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ABSTRACT 

Evolutionary branching has been suggested as a mechanism to explain ecological 

speciation processes. Recent studies indicate however that demographic stochasticity 

and environmental fluctuations may prevent branching through stochastic competitive 

exclusion. Here we extend previous theory in several ways; we use a more 

mechanistic ecological model, we incorporate environmental fluctuations in a more 

realistic way and we include environmental autocorrelation in the analysis. We 

present a single, comprehensible analytical result which summarizes most effects of 

environmental fluctuations on evolutionary branching driven by resource competition. 

Corroborating earlier findings, we show that branching may be delayed or impeded if 

the underlying resources have uncorrelated or negatively correlated responses to 

environmental fluctuations. There is also a strong impeding effect of positive 

environmental autocorrelation, which can be related to results from recent 

experiments on adaptive radiation in bacterial microcosms. In addition, we find that 

environmental fluctuations can lead to cycles of repeated branching and extinction.  

 

Keywords: evolutionary branching; competitive speciation; stochastic environment; 

environmental correlation; autocorrelation; competitive exclusion 
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INTRODUCTION 

Evolutionary branching is a process by which a phenotypically monomorphic 

population gradually splits into two subpopulations. Theory has established that 

frequency-dependent selection can drive directional evolution towards a fitness 

minimum, where selection becomes disruptive and evolutionary branching may be 

initiated (Brown and Pavlovic 1992; Abrams et al. 1993; Metz et al. 1996; Geritz et 

al. 1998). It has also been shown that evolutionary branching may be driven by a 

variety of ecological interactions, e.g. competition, predation and mutualism (Doebeli 

and Dieckmann 2000), which underlines its potential importance for the generation of 

biological diversity. 

For asexual organisms there are in principle no objections to the idea that evolving 

lineages could split through a process of evolutionary branching, resulting in two, or 

several, ecologically differentiated lineages. For sexual species, however, ecological 

differentiation is counteracted by repeated mixing of genotypes through 

recombination. It has been suggested that disruptive selection in sexual populations 

can select for assortative mating within diverging lineages such that speciation, either 

in sympatry or parapatry, becomes possible. Under what circumstances this kind of 

speciation process is likely or even possible is much debated and treated in a number 

of papers (Gourbiere 2004; Matessi et al. 2001; Polechova and Barton 2005; Ripa 

2008; Waxman and Gavrilets 2005). Rather than treating the problem of reproductive 

isolation we will here focus on the ecological mechanisms involved in a branching 

process, relevant for sexual and asexual organisms alike. 
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From an ecological point of view, the crucial condition for branching to occur is 

coexistence of a resident and a mutant phenotype. So called branching points are 

hence characterized not only as convergent stable fitness minima but also by the 

mutual invasibility of morphs with strategy values in its vicinity (Metz et al. 1996; 

Geritz et al. 1998). The fact that two diverging morphs are mutually invasive does 

however not guarantee their coexistence if stochastic population growth is taken into 

account. During the initial phase of the branching the two morphs are very similar, 

with large niche overlap, and can be expected to compete strongly with each other. 

Strong competition easily leads to highly variable population sizes if stochasticity is 

allowed (May 1973), maybe even to the extent that one of the morphs goes extinct 

and branching has to start anew. Demographic stochasticity can severely delay 

branching of small populations (Metz et al. 1996; Claessen et al. 2007). If the two 

morphs experience uncorrelated environments during the initial stages of divergence 

it is likely that one of the two occasionally grows in density and drives the other one 

to extinction, which thereby impedes the branching process. However, two 

ecologically similar morphs are likely to experience environmental fluctuations in 

similar ways. It follows that the environmental correlation should be strong during the 

initial branching and decline as the ecological divergence progresses. Johansson and 

Ripa (2006) studied the effects of environmental fluctuations on the branching of 

large populations. They showed that the likelihood for branching depends on the 

relative rates at which competition and environmental correlation declines during 

branching. If environmental correlation declines faster than competition, the resulting 

relatively low correlation in growth rates of the strongly competing morphs can 

severely hamper branching through repeated stochastic extinctions. It is still unclear, 

however, under what circumstances environmental correlation can be considered to 
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decline faster or slower than competition, as two morphs differentiate. Compared to 

