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Abstract

This paper utilizes for the first time age-structured human capital data for economic growth
forecasting. We concentrate on pooled cross-country data from 58 countries over six five-year
periods between 1970 and 2000. We consider specifications chosen by model selection criteria,
Bayesian model averaging methodologies based on in-sample and out-of-sample goodness of fit,
and on adaptive regression by mixing. The results indicate that forecast averaging and exploiting
the demographic dimension of education data improve economic growth forecasts significantly.
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The Role of Age-Structured Education Data for
Economic Growth Forecasts

Jesus Crespo Cuaresma
Tapas Mishra

1 Introduction

Recent theoretical (e.g., Boucekkine et al. 2002) and empirical (e.g., Birdsal et al. 2001; Azom-
ahou and Mishra 2007) advances in the economic growth literature decisively demonstrate that
age-structure variations exert discernible effects on long-term economic growth (measured as
growth rates of GDP per capita). Due to its appealing advantage for minimizing forecast uncer-
tainty, age-structure dynamics have been used in the recent studies of economic growth forecasts
(see in particular the special issue of the International Journal of Forecasting, Vol 23, No. 4,
2007 on “Global Income Growth in the 21st Century: Determinants and Forecast”).

At least two possible reasons explain the surging interests in the demographic determinants
of economic growth. Lindh and Malmberg (2007) argue that embedding age-structure informa-
tion in economic growth models improves income forecasts over long time horizons. Lindh and
Malmberg (2007) claim that the production function approach to income forecasting involves a
great deal of parameter uncertainty, and suggest exploiting the correlations between age struc-
ture and GDP growth in the framework of demography-based models for long-run predictions.
Due to their relative stability, demography-based forecasts of GDP have caught the attention
of forecasters recently. In line with the research of Lindh and Malmberg (2007), Bloom et al.
(2007), for instance, examine whether age structure improves forecasts of economic growth. The
authors find that including a simple variable summarizing the age structure improves income
growth forecasts. While the size and differential dynamics of each age group for a country are
commonly interpreted in this literature as a gross indicator of aggregate productivity effects, no
study hitherto, to the knowledge of the authors, explicitly considers differential effects of human
capital (in the form of education) across age groups.

Indeed, the importance of human capital on economic growth has been highlighted system-
atically in the theoretical literature on the determinants of long-run income growth. However,
the empirical evidence of human capital’s impact on economic growth has yielded ambiguous re-
sults (see, for instance, Benhabib and Spiegel 1994; Pritchett 2001; Krueger and Lindahl 1999).
Data quality has been deemed at least partly responsible for the lack of a significant positive
correlation between GDP per capita growth and human capital variables (see De la Fuente and
Domenech 2006; Cohen and Soto 2007). Recently, a new data base has been developed which
for the first time summarizes educational attainment figures in different age groups (IIASA-VID
dataset, see Lutz et al. 2007).! While the relative size of age groups can contain information

'Description of the dataset and its qualities can be found in Lutz et al. (2007). Crespo Cuaresma and Lutz



which is good for economic growth forecasts, age-structured human capital information, by dis-
entangling “quantity” and “quality” effects, can lead to further improvements.?

An important reason illustrating the possible performance differential is that while age-
structure demographic information can be argued to render level effects on GDP per capita,
age-structured human capital may induce both level and growth effects (through its effect on
technology adoption, see Benhabib and Spiegel 1994, 2005) on the latter. Age-structured human
capital introduces the role of first, demographic change (age-structured population change and
its direct impact on resources) and second, a productivity change (via the stock of human capital
that directly contributes to technological changes and initiates a shift in production function
due to radical and induced innovation).

In this paper, we make use of the new age-structured education data base by IIASA-VID and
document its usefulness for growth forecasts for the period 1970-2000 by comparing its forecast-
ing performance with that of the widely used Barro-Lee data (Barro and Lee 1996). Bayesian
model averaging (BMA) methods are utilized in the paper to explicitly assess the issue of model
uncertainty.

