
International Institute for  
Applied Systems Analysis  
Schlossplatz 1 
A-2361 Laxenburg, Austria   

 
Interim Reports on work of the International Institute for Applied Systems Analysis receive only 
limited review. Views or opinions expressed herein do not necessarily represent those of the 
Institute, its National Member Organizations, or other organizations supporting the work. 

 

Tel: +43 2236 807 342 
Fax: +43 2236 71313 

Email: publications@iiasa.ac.at 
Web: www.iiasa.ac.at 

 

 

 

 

Interim Report         IR-09-052 

 

A Virtualized SGE-based Computational Cluster for 
Heterogeneous Environments 

Muhammad Asif (asifsamiarain@gmail.com) 

 

 

 

 

Approved by  

Marek Makowski (marek@iiasa.ac.at)  

Leader, Integrated Modeling Environment Project  

October, 2009 



ii 

 

Foreword 

This report describes the research carried out by the author during participation 
in the Young Scientists Summer Program 2009 (YSSP) with the Integrated 
Modeling Environment Project. The main motivation for the research described in 
this paper was to explore how the distributed and parallel computing 
technologies can be implemented at IIASA for a better utilization of the available 
computing hardware. Given the large amount of idle time of many PCs, the focus 
was on the PC-desktop hardware. Main reservations for sharing the desktop 
computing resource include security (of the data stored on the local disks), 
reliability (relatively frequent needs for rebooting), performance of resource-
sharing applications, and incompatibilities of different versions of MS-Windows. 
To address these issues, the author has created a Linux-based environment for 
virtual machines sharing one PC. Such virtual machines were running different 
operating systems (different versions of Linux and MS-Windows). Each of the 
machine had a well isolated share of the common disk-space, thus the privacy of 
the data was assured. The author also implemented this approach on a cluster of 
PC. The common resources (especially the priorities of tasks run by the virtual 
machines) were managed by the Sun Grid Engine (batch job scheduler and 
manager for cluster/grid). Moreover, the author also explored possibilities of 
parallel computing within the developed distributed computing environment. 

 
The developed virtualized SGE-based cluster for heterogeneous environments 
has been successfully tested using various compiled applications, and java 
applications. In particular the data and process security of physical and virtual 
machines was proven. All basic functionality of individual jobs (such as reading 
and writing data, including redirection of standard input and output) was 
achieved. In other words, it was shown that the virtualized SGE-based 
computational cluster is able to execute heterogeneous jobs in heterogeneous 
environments. The report contains a number of useful hints for deployment of a 
PC-based heterogeneous computational cluster.   
 
The reported, three-month research provides a good basis for further 
developments. It shows a road to effective and safe utilization of huge amount of 
idle time of many PC. However, to achieve this goal more work is needed, 
especially for development of user-friendly environment for creation of jobs and 
interactions with virtual machines by users without knowledge of operating 
systems. Also more work is needed for embedding more job execution types, 
such as shells, python, Matlab, etc, as well as other parallel programming 
models. 
 



iii 

 

Abstract 

The computing and modeling environment of IIASA was studied in the context of 
computation-intensive and resource-demanding applications/models which are 
being developed and used by the researchers/scientists of IIASA. High 
Performance Computing applications can be classified into two broad computing 
fields; sequential distributed and parallel distributed applications and these 
applications has been developed for heterogeneous operating system 
architectures such as Linux, Windows and Solaris etc. Majority of IIASA 
applications/models belong to the latter class of computing and these 
applications are resource demanding when the extensive and repetitive use of 
these applications is required according to the need of some research study. Not 
every sequential application can be easily parallelized; therefore, instead of re-
programming sequential applications into parallel ones, the idea of distributing 
such applications on computing cluster/grid is often an effective approach for 
accelerating the work. In the light of available computing resources and modest 
modeling environment of IIASA, the virtualization and Sun Grid Engine (batch job 
scheduler and manager for cluster/grid) was efficiently exploited and designed, 
built and tested. This resulted in a computational cluster supporting multiple 
operating systems and multiple sequential distributed and parallel distributed 
applications/models along with multiple job execution types such as binaries and 
JAVA. 
 
Keywords:  High Performance Computing (HPC), Resource Demanding 
Applications, Sequential and Parallel Distributed Applications, Virtualization, Sun 
Grid Engine (SGE) 



iv 

 

Acknowledgements 

This report and the all the research described here were done during my 
participation in the Young Scientist Summer Program (YSSP) 2009 at the 
International Institute for Applied System Analysis in Laxenburg, Austria. 

I would like to thank Mr. Bartosz Kozlowski for his supervision and a lot of good 
advice and practical assistance on my research he has given to me during the 
program. I also give many thanks to Dr. Marek Makowski, Mr. Jacek 
Wojciechowski and Dr. Hongtao Ren for their advices and cooperation. 
Moreover, I am grateful to Ms. Varvara Fazalova for sharing her computational 
code for testing purpose. 