Johansson and Ripa (2006) we here use a more mechanistic model of both 

competition and environmental fluctuations, which allows for stronger conclusions 

and more useful interpretations of the results. We study the branching of a consumer 

species feeding on two alternative resources with explicit dynamics. Environmental 

fluctuations enter through the growth rates of the resources. These ecological, 

relatively fast fluctuations are assumed not to affect the evolutionary dynamics of the 

system however, e.g. by influencing the invasion fitness of a rare morph. In addition 

to environmental correlation, we also study the effects of environmental 

autocorrelation, which is known to play an important role for the extinction risk of 

single populations (Petchey et al. 1997; Ripa and Lundberg 1996), as well as for the 

dynamics and extinction risks of interacting species (Caswell and Cohen 1995; Ripa 

and Ives 2003; Ripa et al. 1998). We find that branching will be impeded or at least 

delayed if the environmental fluctuations in resource growth rates have little or 

negative correlation. The same effect is found for a positive temporal autocorrelation 

of the environment and especially if the two conditions are combined will branching 

be impeded. We also show that the model can exhibit cycles of branching and 

extinction under the influence of environmental fluctuations.  

METHODS 

We study a model of consumers feeding from two resource species. This is a well 

studied scenario for evolutionary branching (Diekmann et al. 2005; Egas et al. 2004; 

Rueffler et al. 2006) which we here adapt to include effects of environmental 

fluctuations. For simplicity, we assume that the resource populations have fast 

dynamics compared to the environment and the consumer population(s). Thus, on the 



short time scale the environment and the consumer population size are assumed to be 

fixed and the resource population will reach an equilibrium density corresponding to 

current circumstances. The (continuous time) growth of the resource populations is 

modelled as logistic growth with linear consumer functional responses: 
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where Ri() is the size of resource population i at time , r0 is its intrinsic growth rate, 

b represents strength of resource density dependence, aij is the attack rate of consumer 

j on resource i, and Cj is the density of consumer j (j = 1..n). Finally, i is a stochastic, 

normally distributed, environmental factor with zero mean, which affects the growth 

of resource i.  

The equilibrium resource densities,  (i = 1, 2), are readily obtained by calculating 

the positive solutions to 

*
iR

0
d

dRi . If no positive solution is found, which may happen 

at high consumer densities,  is used instead. In these cases it is assumed that 

the resource population will recover to positive numbers in consecutive time steps, 

e.g. through immigration or dormant life stages.   

0* iR

On the longer time scale (denoted by t instead of ), we assume discrete time 

consumer dynamics according to: 

    tRatRadCC jjtjtj
*
22

*
11,1, 1    (2) 

where  is a conversion factor from resources to consumers and d corresponds to the 

minimal amount of resources a consumer individual needs to exactly replace itself 
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from one time-step to the next, either through survival or reproduction. Eq. (2) is 

truncated such that negative consumer densities correspond to extinction.  

Attack rates (aij) are controlled by an evolving trait z scaled such that z = Zi 

corresponds to maximal specialization on resource species i (i = 1,2. Z1 = –1 and Z2 = 

+1). The attack rate aij of a consumer j with trait zj on resource i declines with distance 

in trait space according to a Gaussian function: 

 
2

2

2
0),( a

ij Zz

ijij eaZzaa 




 , (3) 

where a0 is maximal attack rate and σa controls the niche width of consumers; the 

larger σa the more efficiently a consumer can feed on both resources simultaneously. 

Alternatively, a can be interpreted in terms of a trade-off in the consumption of the 

two resources, such that a small (large) a corresponds to a strong (weak) trade-off.  

The eco-evolutionary scenario considered here is depicted in figure 1 for a single 

consumer population, for reference.  

Without loss of generality we measure time (), resource densities (Ri) and consumer 

densities (Cj) in units such that r0 = 1, b = 1 and  = 1. The population dynamics are 

then completely controlled by the three parameters d, a0 and σa, save for the stochastic 

dynamics of the environmental factors i,t (see below).  

We obtain the resource equilibrium densities as: 
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Substituting eq. (4) into eq. (2) gives the consumer dynamics: 
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In deterministic models ( 0,2,1  tt  ), evolutionary branching may occur in this 

scenario (Diekmann et al. 2005; Egas et al. 2004; Rueffler et al. 2006). We analyze 

the evolutionary dynamics of the deterministic model here using the adaptive 

dynamics framework (Dieckmann and Law 1996; Geritz et al. 1998; Metz et al. 