The paper is organized as follows. Section 2 describes the demographic dimension of the
education data and its role in economic growth forecasts and summarizes the quality of the new
human capital data. Section 3 describes the Bayesian model averaging technique and the related
forecasting issues. Section 4 discusses the forecasting results and finally, concluding remarks are
presented in Section 5.

2 Explaining economic growth: The role of age structure and
human capital

Theoretical models of economic growth have studied the long-run effects of human capital on
economic growth for a very long time. Lucas (1988) and Mankiw et al. (1992), for instance, use
human capital as an accumulable input of production and thus establish that accumulation of
human capital drives economic growth. Nelson and Phelps (1966) argue that education drives
innovation and thus technological improvement and adoption, and Benhabib and Spiegel (1994,
2005) are good examples of the empirical interpretation of the arguments in Nelson and Phelps
(1966). Cross-country growth regressions, however, tend to show that changes in educational
attainment are not robustly related to economic growth (see, for example, Benhabib and Spiegel
1994; Pritchett 1997). Several reasons can be found in the literature to explain this counterin-
tuitive and surprising result. Outliers are deemed responsible by Temple (1999) and most of the
literature attributes the existence of the puzzle to deficiencies in the human capital data (see
Krueger and Lindahl 2001; De la Fuente and Domenech 2006; Cohen and Soto 2007).

(2007) show that the age-structured education data can explain differences in income per capita across countries
better than standard data bases.

?In a recent study, Castellé-Climent (2007) showed that educational distribution is positively related to democ-
racy, which is a strong indicator of political stability in the economy. It can be argued that political stability
allows for better forecasts of income growth by minimizing the probability of structural breaks in the relationship
between economic growth and institutional and structural variables.



A clearly differentiated stream of literature has established the importance of demographic
factors and age structure on economic growth processes. Lindh and Malmberg (2007) and Bloom
et al. (2007) are recent examples of empirical studies that have established the importance of
age-structure information for better growth forecasts (see also Lindh and Malmberg 1999 for
growth regressions in the spirit of Mankiw et al. 1992).

Recently, Lutz et al. (2007) constructed a new dataset of educational attainment by age
groups for most countries in the world at five-year intervals for the period 1970-2000. De-
mographic back-projection methods were used in order to recover the age/education pyramid
of each country, taking into account differential mortality and migration by both age groups
and educational attainment. The back-projection exercise was carried out as a joint effort by
the International Institute for Applied Systems Analysis (IIASA) and the Vienna Institute of
Demography (VID) of the Austrian Academy of Sciences, so we refer to this dataset as the
ITASA-VID data. Lutz et al. (2007) provide a detailed account of all the specific assumptions
that had to be made as part of this reconstruction exercise, discuss their plausibility and pro-
vide sensitivity analysis. The back-projection method starts with an empirical distribution of
the population by age, sex and four categories of educational attainment (no formal education,
some primary, completed lower secondary, completed first level of tertiary) for each country in
the year 2000. These data mostly stem from national censuses or Demographic and Health Sur-
veys (DHS). The proportions with different education levels in five-year age groups of men and
women for the past decades were recovered by imposing several assumptions on the differences
in mortality and migration across age groups and educational levels, and matching the data
with the historical data from United Nations (2005), which provides estimates of the age and
sex structure in five-year intervals since 1950 for every country in the world. Lutz et al. (2007)
provide a detailed analysis on the reconstruction of the dataset.

This new dataset allows us to assess the importance of the interaction of the demographic
and educational characteristics of a society on income growth at the macroeconomic level. The
results of Crespo Cuaresma and Lutz (2007) and Crespo Cuaresma and Mishra (2007) point at
the capital importance of assessing the demographic dimension of education data when explain-
ing cross-country differences in income, income growth and economic growth externalities.

3 Growth regressions: Model uncertainty, selection and averag-
ing

When constructing empirical models of economic growth, the issue of model uncertainty is of
singular importance, due to what Brock and Durlauf (2001) dub the “open-endedness” of the
theories of economic growth. Based on different theoretical models, many different economic,
social and political variables have been proposed as important determinants of economic growth.
Durlauf and Quah (1999), for instance, name more than 80 variables that have been included at
least once in a cross-country growth regression. Durlauf et al. (2005) update this list using more
recent references, leading to over 150 variables which have been used as potential determinants
of economic growth in empirical studies.

