

the factors. Thus a bid is a vector pkconsisting of nonnegative

real numbers p~ and blanks (for no bid). The prices resulting
1

from a collection of bids {~1, ... ,~m} is the vector of real

numbers ~ defined by

kmax {p" a}
1 .... k<m 1

Thus the price of i is the maximum bid for i, or, if nothing

is bid, then it is zero.

In order to allow for the efficient resolution of ties, we

assume that the bidders line up in order of the total amount bid.

Thus if k l is first in line, k 2 second, and so forth then Ipk ll ~
k? k m - -

Ip -I ~ ... ~ Ip I· Ties in the total size of bid are assumed
....... - --

to be resolved by some initially given "alphabetical" ordering

of the bidders.

Given all bids and the resulting line-up, the first bidder

in line takes all the factors for which he bid highest, the next

bidder all the remaining factors for which he bid highest, and

so on. This arrangement allows the bidders to acquire control

of combinations of factors, which is of course their objective.

This arrangement will be called the pure bidding mode~.
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Equilibrium Prices and the Core

We now formally describe the bidding process as a game.

Assume that the bidders are indexed such that 1 is first in line,

2 d f h ' b'd 12m d 'dsecond, an so ort. Glven 1 s ~ ,~ , ... ,~ ,an assoclate

prices p, the set of factors acquired by bidder 1 is T 1 =

{iEN: ~~ = p,}. Similarly T2 = {iEN-T 1 : p~ = p,} is the set
1 1 1 1

of factors acquired by bidder 2, and so forth. This defines a

disj oint collection of sets T 1 ,T2' ... ,Tm, where U Tk is the set
k

of all factors for which some bid was made.

12m
The payoff to each bidder k, given bids ~ ,p , ... ,p , is

evidently

If Tk = ~ the payoff is zero. Bids are assumed to be

announced publicly, and bidders can revise their bids in light

of the others'. After a time, we might expect that the bids reach

an equilibrium, in the sense that no bidder can change his bid

and increase his payoff, assuming that all other bidders hold

fast. Any price vector e arising from such a set of equilibrium

bids will be called an equilibrium price vector.

The core of the production function is the set of all

vectors p > 0 such that
-- = ...,

for all SeN

and
I p, = v (N)
N 1

Theorem 1. For the pure bidding model~ e is an equilibrium

price vector for v if and only if p is in the core of v.

The proof is given in the Appendix.

At equilibrium prices p, no bidder buys a set of factors

for more than they are jointly worth, since he could always

simply not bid and thereby avoid a loss. On the other hand,

since such a p is in the core, no bidder pays less than the factors
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are jointly worth. Hence any set T of factors bought by a given

bidder has the property that E p. = v(T}. In other words, every­
T 1

one's payoff is zero.

The specification of those combinations of factors actually

bought by the individual bidders at prices p is called a saLe;

a sale is thus a family of m disjoint sets T 1 , ... ,Tm, and in

equilibrium, v(Tk } = TE Pi for every k. Some of the Tk may, of
k

course, be empty.

In the case of Uncle Rufus's farm, the core exists and con­

sists of all 3-vectors summing to $550,000 that lie on the solid

line segment shown in Figure 1. These vectors represent the

possible equilibrium prices for the properties that could result

from a simultaneous auction.

-- __ 0 •• •

(I~O, H';. is''';)

.....------'--------------..... ~i-l

Figure 1.
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A given equilibrium price vector such as p = (130,230,190)

could arise in many different ways. For example, with three

bidders p results from the equilibrium bids (to mention but two

possibilities)

first bidder -+ (120,140,180)

second bidder -+ 0,230,190)

third bidder -+ (130,75,190)

as well as from

first bidder -+ (130,230,190)

second bidder -+ (130,230,190)

third bidder -+ (130,230,190) .

In the first case the first bidder gets nothing; the second

bidder gets the main house plus prairie land and the third bidder

gets the hill farm. In the second case the first bidder takes

all three properties.

Nonexistence of the Core and option Holders

Theorem I says that, if the core exists, then a valuation

of the factors by an outside competitive market results in a

vector in the core. This is a pleasant result, since this is

precisely the answer one would expect if the factor represen­

tatives (e.g. the three maiden ladies) try to reach an agreement

among themselves without appealing to an outside market.