1996). We thus express the fitness w of an arbitrary consumer individual with trait 

value z' in a community of n monomorphic consumer populations as: 
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where z = [z1,…,zn] and C = [C1,…,Cn] are vectors of resident z-values and population 

sizes, respectively. The growth rate of consumer population i is consequently given by 

w(zi, z, C) and equilibrium population sizes, C*, are found by solving : 

  1,, * Czizw , for all i. (7) 

The evolutionarily singular points of the monomorphic system (i = 1) can be found by 

studying the fitness gradient (Geritz et al. 1998; Metz et al. 1996) which, assuming 

ecological equilibrium, unfolds as: 
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where 
22

1

aec 


 . It is straightforward to show that the generalist strategy (z = 0) is a 

branching point, i.e. a convergent stable fitness minimum, if 

0
22

2

a

dc
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


 and a < 1. (9) 

We are here interested in the process of evolutionary branching and choose parameter 

values accordingly. By studying fitness gradients of the dimorphic system we 
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established that the system eventually will converge to an ESS (Evolutionarily Stable 

State), with symmetric trait values, z1 = –z2 = z* (not shown for brevity). For all 

illustrations we use d =1.2, a0 = 1.8 and a = 0.85, which assures positive, stable 

equilibrium resource and consumer abundances for all relevant z-values but still 

allows for consumer extinction at low resource levels (d > 1). 

Environmental fluctuations  

Environmental fluctuations are built into the model as fluctuations of the intrinsic 

growth rates of the resource species through the stochastic variables εi,t, i = 1,2 (eqs. 

1, 4, 5). We let ρ denote the correlation between ε1,t  and  ε2,t such that fluctuations are 

fully correlated at ρ = 1 and totally uncorrelated at ρ = 0. A positive  is likely if a 

common external factor, such as temperature, affects both resources in a similar way. 

If, on the other hand, the resource species have non-overlapping temperature niches a 

zero or even negative correlation is expected.  

To investigate the possible role of environmental autocorrelation we let our model 

environments vary according to a first order autoregressive model (Box and Jenkins 

1970):  

εi,t+1 = γεi,t + μi, t , i = 1,2, (10) 

where  (- 1 <  < 1) controls the strength of autocorrelation of both environments. A 

 close to one represents a heavily autocorrelated environment, close to a random 

walk, whereas  = 0 corresponds to white noise. Many abiotic environmental factors 

are known to show positive temporal autocorrelation (Pimm and Redfearn 1988; 

Steele 1985). Also the biotic environment is known to change only slowly over time 

(Lawton 1988). Negative autocorrelation is perhaps less likely for natural 



environments but we include it in the analysis for completeness. i,t (i = 1, 2; t = 0, 1, 

…) is a set of serially uncorrelated (white noise), normally distributed random 

variables with zero mean and variance . Setting 2
  222 1     assures that the 

stationary variances of the environmental processes i,t are equal to , irrespective of 

 (Box and Jenkins 1970). Finally, we set corr(μ1, t, μ2, t) = ρ which renders corr(ε1,t , 

ε2,t) = ρ as well, as long as  is the same for both environments (Moran 1953).  

2


Estimation of extinction risks  

The exact extinction risk of a model population can normally only be calculated 

through computer simulations. From the linearized population dynamics one may 

however estimate the coefficient of variation (CV) which gives the relative variability 

in population densities. Here we will use population CV as a proxy for extinction risk 

(May 1973), and later compare analytical results with numerical simulations. The 

linear approximations and CV calculations are presented in Appendix A. 

RESULTS 

We will in the following study how correlation and autocorrelation in the 

environmental fluctuations affect variability in consumer populations during 

evolutionary branching. By comparing extinction risks of a single consumer and 

extinction risks in coalitions of two consumer strategies we will elucidate how 

evolutionary branching can be affected by environmental fluctuations. If extinction 

risk is low for a single species at the branching point but high for populations of the 

two newly formed morphs, branching can be impeded or at least delayed. Therefore 

we will study in detail the relative increase in extinction risk during branching, when 

a single morph splits into two. For completeness we will also study extinction risks 
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during the whole diversification process; starting from a single consumer evolving 

towards the branching point until the dimorphic ESS is finally reached. Specifically, 

we will envision an idealized evolutionary process where a single strategy initiated as 

a specialist consumer evolves towards z = 0 and gives rise to two strategies 

symmetrically distributed around zero (z1 = –z2 for consumer strategies 1 and 2) 

which subsequently diverge in trait space until z1 = –z2 = z*. For convenience the 

single species is also assumed to start at z = z*.  

We start by studying a case without autocorrelation of the environmental fluctuations 

(γ = 0). The approximate CV for a single species is calculated as (Appendix A): 

 221
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where a1 and a2 are the attack rates on the first and second resources, respectively. We 

note in passing that the CV increases with the environmental correlation, . A reliance 

on two uncorrelated resources gives a consumer an advantage in terms of a decreased 

variability in total resource abundance, the so called portfolio effect, but this 

advantage dwindles as the resources become increasingly correlated.  