Recent developments in model averaging allow to assess the robustness of different competing
variables as robust determinants of economic growth. The methods used to assess the robust-



ness of covariates in growth regressions used by Levine and Renelt (1992) and Sala-i-Martin
(1997a, 1997b) rely on models of a given size. More sophisticated (Bayesian) model averaging
methods allow to account for model uncertainty both in the size of the model and in the choice
of explanatory variables (for applications to economic growth, see, for example, Fernandez et al.
2001; Sala-i-Martin et al. 2004; Crespo Cuaresma and Doppelhofer 2007).

Ignoring model uncertainty can result in strong biases in parameter estimates and incorrect
standard errors (see Draper 1995). Model averaging techniques consider model specification
itself to be an unobservable that needs to be estimated, and therefore it is treated as an extra
parameter whose distribution can be obtained based on data (and prior information, if the ap-
proached used is Bayesian, as here).

The idea behind BMA can be easily put forward in a linear setting. Consider a set of
N variables, X;;, evaluated at time ¢ for country i, which are potentially (linearly) related to
economic growth in country ¢ for the period t to t+7, so that the stylized specification considered
is

n
Yit+r — Yit =+ Z BrTk,it + Eit (1)
k=1
where y;; refers to the log of GDP per capita in country i at time ¢, x1,...,x, are n variables

which belong to the set X and ¢ is an error term assumed uncorrelated across cross-sectional

2. When dealing with model uncertainty, the size

units and in time, with constant variance o
of the model, n and the identity of the regressors in (1) are not assumed to be known, and are

treated as objects to be estimated.

In the situation put forward above, there are 2N possible combinations of the variables, each
one defining a model M;. Assuming a diffuse prior with respect to ¢ and the usual multivariate
normal priors on the 8 parameter vector, the odds ratio for two competing models, My and M,
can be approximated when the priors on 3 approach a diffuse prior (see Leamer 1978; Schwarz
1978) as

SSE;

P(Mo|Y) _ P(Mo) kg k)2 (55E0)_T/2
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(2)

where k; is the size of model i, T is the sample size, P(:|Y") refers to posterior probabilities and
SSE; is the sum of squared residuals from the estimation of model ¢. Therefore, given our model
space M the posterior probability of model i can be computed as

P(M;)T*/28SE; /2

card(M ks -T/2°
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P(M;|Y) = (3)
The posterior model probabilities allow us to easily compute the first and second moment of
the posterior densities of the parameters in (1), given by

card(M)

E@lY)= Y PMY)E(BY, M) (4)
=1



and

card(M)
var(B;lY) = > P(MY)var(8;|Y, M) +
=1
card(M)
+ Z P(M|Y)(E(B;|Y, M) — E(B4Y))? (5)

where (3; is the parameter of interest and E(3;|Y, M;) is the OLS estimator of 3; for the con-
stellation of X- variables implied by model M;. The unconditional expectation of 3; is thus
given by the weighted average of the estimates conditional in a model, where the weights are the
posterior probabilities that the model is the right one. The posterior probability that a given
X-variable is part of the true regression model can be computed as the sum of posterior model
probabilities of those models containing the variable of interest.

Alternatively, instead of averaging over the whole model space, the model with the highest
posterior probability could be selected and inference and prediction could be based on this single
model. Assuming equal prior probabilities over models, this implies choosing the model which
minimizes the Schwarz information criterion (Bayesian information criterion, Schwarz 1978)

among all models in M. The chosen model is thus the one that maximizes
BIC; = T */?85E; "/,

Recently, some alternative strategies have been put forward to obtain weights for model
averaging. In particular, model averaging based on the out-of-sample (OS) predictive likelihood
instead of in-sample fit has been recently proposed by Kapetanios et al. (2006) and Crespo
Cuaresma (2007), for instance. In practice, this amounts to replacing the in-sample residuals
by out-of-sample forecasting errors in (2) and (3) when computing the corresponding sum of
squared errors. The forecasting errors are obtained from the estimation of each model on a
sub-sample of the available data, which is used in order to predict the remaining sample.