However, what happens if the numbers are different and the

core does not exist? In that case it would appear much more

difficult to predict either the result of an internal agreement

or the outcome of an auctioning procedure. Nevertheless there

is a straightforward procedure for determining value in this case.

The key point is to recognize that the ladies may not really

wish to sell their inheritances, but only get the market to

establish fair values for them. In fact, estate auctions are

often held for exactly this purpose, and the device frequently

used to retain the property is for the trustee of the estate to

hold an option that allows him to match any and all other bona

fide offers.



In this procedure, called the bidding with option model~

there are two or more bidders and, in addition, an "insider"

who holds an option to meet any and all bid prices established

by the others. The bidding procedure is exactly as before, with

precedence in line determined by total size of bid. But the

payoff structure is different: given a set of bids and the as­

sociated factor prices E, the option holder is entitled to buy

any set of factors he wants at these prices. Evidently his best

response is to buy some set T such that v (T) - L: p. is a maximum.T 1

This leaves the factors N - T, which must be purchased by those

who bid highest for them, the bidders being called up in order.

The fact that the highest bidders have to accept what the option

holder rejects prevents bidders from inflating prices merely to

"spite" the option holder. (The option holder need not buy any­

thing, of course.)

Formally, let p1,p2, ... ,pm be a set of bids, where we may

assume that Ek repr~se~ts the-kth highest total bid. (A bid may

contain no entries for some factors, meaning "no bid.") The
k

factor prices associated with these bids are Pi = max{Pi'O},

where Pi = ° if no bids for i were' made.

Given prices p the response of the option holder is to buy

some maximum profit set. The choice of this set is assumed to

depend only on p, not on the individual bids generating p. For

most p there is only one such set, but to deal with ties some

specific tie-breaking rule or response function g must be assumed.

Thus for every p, g (p) is some set T* maximizing v (T) - L: p. over
- - T 1

all T:= N. We say that g is efficient if, moreover, g (p) has

highest value among all maximum profit sets, that is, v(g(p)) >

v(T) for all maximum profit sets T under prices p.

12mGiven p ,p , ... ,p and prices p, define as before the sets
- 1- - - 2

T 1 = {iEN: Pi=Pi}' T2 = {iE~-T1: Pi =Pi}' and so forth; these

are the factor sets the bidders would get if the option were not

exercised. The sets actually obtained are Uk = Tk - S, where

S = g (p) and the payoff to the kth bidder in line is v (Uk) - L: p ..
Uk 1
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Now S is a maximum profit set with profit v(S) - ~ Pi; thus

by superadditivity

[v(S) - 2P']+ [v(Uk ) - I p.]
S 1 U 1

k

whence

for all k.

Hence for any bids the payoffs to all bidders will be nonpositive.

What then is the incentive to bid?

The answer must be the common-sense one that, in practice,

bidders imagine that there is a small chance that the option

holder will forfeit by dropping dead, going bankrupt, or suffering

some other act of God. Moreover, there is no need to engage in

calculations involving the probability of such an event; it seems

safe to assume that each of the bidders will act so as to suffer

no loss if the option holder does exercise his right, but will

at the same time work to increase the prospect of his payoff just

in case the option holder does not exercise his right.

The payoff to the kth bidder in line if the option holder

forfeits is the forfeit payoff

whereas if he does not forfeit it is the nO-forfeit payoff

A set of bids is in equilibrium for the bidding with option

game, and p is a set of equilibrium factor prices, if the no­

forfeit payoff for all bidders is zero, and no single bidder can

change his bid such that his forfeit payoff increases while his

no-forfeit payoff remains non-negative.
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The introduction of the option holder is not only natural

in the context of the problem, it turns out to guarantee that

equilibrium prices always exist.

Before stating this theorem, let us consider the previous

example, now somewhat modified: suppose that the value of the

hill farm together with the main house is $390,000 instead of

$310,000. Consider two bidders A, B, and suppose that A takes

precedence in line over B in case of a tie. Let us further

suppose that they have both read a text on game theory, and

seeing that the core does not exist, begin by both bidding the

nucleolus:

A + (140,240,170)

B + (140,240,170)

At these prices the most profitable sets of properties are

all combinations of two: each such combination has a value of

$10,000 in excess of its price, whereas all three properties cost

together as much as they are worth.