We now calculate the CV of  the dimorphic case. With the symmetry as described 

above, the system can be described by a single trait value z = z1 = –z2. We write attack 

rates of the two species according to a11 = a22 = a1 and a12 = a21 = a2 where 
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expression for the CV (Appendix A, substitute  = 0 in eq. A17): 
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where  is the equilibrium population size of both consumer populations in the 

deterministic model. 

*
IIC

In figure 2 the CVI and CVII from eqs. (11) and (12) are plotted for  = 0 along with 

estimated values from simulations. As a single consumer starting out from z = z* 

evolves towards the branching point, CVI decreases due to an increased portfolio 

effect – the consumer becomes less and less dependent on a single resource and can 

compensate a low level of resources by consuming the other. After branching, 

however, the CV is higher due to the competition between the newly formed morphs. 

CVII remains roughly constant as z grows from 0 to z* after branching. Since 

competition decreases during divergence the dynamics become increasingly similar to 

that of a single species, which is reflected by the decreasing difference between CVI 

and CVII. 

As shown in figure 2 there is a difference between CVI and CVII  at z = 0 and if this 

difference is large one may expect branching to be impeded. Following Johansson and 

Ripa (2006) an estimate of CV immediately after branching is obtained by letting the 

symmetric trait values z1 and z2 go to zero. As the trait values approaches zero so does 

the difference between a1 and a2. Starting with the two species case we obtain the 

limit directly from eq. (12):  
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where a corresponds to the attack rates at z = 0, for which a = a1 = a2. We note here 

that the expression in (13) really should be regarded as a limit case, even though it can 

be obtained directly from (12) by setting z = 0. The dynamics of the two consumers 

become degenerate in the limit as the two populations become ecologically 
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equivalent. If the fluctuations in consumer population densities would be independent 

from each other, this would lead to a CV approaching infinity with rapid extinction of 

one population as a result. However, as the consumers become more and more 

similar, they also respond to fluctuations in resource abundance in an increasingly 

similar fashion. This synchronization of their stochastic growth rates counterbalances 

the increased instability due to the increasing competition and the end result is a CVII 

which smoothly approaches a limiting value as z goes to zero (cf. Johansson and Ripa 

2006).   

For the single species case we get, after some simplification: 
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The ratio between (the square of) these two coefficients of variation gives a measure 

of how much extinction risk may increase during branching:  
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The ratio q is a decreasing function of , i.e. the more correlated environments the 

smaller extinction risk after branching. For fully correlated environments ( = 1) we 

get q = 1, i.e. no difference in extinction risk during the transition from one to two 

species. As  approaches –1 the ratio goes to infinity which means that a negative 

correlation should be particularly disadvantageous for branching. Note that a negative 

environmental correlation here does not imply that the growth rates of the two 

consumers are negatively correlated shortly after branching, since they to a large 

extent feed on the same resources.  
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The expression (1 + d – 2a) in eq. (15), hereafter denoted h as in Appendix A, 

corresponds to the slope of the single species recruitment function at equilibrium. For 

stability, it is required that –1 < h < 1. It follows that the ratio q is the largest when h 

is close to +1, i.e. when the density regulation of consumers is weak.  

To sum up the analytical results, we conclude that a low or negative correlation in the 

environment gives an increased extinction risk, especially in combination with weak 

density regulation.  

Simulations without autocorrelation 

Computer simulations (see Appendix B for details) both confirm and contradict the 

analytical results above. First of all, for relatively low environmental variation, the CV 

of simulated populations fit well with the analytical predictions (Fig. 2). The CV of 

each of the two species is relatively constant during the evolutionary divergence 

following branching, suggesting that the dimorphic ESS should be reached as long as 

branching is possible. However, when environmental variation is increased so that 

extinctions may occur, extinction risk measured from simulations increase 

considerably along the z axis both for a single species and for two species (Fig. 3A). 

The increased extinction risk can be understood by comparing the population 

dynamics of generalists and specialists in phase space. Figures 3B and C show the 

dynamics of two competing consumer types together with the probability that one of 

them goes extinct in the next time step. Note that high population densities lead to 

extinctions in our model (due to depletion of resources [eq. 4]). The relative variation 

in population densities is similar in the two cases, but it is clear that generalists face a 

lower extinction risk of than specialists. Firstly, the relative distance between mean 

population density and densities where extinctions occur is larger for a generalist than 
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a specialist. Two generalist types are less efficient consumers than two specialist 

types and it therefore takes more of them to deplete all resources. Secondly, the 

strongly competing generalists have negatively correlated population densities, 

whereas the risk of extinction is high when total population density is high (Fig. 3B). 