Yang (2001, 2003) presents a method called adaptive regression by mizing (ARM) for com-
bining models. Applied to forecasts, the weights assigned to predictions from each model are
computed as follows: (a) The dataset is split in two parts (assumed of equal size), and the
different models are estimated for the first part of the sample; (b) for each of the fitted models,
predictive accuracy is measured based on forecasts for the second part of the sample as the sum
of squared prediction errors (SSPE); and (c) the weight for the prediction of model i is given
by
57 "% exp(—6; 2SS PE;/2)
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w; =

where J; is the estimate of ¢ under model <.

In many applications, the cardinality of the model space poses a severe limit to the computa-
tional feasability of the expressions above. Several methods can be used in order to approximate
the expressions when the size of the model space makes the problem intractable. The leaps and
bounds algorithm, the use of Markov chain Monte Carlo model composite (MC3) methods or
the use of Occam’s window are possible methods of setting bounds to the number of models



to be evaluated when computing the posterior objects (see, for example, Madigan and York
1995; Raftery 1995; Raftery et al. 1997). In the empirical application put forward in this study,
however, the size of the model space allows us to compute all models in the model space in a
relatively short time.

4 Forecasting exercise

In this section we assess the potential improvement from using age-structured education data
in forecasting economic growth. We will consider the additional set of (time-varying) covariates
found to be robust (in-sample) determinants of economic growth by Sala-i-Martin et al. (2004)
as potential (extra) predictors of growth in a linear regression setting.> The set has been aug-
mented by data on fertility rates, so as to control for pure demographic factors when assessing
the role of the demographic dimension of human capital data. We will consider panel regressions
where the dependent variable is the growth rate of GDP per capita over a five-year period and
the explanatory variables are evaluated at the first year of the sub-period. The models consid-
ered include in all cases country-specific fixed effects and common period effects. This implies
that we are concentrating on the forecasting abilities of within-country changes in the variables
considered; that is, we consider the predictive content of differences in the time dimension, and
not in the cross-country dimension. The countries included in the sample are given in Table 1.
Table 2 presents the description of the (non human capital) variables which are included in the
exercise and their respective sources. Table 3 shows the mean and standard deviation across
countries in the sample for each five-year subperiod.

Table 4 presents the different education variables considered in this study. The benchmarks
are given by the Barro-Lee schooling variables (Barro and Lee 1996). The ITASA-VID dataset al-
lows us to construct variables taking into account the demographic dimension of human capital.
The variables which are considered as potential predictors for income growth are the following:
the proportion of the working-age population in the age group g with primary education (E);
the proportion of the working-age population in the age group g with secondary education (E);
and the proportion of the working-age population in the age group g with tertiary education
(Eg).4 These variables are evaluated for the age groups ¢g=15-20, 20-25, 25-30, 30-35, 35-40,
40-45, 45-50, 50-55, 55-60, 60-65.

Descriptive statistics of these variables and the Barro-Lee schooling variable are presented
in Table 5. The difficulties reported in empirical applications in finding a robust correlation
between additions to the human capital stock and growth in GDP per capita have led other au-
thors to rely on the Nelson and Phelps (1966) paradigm and model human capital as a variable
that affects the creation and adoption of new technologies (and therefore tends to be included
as a determinant of total factor productivity), instead of a traditional input of production.®
Therefore, apart from including the human capital variable as a potential determinant of eco-

3Similar variables were used by Bloom et al. (2007) in a similar setting (albeit without explicitly considering
model uncertainty and fixed effects) to assess the forecasting ability of demographic variables for economic growth.

“The group with primary schooling corresponds to the population with uncompleted primary to uncompleted
lower secondary schooling (corresponding to ISCED - International Standard Classification of Education - 1);
the group with secondary education refers to those with completed lower secondary to uncompleted first level of
tertiary (ISCED 2, 3 and 4); tertiary refers to those with at least the first level of tertiary education completed
(ISCED 5, 6).