Say the option holder takes the hill farm and main house.

Then A must make good his offer of $170,000 for the prairie land.

Therefore he suffers a loss, since the prairie land is only worth

$155,000. A similar conclusion holds no matter which most profit­

able set the option holder decides to take. The conclusion is

that these prices are not in equilibrium-- they are too high.

Bidder A would do better to lower his prices, since then he at

least does not risk taking a loss.

Next suppose that A decreases his bid as follows and B stays

fixed:

B + (140,240,170)

A + (130,148,155)

B is now first and suffers a loss if the option is exercised.



A + (130,230,160)

B + (130,230,160)

Now A and B get no-forfeit payoffs of 0,

of $30,000 and 0 respectively. At this point

reached. For if B outbids A in total he will
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Next let B change his bid to obtain

B + (130,230,160)

A + (130,148,155)

B is still first, prices are the same as B's bid, and the most

profitable sets are {HF,MH}, {HF,PL}, {~rn,PL}, and {HF,~ili,PL},

each yielding a profit of $30,000. If at these prices the option

holder buys {MH,PL}, then B gets HF but his payoff is zero; A also

gets nothing. However, if the option holder forfeits, then B

takes {HF,rlli,PL} at a profit of $30,000. Again A gets nothing.

But this is not an equilibrium, since A can raise his bid to match

B's and because of the tie breaking rule, A goes to the fore:

and forfeit payments

equilibrium has been

have to pay too much

for some properties and the option holder could leave him with a

loss, while A cannot lower his bid without losing his desirable

place in line.

Theorem 2. Under bidding with option, an equilibrium prioe

veotor exists for any effioient response funotion, and e ~ Q is

a set of equilibrium prioes if and only if

(i) N is a maximum profit set,

(ii) no faotor is in every maximum profit set.

The existence of a p satisfying the conditions is easily

seen: beginning with p = 0 choose any player i and raise his price

just until he is no longer in every maximum profit set. At these

prices if there remains any player j who is in every maximum profit

set raise his price just until he is not in every maximum profit

set. Continue raising prices of the players successively in this

manner. The process must terminate, since maximum profitability

can never be less than zero (by virtue of the empty set) and at

termination N is still a maximum profit set. For a proof of

Theorem 2 see the more general Theorem 3 below and its proof in

the Appendix.
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Any vector e satisfying conditions (i) and (ii) above is

called a market value for v.

We note that, for any market value p, p. ~ v(i) for all i.
~ 1 -

Indeed by condition (ii) there is a maxi~um profit set S not

containing i, but Pi < v (i) would imply, by superadditivi ty, that

S U{i} were more profitable than S, a contradiction.

If the core of v exists, then every vector in the core is

also a market value. Indeed, for any p in the core, maximum

profitability is zero, which is achieved both on N and on the

empty set, so (i) and (ii) are both satisfied. Thus the notion

of equilibrium price vector generalizes the concept of the core

in a natural way. Moreover, the competitive bidding model shows

how the core of v arises as a noncooperative solution of a

"supergame" played for v. But the core--even if it exists for

a given v--need not constitute the only market values for v:

some factors may be able to get more than any imputation in the

core would give them.

Opportunity Costs

In general, items offered at auction often carry reservation

bids or floor prices, which effectively establish lower bounds

on acceptable offers. From the point of the owner of a factor,

the floor price represents either an estimate of the inherent

worth of the factor to the owner, or an opportunity cost, i.e. its

potential value in some context other than the auction. This value

is not generally an "output", hence it is advisable to maintain

a distinction between floor prices and the quantities v(i).