Both these mechanisms contribute to a lower total extinction risk for generalists, as 

compared to specialist types which have relatively independent population dynamics 

(the distribution of population densities is almost circular) and independent extinction 

risks (Fig 3C). In conclusion, even though population CV is similar in the two cases, 

the risk of extinction is severely elevated for specialists.  

For a single species, a similar effect occurs; also here the distance from mean 

population densities to critically high densities is larger for generalists than for 

specialists. In addition, the CV is higher for specialists in this case (Fig 2).  

The simulations in Figure 3 are all carried out with uncorrelated resource growth ( = 

0 ). Changes in the correlation parameter alter the CV of population densities (eqs. 11 

and 12) as well as the shape of their distributions, which affects the risk of extinction. 

As an example, increasing the environmental correlation of two close competitors 

(Fig. 3B), would make the distribution of population densities more positively 

correlated, and thereby increase the risk that the populations reach fatal densities. 

Simulations show, however, that environmental correlation (positive or negative) will 

not change the observed pattern of increased extinction risk with increased 

specialisation (not shown).  The reason is that although the stationary distribution of 

population densities changes, the risk of extinction from any given point in phase 

space remains the same. The relative distance between mean population densities and 

densities with high risk of extinction therefore remains shorter for specialists. 
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The increased extinction risk during divergence may result in a pattern of recurrent 

evolutionary branching and extinction as shown in figure 3C. If one of the species 

goes extinct during dimorphic divergence the remaining species will evolve back 

towards the branching point where a dimorphism may be re-established and start the 

divergence again. The remaining single species is however initially also subject to a 

large extinction risk (Fig. 3A), and may go extinct itself which ends the evolutionary 

cycle (Fig. 3D).  

The pattern of recurrent branching and the likelihood that it occurs depends on the 

level of the environmental variance, σε
2, and other parameters. In some cases, for 

example, the pattern cannot be sustained as the remaining species do not evolve back 

to the branching point but get trapped at an alternative, local single species ESS (not 

shown). Although we have not investigated this in any great detail, the pattern of 

repeated branching, in different guises, can be observed in evolutionary simulations of 

this model for a significant portion of parameter space.  

Autocorrelation and impeded branching 

Environmental autocorrelation has, as we shall see, potentially a large influence on 

the branching process. As above, we use the linearized population dynamics as a first 

step to calculate approximations for population CV as a proxy for extinction risk.  

Figure 4A shows how the CV changes along the z-axis when fluctuations are heavily 

autocorrelated (= 0.95). Single species CV decreases during evolution towards the 

branching point just like in figure 2. Two species CV however, is very large precisely 

after branching and decreases thereafter. In this case the CV is a more accurate 

predictor of extinction risks (Fig. 4B). Compared to the case without autocorrelation 

(Fig. 2, 3A) there are thus two differences. Firstly, for the two species case the 



extinction risks decreases with z, which is just the opposite to the case without 

autocorrelation (Fig. 3A). Secondly, the difference in CV between the two-species 

model and the single species model close to z = 0 is much larger than before. 

As above, we calculate the ratio between the single-species CV and two-species CV at 

the branching point (z = 0), which simplifies to (Appendix A): 
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From eq. (16) it is apparent that q approaches infinity as the environmental 

autocorrelation  approaches 1, which is its maximal value. Also, we note that the 

effects of density dependence h and environmental correlation  remain (cf. eq. 15), 

and that there is an interaction between h and . The interaction is such that q is larger 

if h and  have opposite sign. Since only non-negative -values are considered here, 

the interaction will amplify q if h is negative, which corresponds to strong density 

dependence. However, a negative h will also decrease the factor (1 + h), which makes 

the dependence on h somewhat more complicated compared to eq. (15). 

The strong effect of environmental autocorrelation on population variability just after 

branching can be understood by contemplating the nature of the environmental 

fluctuations and their effects on the population dynamics. First of all, asymmetric 

fluctuations of the two resources give one consumer or the other the upper hand. If 

these fluctuations are positively autocorrelated, one of the competitors will have the 

advantage long enough to push the other down to low densities, or even extinction. It 

is also clear that this effect is the strongest if the resources commonly fluctuate in an 

asymmetric way, i.e. if environmental variability is uncorrelated or even negatively 

correlated. In more technical terms, the effects of a positive autocorrelation can be 
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understood from the eigenvalues of the Jacobian of the two-species system (see 

Appendix A, Ripa and Ives 2003). A system of two strongly competing populations 

will have (at least) one eigenvalue which is close to +1, which renders large 

fluctuations in an autocorrelated environment, especially if the environmental 

fluctuations have low or negative correlation (Ripa and Ives 2003). Lastly, we note 

that the effects of correlation  and autocorrelation  are multiplicative, which makes 

the combination of a low or negative correlation and a high autocorrelation 

particularly severe. 