®See Benhabib and Spiegel (1994, 2005) for empirical examples of this branch of research.



nomic growth, the interaction between education measures and the level of development of the
economy (as a proxy of the distance to the technological frontier) will also be considered as an
extra regressor in the forecasting exercise.

The specification for a given combination of variables is thus given by the expression in (1),
where the error term e;; is assumed to be formed by a fixed cross-sectional (country) effect, a
fixed time effect (common to all countries) and a random shock, assumed uncorrelated across
countries and time periods. Our forecasting exercise considers eight potential variables for each
education measure (the six variables of Table 2 plus a human capital variable from Table 4 and
its interaction with initial GDP per capita - GDPCL). This implies that 28=256 models are eval-
uated for each one of the education variables. We will assume equal prior probability for each
model, which means that the posterior model probabilities only depend on the sum of squared
errors (in-sample or out-of-sample, depending on the method used) and the corresponding model
size. The first five subperiods (1970-1975, 1975-1980, 1980-1985, 1985-1990 and 1990-1995) are
used to obtain model-averaging weights using the different methods outlined above. The subpe-
riod corresponding to 1995-2000 is used to evaluate the forecasts of the different methods and
education variables. For the methods requiring the evaluation of out-of-sample forecasts in order
to obtain model weights (BMA based on the out-of-sample predictive likelihood and ARM), the
subperiod 1990-1995 is used to evaluate the predictions based on models estimated using data
for the period 1970-1990.

Table 6 presents the evaluation of the different methods and human capital variables in terms
of mean square forecast errors for the period 1995-2000, defined as

58

MSFE), = Z[(yz‘zooo — Yi1095) 7" — (Yi2000 — Yi1995)]%/65,
i=1

where (y;2000 — yi1995)f * is the growth forecast for the period 1995-2000 for country i using
method k. The mean square forecast error is shown in the first column of Table 6 for models
estimated using the Barro-Lee dataset and chosen by the Bayesian Information Criterion (BIC),
for the forecasts obtained using in-sample BMA (BM A), for the forecasts obtained using BMA
with out-of-sample errors instead of residuals (BM A, OS) and for the forecasts obtained using
ARM (ARM). The columns corresponding to IIASA-VID variables present the ratio of the
mean square forecast error of the predictions obtained using Barro-Lee data to the mean square
forecast error of the predictions obtained using ITASA-VID data for each method. Values below
one thus indicate a lower average forecast error of the model with ITASA-VID compared to the
Barro-Lee data. The corresponding significance level of the difference between prediction errors
is also presented in Table 6 for each variable and model selection/averaging method.

Analyzing the results in Table 6, some interesting features can be highlighted. If we concen-
trate on the column referring to Barro-Lee data, it can be noted that BMA forecasts based on
in-sample residuals improve systematically over the predictions based on the choice of a single
model and on BMA forecasts based on out-of-sample forecast errors (both using weights based
on BIC and on ARM). It is only the case of models estimated on data for tertiary education
that out-of-sample BMA improves over the single model chosen by BIC, although the standard
BMA performs best in terms of prediction accuracy. Given the relatively short time dimension
of the panel used, the out-of-sample prediction-based weights are only based in a subperiod and
may thus lead to weighting schemes which are “noisy” compared to those constructed upon



in-sample fit.

Comparing the results of age-detailed and aggregated (Barro-Lee) data for each education
category, some differences appear. In the case of primary education, there is no relevant im-
provement from using data for education of different age groups. The only case of significant
better forecasting ability by using age detail corresponds to the ARM method (age group 45-50),
which tends to perform worse than all other methods for this education category. This result
is reinforced by the fact that the method with the best forecasting ability in this education
category is BMA for Barro-Lee data without age structure. For secondary education, the results
indicate that the use of age-structured education data significantly improves economic growth
forecasts.