. 0 0 0.] ..
k '} iven floor prlces (P1 ,P2'··· ,Pn) =P , a b1-d 1S now a vector

p consisting of real numbers p~ ~ p~ and blanks (meaning no bid) .
Th f . d t . d b 1 . . 12me actor pr1-ces e ermlne y a famlly of blds ~ ,p , ... ,p is

the vector p defined by

p.
1

k 0 0
= max {Pi' Pi}' where Pi = Pi if no bids are made for i.

k
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A bidder's place in line is now determined by the total

surplus he offers above the floor prices:

are Ordered by the numbers 7T k = ~ (p~ - p~) ,

such that k bids for i. ~

that is, the bidders

the sum over all i

°It turns out that for any floor prices p ~ ~, the bidding

with option game always has a strong equilibrium. To describe

these equilibria we define a new game v as follows

v(5) = max
TC5

[v (T) + , for each 5 C N

The value v(5) can be interpreted as the maximum amount that

could be obtained by collecting opportunity costs for some of

the factors in 5 and using the rest to produce.

A critical set is any set 5 whose productive surplus v(5) ­

l: p~ is a maximum, and i is a critical factor if i is contained
5 ~ ) l: °in every critical set. Note that v (N) = v (5 + N-5 Pi for any

critical set 5.

The

T = g(p)

surplus.

response function g(p) is efficient if for every p ~

is some maximum profit set having highest productive

Theorem 2 now generalizes as follows.

°p

Theorem 3. Given floor prices pO, an equilibrium price

vector exists for any efficient response function, and p is an

equilibrium price vector if and only if p is a market value for v.

°Theorem 2 is obtained from Theorem 3 by setting p = 0, in

which case v = v. For the proof of Theorem 3, see the Appendix.

Auctioning the Estate

Irma, Ora, and Mildred decide to part with the properties

after all, provided they can get enough for them. Irma is a

little sentimental about the hill farm and wouldn't consider less

than $143,000 for it; Ora is wild about the main house and won't

let it go for less than $200,000, while Mildred could care less

about the prairie and would settle for any price. Thus pO =
(143,000 , 200,000 , 0). The values of the properties are assumed
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to be modified earlier, with the hill farm and main house to­

gether worth $390,000.

The neighbor, meanwhile has got wind of their intention to

sell, and being an old family friend, has secured an option to

match any and all prices that the parcels might fetch at auction.

In this case the auction would yield the unique equilibrium

factor prices

HF $143,000

MH $243,000

PL $173,000

At these prices any singleton set results in a loss for a

buyer. The buyers' profits on the other combinations are

HF & MH

HF & PL

MH & PL

HF & MH & PL

$4,000

$4,000

$4,000

-$9,000

The unique critical set is the main house plus prairie land,

and these are the two critical factors. In equilibrium, the

neighbor will buy the main house and prairie land, and get them

at a bargain: $4,000 less than their appraised value. Moreover,

in equilibrium the hill farm will receive no bids, so Irma will

keep it after all.

In terms of economic efficiency this solution makes sense,

since by assumption the addition of the hill farm to the other

two properties does not further increase productive efficiency

while its utility to Irma is higher than to any outside buyer.
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Conclusion

In summary, two related auction procedures for discrete

productive factors have been described. The bidding procedure

is the natural one: prices are formed simultaneously and com­

petitively by taking the highest bid for each factor. The use

of a precedence scheme for the buyers is a convention that

allows for the equitable resolution of ties. In reality, of

course, buyers will assess the value of the factors somewhat

differently and ties would be a rarity.

Without an option holder an equilibrium only exists if the

core of the production function exists, and in this case the

possible equilibrium factor prices coincide with the imputations

in the core. In the presence of an option holder -- a situation

frequently encountered in practice -- equilibrium factor prices

always do exist.

It might be said that this way of valuing the factors de­

pends very much on the particular bidding procedure chosen.

However, there is a strong argument that this valuation is the

correct one quite independently of the bidding procedure since

exactly the same valuations result if the factor owners, rather

than the buyers, set prices.

Suppose indeed that the factor owners cannot agree on what

auction procedure or other valuation method would be fair. The

simplest solution is then for each factor owner to simply announce

to a market of prospective buyers what he thinks he is worth.

Given announced prices ~ = (Pl,P2, .•. ,Pn)' the buyers arrive.

The first in line helps himself to a maximum profit set (which

may of course, be the empty set), leaving at best profitless sets

for the others. Now let g(~) denote the set of all factors

bought. This will always be a maximum profit set.