The evolutionary consequence of the increased extinction risk shortly after branching 

may be extinction of one of the newly formed branches and impeded branching, as 

illustrated by figure 4C. 

DISCUSSION 

We have studied how extinction risks during evolutionary branching are influenced 

by correlation and autocorrelation in environmental fluctuations. In our model system 

we find two different extinction scenarios, with different ecological mechanisms and 

hence different dependence on environmental correlation and autocorrelation. 

Firstly, populations can go extinct from high population densities after resource 

depletion. A high resource availability in one time step yields high population size 

which in turn leads to strong intraspecific competition if resource regrowth is low in 

the next time step. This type of extinction from high population densities is possible 

especially if a population has strong density dependence as has been demonstrated in 

theory (Petchey et al. 1997; Ripa and Lundberg 1996; Ripa and Lundberg 2000; 

Roughgarden 1975) as well as field experiments (Klemola et al. 2000). In our model 
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these extinctions occur for a single consumer as well as two competitors, but are most 

likely when a consumer (alone or with a symmetric competitor) is specialized on a 

single resource (Fig. 3A), since a specialist (by definition) is a more efficient 

consumer (Fig. 3C). Correlated growth rates of the resources can affect the likelihood 

of this type of extinctions by changing the degree of variation in population densities 

and the shape of their distributions in relation to the density dependent extinction 

risks. Temporal autocorrelation of the environment also has a major effect on this type 

of extinction – it is only likely when autocorrelation is low (compare Figs. 3A and 

4B). A highly autocorrelated environment, which only changes slowly over time, is 

more easily tracked by the consumer and does not cause such sudden shortages of 

resources.  

In the scenario studied here, the degree of specialization increases for the two 

diverging consumer after branching. As a consequence the risk of extinction from 

high population sizes, described above, increases as well. For sufficient 

environmental variability evolution may thus lead to extinction and even result in 

cycles of branching and extinction (Fig. 3C). Evolution towards extinction may seem 

counterintuitive but occurs in many models where ecological feedback is taken into 

account as a driving factor in the evolutionary dynamics (Gyllenberg et al. 2002; 

Matsuda and Abrams 1994; Parvinen 2005). Also patterns of repeated branching have 

been shown to appear in various model scenarios (Dercole 2003; Doebeli and 

Dieckmann 2000; Ito and Dieckmann 2007; Kisdi et al. 2001). In the cited studies 

evolution to extinction occurs either deterministically or as an effect of evolutionary 

or demographic stochasticity. Our results show that also environmental fluctuations 

can result in such evolution and, as a consequence, lead to branching-extinction 

cycles. These phenomena depend strongly on the nature of the density dependence, 
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which in the case of our model is such that the risk of going extinct increases with 

specialisation. Other models may give different predictions.  

Secondly, extinctions may occur due to stochastic demographic events when 

population densities are small. Such critically small densities are caused by 

interspecific competition  which is strongest close to branching points (Figs. 4A, B). 

Asymmetric resource fluctuations, if they occur, give an advantage to one consumer 

over the other. If the asymmetry is severe enough and lasts for long enough time, the 

disfavoured consumer can be driven all the way to extinction. It follows that low or 

negative environmental correlation and a high autocorrelation makes these conditions 

more likely to occur. A negative correlation causes frequent, strong asymmetries and 

a high autocorrelation makes them last for a long time.  

This kind of extinction may, as shown by figure 4C, impede or at least delay 

branching. Our results confirm the finding in Johansson and Ripa (2006) that quickly 

decreasing correlation in trait space, which here occurs for little or, in particular, 

negatively correlated resources, can give a large relative increase in extinction risk 

during branching (eq. 18). With autocorrelated environmental fluctuations, the effect 

of low correlation is aggravated since autocorrelation and correlation affect the 

relative increase in extinction risk multiplicatively (eq. 21).   

The result that low environmental correlation causes extinction just after branching is 

also consistent with the findings of Claessen et al. (2007), who studied the effects of 

demographic stochasticity on the branching process. Demographic stochasticity is 

most prominent at low population sizes (MacArthur and Wilson 1967), but also by 

definition uncorrelated between species. It follows that small populations could be 

prevented from branching by demographic stochasticity alone, which is exactly what 

Claessen and co-workers found. 
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In contrast to the branching-extinction cycles described above, which depend on 

particular relationships between specialization and density dependence, the effects of 

a high autocorrelation and a low correlation should be more generally applicable to 

scenarios of competitive branching. This prediction is amenable to experimental tests, 

e.g. in radiations in laboratory microcosms. Massin and Gonzalez (2006) let bacteria 

radiate under different disturbance regimes, and found delayed diversification when 

the disturbances were more aggregated in time, i.e. more autocorrelated. Although the 

type of disturbance they used (mixing of the whole system) is not directly comparable 

to the kind of environmental fluctuations we have envisioned here, the theoretical and 

empirical evidence point in the same direction.  