The best forecasting ability in this education category is achieved by BMA forecasts with
secondary education data corresponding to the age group 35-40. For this averaging method, sig-
nificant improvements appear when data for the age groups in the interval 30-55 are used. This
result reinforces the conclusions in Lutz et al. (2008), who find secondary education in older age
groups (over 40) to be a robust determinant of economic growth using a production function
approach. This result can be interpreted (see also Lutz et al. 2008) as highlighting the channel
of technological progress based on imitation and adoption of new foreign technologies, for which
secondary education can be thought of as the most relevant education level. Statistically signifi-
cant improvements are also found for other model averaging methods by using age-disaggregated
information in the case of secondary education. Similarly, significant improvements are found
in forecasting ability when using age-disaggregated data for tertiary education attainment ratios.

Overall, the results eke out the importance of considering the demographic dimension of
human capital (in particular, education) when forecasting income growth in the framework of
techniques which assess model uncertainty in economic growth regressions.

5 Conclusion

In this paper we exploit for the first time age-structured educational attainment data for eco-
nomic growth forecasting. Using pooled cross-country data from 58 countries over the period
1970-2000, divided into five-year subperiods, we explicitly assess the issue of model uncertainty
by considering model-averaged predictions. From a theoretical point of view, the differences
across countries and in time of age-structured educational attainment should affect economic
growth, on the one hand, because of different productivity patterns across age groups, and on
the other hand, by affecting technology adoption and convergence to the global technological
frontier.

Our results indicate that forecast averaging and exploiting the demographic dimension of
education data improve economic growth forecasts significantly. In particular, the effects are
significant and systematic when using data on secondary and tertiary education by age groups.

These results enlarge and complement those obtained hitherto concerning the importance of
demographic variables as predictors of income growth and the differential effect of educational
attainment across age groups on economic growth. The characteristics of the new IIASA-VID
dataset make it an extremely useful instrument to identify and exploit such effects in estimation



and prediction in the framework of economic growth models.
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Table 1: Countries in the sample

Argentina
Australia
Austria
Bahrain
Belgium
Benin
Bolivia
Brazil
Cameroon
Canada
Central African Republic
Chile
Colombia
Costa Rica
Cyprus
Denmark
Dominican Republic
Ecuador
El Salvador
Finland
France
Germany
Ghana,
Greece
Guatemala
Haiti
Honduras
Hungary
India
Indonesia
Ireland
Italy
Japan

Jordan
Kenya
Malawi
Malaysia
Mali
Mauritius
Mexico
Mozambique
Nepal
Netherlands
New Zealand
Nicaragua
Niger
Norway
Pakistan
Panama
Paraguay
Peru
Philippines
Poland
Portugal
Rwanda
Singapore
South Africa
Spain

Sri Lanka
Sweden
Switzerland
Thailand
Togo
Turkey
Zimbabwe
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Table 5: Descriptive statistics: Human capital variables

Variable Mean Mean Mean Mean Mean Mean
(std. dev.) (std. dev.) (std. dev.) (std. dev.) (std. dev.) (std. dev.)
1970-1975 1975-1980 1980-1985 1985-1990 1990-1995 1995-2000