The factor owners are engaged in the following non-cooperative

game: the strategy of factor i's owner is to name his price

p. >D~ where p~ is his opportunity cost, and the payoff to i given
1 -~ 1 1

choices ~ = (P1,P2, ... ,Pn) is
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Pi if iEg(p)

P~ if i~g(p)

If g is efficient, a strong equilibrium in pure strategies

always exists for this game. An appropriate measure of the value

of players are their payoffs at such an equilibrium. As shown in

[1] these equilibrium payoffs are precisely the market values for

the game v.

Thus, whether prices are set by the owners of the factors in

the face of a market of buyers, or by the buyers in a competitive

bidding process, the outcomes are the same -- the class of market

values.
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APPENDIX

Proof of Theorem 1

in the pure bidding

If Tk is the set of

to k is qk = v(Tk ) -

Let 1,2, ... ,m be the "alphabetical" ordering, and let
1 m

~ , ... ,p be a set of equilibrium bids

p the resulting set of factor prices.

tors acquired by bidder k, the payoff

model,

fac-

'l~ Pi ~ o.
k

Suppose, by way of contradiction, that some subset of N

yields a positive profit at prices~. Say S, with profit q =

v(S) - L: p. > 0 is a maximum profit set. If qh' qk > q
S 1

for distinct hand k, then by superadditivity Th UTk would have

profit of at least 2q, contradicting the choice of q. Thus

q > qk ~ 0 for som~ k. But then let k change his bid

and offer Pi + E for all i E S and no bid for the other factors.

Then k acquires precisely the set S, and for sufficiently small

E the payoff is larger than qk' a contradiction. Therefore q =0,

that is

for all S ~ N

Further, qk = 0 for all k. Now the sale procedure implies

that Pi = 0 for all i ~ T = ~Tk. Hence

o ~ v (N) - LPi = v (T) - Lp. ~ Lqk = 0
N T 1 k

the right-hand inequality by superadditivity.

and P is in the core of v.

Thus v(N) = I p.
N 1

Conversely, let p be in the core of v. Let all bidders bid

p. The first bidder in line buys the set N, and the payoff to

every bidder is zero. Let some bidder change his bid (in fact

up to m - 1 bidders may change) and let the resulting factor

prices be ~'. Clearly pi ~ P so no set yields a positive payoff

and no bidder is better off. 0
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Proof of Theorem 3

The market values for v may be characterized in terms of v

and pO as follows (the verification is left to the reader):

(5) all critical sets are maximum profit sets in v (relative

to ~) .
°= P
i

for every noncritical factor i.

(7) no factor is contained in every maximum profit set in v

(relative to p).

In the subsequent proof, all statements about prices and

profits are made with respect to v.

To prove Theorem 3, let p be a market value for v, i.e. let

p satisfy (5) - (7), and let g be any efficient response function.

Then by (5), g(p) = S is a critical set. Let aZl bidders bid Pi

for each i E S and not bid for all other factors. We will show

that these bids are in equilibrium.

By condition (6) the resulting set of prices seen by the

option holder is precisely p (since no bid implies Pi = p~).

The no-forfeit payoff to all bidders is zero, while the forfeit

payoff to the first bidder in line is v (S) - L: p. = q and zero
S 1

to the others.

Now suppose exactly one bidder b changes his bid. Suppose

also that as a result of this change the factor prices are still

p. If b was not first in line he is therefore still not first;

so in case of forfeit the first bidder takes the set S, leaving

at most a zero payoff to b, while under no-forfeit bls payoff is

at most zero. If on the other hand b was first in line, then

under the new bids his no-forfeit payoff is at most zero, while his

forfeit payoff can be at most q. Therefore in any case b is

no better off by changing. Hence the new factor prices pI must

be different from p. Since all bidders other than b stick to

their original bids, b must now be outbidding the others on at

least one factor.
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Let I = {i EN: p! > p. } . b has to acquire all factors in I
1 1

not acquired by the option holder. For fixed j E I, condition

(7) guarantees that there is a set Sj such that j ~ Sj and Sj is
maximum profit with respect to p. Under p' this set is strictly

more profitable than any set containing I.

Now let S' = g(p') and let T be the set of factors b ac­

quires if the option is exercised. Since S' is a most profitable

set under p' and S' UT contains I, the above remark implies

v(S' UT) - r p! <v(S') ­
SlUT 1

r p!
S' 1

By superadditivi ty of v it follows that v (T) - E p! < 0, so
T 1

b now suffers a loss. Therefore the original bids were in equi-

librium.