In our study we assume that the ecological timescales can be separated from the 

evolutionary timescales and that morphs diverge symmetrically, starting exactly from 

the branching point. It would be interesting to investigate the effects of relaxing these 

two assumptions. Slow environmental fluctuations that are visible on an evolutionary 

timescale would for example affect the position of the branching point and the shape 

of coexistence regions around it (Metz et al. 1996). Asymmetric trait values would 

lead to asymmetric competition with various effects on population fluctuations and 

extinction risks. Obviously, branching driven by other ecological interactions than 

resource competition, e.g., mutualism or predator-prey interactions, may be affected 

differently by environmental fluctuations. Environmental variation may also enter 

population dynamics in other ways, depending on the scenario envisioned. Although 

these examples show that a number of questions regarding branching in stochastic 

environments remain to be addressed, the ecological mechanisms investigated here 

are of very general nature. We therefore believe these results are broadly applicable 
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and contribute to an increased understanding of the possible role of environmental 

fluctuations for the process of evolutionary branching or even speciation. 
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APPENDIX A: CALCULATIONS OF CV 

Here we derive the approximations for the CV of the consumer populations. We use 

the complete environmental model from start, including both environmental 

correlation and autocorrelation. 

Single species case 

First, we analyze the single consumer version of eq. (5): 

      ttttttIt CaeaCaeadCCfC tt

2211,2,11
,2,11,, 
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The non-zero deterministic equilibrium density of a single consumer, , amounts to: *
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Next, we linearize eq. (A1) at the deterministic equilibrium, which gives: 
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The expression tt kk ,22,11    in eq. (A3) is a weighted sum of the two resource 

environments, which are possibly both correlated and autocorrelated. However, they 
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are both AR(1) processes (eq. 10) and share the same autocorrelation parameter , 

which simplifies things considerably. It follows readily that tt kk ,22,11    is 

equivalent to a single AR(1) process with the same parameter . By assumption 

 and , which gives:     2
,2,1 VV   tt

 
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The stochastic dynamics of xt in (A3) is an AR(1) process with AR(1) noise. Its 

stationary variance is then given by (Ripa and Heino 1999): 
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Finally, we can calculate the squared CV of a single consumer population: 
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where E() denotes the stationary mean. 

We note here that a generalist strategy (z = 0) has a1 = a2 = a, which gives: 
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Two consumers 

Next, we analyze the dynamics of two consumers positioned symmetrically around 

the generalist strategy (z1 = –z2). The symmetry implies symmetric attack rates: a11 = 

a22 = a1 and a12 = a21 = a2: 
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The non-zero deterministic equilibrium densities are equal due to the symmetry and 

given by: 
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As above, we continue by linearizing the dynamics in (A7) at the deterministic 

equilibrium which gives: 

ttt KJ εxx 1  (A9) 
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and the elements of the matrix K are: 
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The system (A9) is most easily analyzed by a diagonalization, i.e. by transforming the 

coordinates to the eigenvectors of the Jacobian J (e.g. Ripa and Ives 2003). The 

eigenvalues of J are given by: 
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and the corresponding, normalized, eigenvectors are: 
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Transforming x1,t and x2,t to the orthogonal coordinate axes given by v1 and v2 gives 

the new coordinates y1,t and y2,t: 
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Expressed in these new coordinates, the system in (A9) is transformed to two separate 

dynamic equations: 
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As above, we identify the external inputs in eqs. (A14a,b) as sums of two AR(1) 

processes with equal autocorrelation parameter (). Consequently, the variances of y1 

and y2 can be calculated as: 
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It follows from (A13a,b) and the fact that V(x1,t) = V(x2,t) by symmetry that Cov(y1,t, 

y2,t) = 0. Thus, we have enough results to back-transform to the original coordinates: 
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The CV of both consumers becomes: 
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At z = 0, 1 becomes equal to h above (eq. A4b) and 2 becomes 1. Moreover,  

becomes equal to 
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Finally, we can calculate the (squared) approximate ratio between the two-species CV 

(CVII, eq. A18) and the single-species CV (CVI, eq. A6) at the branching point z = 0, 

which simplifies to: 
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APPENDIX B. COMPUTER SIMULATIONS 