LP15 0.415 0.412 0.391 0.393 0.379 0.366
(0.203) (0.185) (0.165) (0.154) (0.141) (0.132)
LS15 0.200 0.214 0.254 0.266 0.292 0.302
(0.170) (0.165) (0.165) (0.167) (0.166) (0.163)
LH15 0.034 0.048 0.060 0.072 0.087 0.105
(0.040) (0.055) (0.067) (0.072) (0.083) (0.092)
E}5~20 0.071 0.068 0.064 0.060 0.056 0.053
(0.044) (0.043) (0.042) (0.042) (0.042) (0.042)
| 0.052 0.052 0.049 0.045 0.041 0.038
(0.034) (0.035) (0.034) (0.033) (0.032) (0.031)
E2°-%0 0.045 0.045 0.044 0.041 0.038 0.035
(0.028) (0.028) (0.029) (0.028) (0.027) (0.026)
E30-% 0.039 0.038 0.038 0.038 0.035 0.033
(0.024) (0.023) (0.023) (0.024) (0.024) (0.023)
E35-40 0.035 0.034 0.033 0.033 0.032 0.031
(0.022) (0.020) (0.019) (0.019) (0.020) (0.020)
| DE 0.031 0.030 0.029 0.028 0.028 0.028
(0.022) (0.019) (0.018) (0.017) (0.017) (0.018)
EP~° 0.028 0.027 0.026 0.025 0.024 0.025
(0.022) (0.020) (0.017) (0.016) (0.015) (0.015)
E30-55 0.022 0.024 0.024 0.022 0.022 0.021
(0.020) (0.020) (0.018) (0.015) (0.014) (0.013)
E}° % 0.020 0.019 0.021 0.020 0.019 0.019
(0.022) (0.018) (0.019) (0.016) (0.014) (0.013)
E$0-65 0.017 0.017 0.016 0.018 0.018 0.017
(0.021) (0.020) (0.016) (0.017) (0.015) (0.013)
E}>20 0.070 0.077 0.083 0.085 0.085 0.086
(0.039) (0.040) (0.039) (0.037) (0.035) (0.033)
E3°~2° 0.058 0.067 0.074 0.079 0.082 0.080
(0.037) (0.035) (0.034) (0.031) (0.029) (0.026)
E35 730 0.038 0.047 0.053 0.059 0.064 0.066
(0.028) (0.032) (0.030) (0.029) (0.028) (0.026)
E30-35 0.028 0.032 0.039 0.043 0.049 0.053
(0.025) (0.026) (0.028) (0.027) (0.027) (0.026)
E35~10 0.023 0.025 0.029 0.035 0.040 0.045
(0.024) (0.024) (0.025) (0.028) (0.026) (0.027)
E50% 0.020 0.021 0.023 0.027 0.033 0.037
(0.025) (0.023) (0.024) (0.024) (0.027) (0.026)
E;> %0 0.017 0.018 0.019 0.021 0.025 0.030
(0.026) (0.024) (0.022) (0.023) (0.024) (0.027)
E3°~°° 0.013 0.016 0.017 0.018 0.020 0.023
(0.022) (0.024) (0.023) (0.021) (0.022) (0.023)
| 0.012 0.011 0.014 0.015 0.016 0.018
(0.024) (0.020) (0.023) (0.021) (0.020) (0.021)
E§0-% 0.011 0.011 0.010 0.013 0.014 0.015
(0.023) (0.022) (0.019) (0.020) (0.019) (0.019)
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E30—25
E§5—30
EgO—35
E25—40
E§0_45
E§5—50
EgO—55
E25—60

60—65
ES

0.003
(0.003)
0.007
(0.006)
0.007
(0.006)
0.005
(0.005)
0.004
(0.005)
0.003
(0.004)
0.002
(0.003)
0.002
(0.003)
0.001
(0.002)

0.004
(0.003)
0.009
(0.008)
0.010
(0.008)
0.007
(0.006)
0.005
(0.005)
0.004
(0.004)
0.003
(0.004)
0.002
(0.003)
0.002
(0.002)

0.004
(0.003)
0.011
(0.008)
0.013
(0.011)
0.009
(0.008)
0.006
(0.006)
0.005
(0.005)
0.004
(0.004)
0.003
(0.004)
0.002
(0.002)

0.005
(0.003)
0.012
(0.008)
0.015
(0.012)
0.012
(0.010)
0.008
(0.008)
0.006
(0.006)
0.004
(0.004)
0.003
(0.004)
0.002
(0.003)

0.005
(0.003)
0.013
(0.009)
0.016
(0.012)
0.014
(0.011)
0.011
(0.010)
0.007
(0.007)
0.005
(0.005)
0.004
(0.004)
0.003
(0.004)

0.007
(0.005)
0.013
(0.009)
0.018
(0.013)
0.015
(0.012)
0.013
(0.011)
0.010
(0.010)
0.007
(0.007)
0.005
(0.005)
0.003
(0.004)
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