To prove the

be an equilibrium

factor prices are

the option holder

necessity of the conditions (5)-(7), let ~1,p2, ...pm

set of strategies for response function g. The
k o}p. = max {p.,p .. If the option is exercised,

1 12k~m 1 1

acquires the maximum profit set S = g(p), and

the bidders acquire U1 ' ... ,Um. Since in equilibrium all bidders'

payoffs are zero (if no-forfeit), v (Uk) - U\ Pi = 0 for all k.

Therefore by superadditivity the set S* = S-UU 1 UU2U ... UUm is

also a maximum profit set under p. The sale procedure implies

that p. = p? for all i Ei S* . Hence S* is also a most profitable
1 1

set under pO, that is,S* is critical. Now for any critical setS

( 8)

whereas

whence

( 9)

v (S) -i; p.
S 1

v(S) - ~p?
S 1

~ (p. -p?)
S 1 1

>

< v(s*) - r p.
S* 1

= v (S*) - ~ p?
S* 1

r (p. -p?)
S* 1 1
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Since S was an arbitrary critical set,

(5) and (6) above for p.

p? for all if!. S*,equality holds in (8) and (9),
1

all i ~ S.

Since Pi =
oand p. = p. for

1 1

this establishes conditions

-
It remains only to prove (7). For this, several facts need

to be established concerning payoffs in equilibrium.

Consider the first bidder in line. The option holder (if

he does not forfeit) acquires a maximum profit set Shaving

profit q = v(S) - §Pi and the first bidder acquires T1 - S = U1
having profit zero, T 1 being the set of all factors for which he

bids highest. By superadditivity, S UT 1 is also a maximum

profit set. Suppose then that the first bidder extends his bid

by bidding Pi for all i E S - T 1. He will get the same forfeit

payoff, and a no-forfe~t payoff of q. Since by hypothesis the

bids were in equilibrium, this change cannot improve 1's posi­

tion, hence 1's no-forfeit payoff was already q,i.e., T 1 was a

maximum profit set.

(10) Thus in equilibrium the forfeit payoffs are q for the first

bidder and zero for the others.

Consider now the last (mth) bidder in line, and let Tm be

the set of factors acquired by m if the option is forfeited.

If Pi > p~ for some i E Tm then the auctioning procedure implies

that Pi = p~ > p~ for all k < m such that p~ is defined. There­

fore the last bidder could lower his bid on factor i, not lose

his place in line, and still acquire precisely the set Tm if the

option is forfeited but realize a higher profit. Moreover his

no-forfeit payoff will be no lower than before. This situation

contradicts equilibrium. Hence p. = p~ = p? for all i E Tm.
111

Moreover for all i f!. T either no one bids for i and p. = pQ,. or
k m 1 1

else p. = p. for some k < m.
1 1

(11) Hence the last bidder in line can drop out and the factor

prices will remain unchanged.
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Suppose now that condition (7) does not hold, and let

factor j be in every maximum profit set. Since j ~ ep, ep could

not be a maximum profit set; hence profits q are positive.

Ep.
J

in

Let pE: be the price vector such that p~ = p. for i ~ j and
-1 1

= Pj + E. Choose E: > 0 such that under prices ~E:, j is still

every maximum prof~t set. Let SE = g(~E), so j ESE' and let

= {i EN - Sc- : p. > p ~ l-
c. 1 1

Now let the last bidder in line, b, change his bid as follows:

for each i ESE he bids p~, and for each i in Se: he bids Pi - 0, for

sufficiently small 0 > o. These are all the factors he bids for.

His total surplus bid then exceeds the first bidder's, so he

goes to the head of the line. Moreover, by (11) the new

factor prices are precisely ~E. Since bidder b is only high

bidder on the set SE' his payoff is q - E > 0 if the option holder

forfeits and 0 if he does not. Thus by ~O) b is better off than

before, a contradiction. This completes the proof of Theorem 3.

D



-21-

References

1. a.p. Young, The Market Value of a Game, International Institute
for Applied Systems Analysis, June 1978 (submitted for
publication) .