We used numerical simulations to accompany and illustrate analytical results. We 

performed two types of simulations; one with fixed trait values and one where trait 

values evolved as an effect of mutations. Populations consisted of a discrete number 

of individuals. In order to obtain large population densities (C* as above is typically 

less than one) we amplified consumer densities with a factor p by setting C´k = pCk 

where Ck is the dimensionless measure. In the new units (indicated by [´]) the per 

capita growth rate at a given time step t is given by rescaling (the complete stochastic 

version of) eq. 6 and we obtain: 
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At each time-step we calculated the expected individual fitness given by eq. (B1) 

which renders the expected population size according to: 
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Demographic stochasticity was included by letting the actual population size be given 

as a Poisson distributed variable with the expected population size as parameter. In 

this way the model is equivalent to an individual based model, where each individual 

produces a Poisson distributed number of offspring.  

For evolutionary simulations, mutant individuals were introduced with a probability m 

per offspring. The trait value z of the mutant was picked from a normal distribution 

with the trait value of the parent individual as mean and standard deviation σm. All 

mutant individual founded new populations, growing as described above. Correlation 

and autocorrelation of the environmental variables ε1,t  and  ε2,t  were modelled 

according to eq. (10). Correlated random numbers were generated by multiplying a 

Cholesky decomposition of the covariance matrix with a vector of uncorrelated 

random numbers with zero mean and unit variance.  

For all simulations m = 5 x 10-4, σm = 0.002, d = 1.2, a0 =1.8 and σa = 0.8. The factor p 

was set so that equilibrium densities were large, thereby ensuring that demographic 

stochasticity did not affect CV nor probability of branching (cf. Claessen et al 2007). 

More precisely, the population size of a single maximally specialized consumer using 

a single resource (e.g. corresponding to z = 1 and very small σa) was 100 000 

individuals. With the parameters used, the expected population sizes for single 

consumers and two consumers with symmetrical z-values ranges always exceeds this 

number (using eq. A2 and A8).  In simulations for measuring the CV (Figure 2 and 

4A) σε was chosen low so that no extinctions occurred whereas higher values were 

chosen for illustrating extinction risks (Figure 3 and 4B).
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FIGURE CAPTIONS 

Figure 1. Ecological and evolutionary model. The trait value, zj, of a single consumer 

species j gives its utilization of resource 1 and resource 2. More precisely, the attack 

rate a(z) on each resource is read as the height of the Gaussian curve, centred at zj, at z 

= -1 and z = +1, respectively. The niche width σa is represented by a double arrow. 

Equilibrium population sizes of two resource species, R1
*

, R2
*are shown by black 

vertical bars situated at their corresponding z-values ±1. The difference in resource 

population size is a consequence of the consumer being more specialized on the 

resource at z = 1 compared to the resource at z = -1. 

Figure 2. CV during evolutionary branching. CV for one (CVI) and two (CVII) 

consumer types is plotted as a function of the trait value z. In the two species case, 

only CV for the consumer type with z > 0 is shown. Analytic values are shown by 

dashed lines and values from simulations are shown by bold lines for one (grey) and 

two (black) consumer types. Simulations were done with 50 000 generations. The 

direction of monomorphic and dimorphic evolution are shown by arrows. Parameters: 

ε2 = 0.005,  = 0 and γ = 0.  

Figure 3. Extinction risk during evolutionary branching. A. Extinction risk, measured 

as number of simulations (out of 100) where consumer populations went extinct 

before the maximal simulation time (50000 generations), for different values of z. 

Dashed line: single consumer extinction risk; Solid line: extinction risk for any of the 

two symmetric consumers. B and C. Comparison of the population dynamics of two 

generalists (B) and two specialists (C). Each point represents population sizes at given 

time-step and the ellipses enclose an estimated 95% of the points. The axis are 

normalised so that 1 corresponds to mean population density. The intensity of gray 
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indicates the risk of going extinct in the next time step for a given population density 

combination. The extinction risk was measured as the number of times out of 1000 

trials where at least one of the populations got non-positive density in eq. 5. D. 

Repeated evolutionary branching. Each point represents a clonal population with a 

certain z-value. Parameters: (A,D) ε2 = 0.015, (B,C) ε2 = 0.01,   = 0 and γ = 0.  

Figure 4. CV, extinction risk and simulations with highly autocorrelated fluctuations. 

A. CV for one and two species represented as in Figure 2. B. Extinction risk 

represented as in Figure 4A. C. Impeded branching due to autocorrelation. 

Parameters:  = 0,  γ = 0.95, (A) ε2 = 0.005, (B,C) ε2 = 0.015.  
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