Finally, I would like to thank the ICT department of IIASA for all technical support, 
and all other departments of IIASA that provided financial and administrative 
support and thus made my participation in the YSSP possible. 



v 

 

About the Author 

Muhammad Asif is currently working at Global Change Impact Studies Center 
(GCISC) Islamabad, Pakistan as Scientific Officer. His research interests include 
use of tools and techniques and design algorithms for the deployment of High 
Performance Computing Cluster/Grid for computation intensive applications. 
Muhammad’s recent research objective is to study the computing and modeling 
environment of IIASA and design, build and test a virtualized SGE-based 
computational cluster for heterogeneous environments to support variety of 
sequential and parallel distributed applications. 



vi 

 

Table of Contents 
 
1. Background and Motivation ........................................................................... 1 
2. Research Questions During the Summer ...................................................... 3 
3. Experimental Design and Methodology ......................................................... 4 
4. Results and Discussions ................................................................................ 7 
5. Summary and Future Work ............................................................................ 9 
References ......................................................................................................... 11 
Appendix I ........................................................................................................... 12 

VirtualBox ........................................................................................................ 12 
Appendix II .......................................................................................................... 16 

Prior to the Installation/Configuration of Sun Grid Engine (SGE) .................... 16 
Linux/UNIX Installation/Configuration .......................................................... 16 
Microsoft Windows and SFU Installation/Configuration ............................... 17 

I. Create files passwd and group .......................................................... 17 
II. Disable DEP .................................................................................. 17 
III. Install SFU/SUA............................................................................. 18 
IV. Installation of OpenSSH for SFU/SUA ........................................... 18 
V. System Settings ................................................................................ 19 

Domain Name System (DNS) Configuration ................................................ 19 
Password-less SSH Configuration ............................................................... 20 

Appendix III ......................................................................................................... 22 
Installation/Configuration of SGE .................................................................... 22 

Prior to Installation of SGE........................................................................... 22 
Installation of Master Host ........................................................................... 22 
Installation of Execution Host on Linux/UNIX .............................................. 23 
Installation of Execution Host on WinXP ...................................................... 24 

Installation/Configuration of MPICH2 for Linux/UNIX and WinXP ................... 26 
Installation of MPICH2 for Linux/UNIX ......................................................... 26 
Installation of MPICH2 for WinXP ................................................................ 27 

Appendix V ......................................................................................................... 28 
Listing of developed Scripts ............................................................................ 28 

submit.sh ..................................................................................................... 28 
run_script.sh ................................................................................................ 29 
get_params.sh ............................................................................................. 31 

 

 



vii 

 

 

 

List of Tables and Figures 

 

Figure 1: Computing Classifications ..................................................................... 2 

Table 1: Specification of Computers ..................................................................... 2 

Table 2: Specification of Virtual Machines ............................................................ 5 

Figure 2: Virtual Computational Cluster ................................................................ 5 

Figure 3: Sun Grid Components ........................................................................... 6 

Figure 4: Main Flow Diagram ................................................................................ 7 

Figures 5-6: Flow Diagram of Job Execution ..................................................... 8-9 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

A Virtualized SGE-based Computational Cluster for 
Heterogeneous Environments 

Muhammad Asif (asifsamiarain@gmail.com) * ** 

Background and Motivation 

Among the community of scientists/researchers who are actively involved in 
simulations and modeling, the computing terminologies like high performance 
computing (HPC) and resource intensive/demanding computing are popular and 
have immense importance. HPC is a rapidly growing field of computing since the 
last few decades, many research organizations and companies like IBM, Intel, 
HP, SUN, Microsoft, ANL (Argonne National Laboratory) are engaged to develop 
specialized hardware and software to achieve the optimum computing power. 
Meanwhile, small and medium size companies and research organizations have 
the requirements to enhance their computing power for the accomplishment of 
their work and research studies in optimum time with the help of HPC 
infrastructure.  

The idea of studying and designing a feasible computational cluster (HPC 
environment) for the modest modeling environment of IIASA and particularly the 
research question how to deploy and manage the cluster of workstations 
comprised of heterogonous operating environments for (sequential and parallel 
distributed) resource demanding programs/models (loosely coupled and tightly 
coupled applications all together) by using virtual machines and Sun Grid Engine 
(SGE) motivated me. 

There are generally two types of computing; sequential and parallel; however, for 
the IIASA modest computing environment we consider the following categories of 
high performance computing: 

 Sequential, Not Distributed 

This class of computing deals with the simple and traditional computing 

environment, in which most users are familiar with at least with one 

computer language that meets their computing needs. The programs 

coded for such environments utilize only one available processor and the 

user actually does not distribute the computational task among several 

processors. 

 

___________________________________________________________ 
*Integrated Modeling Environment Project, IIASA 

** COMSATS Institute of Information & Technology (CIIT) 

 
 

mailto:asifsamiarain@gmail.com


2 

 

The question here is how the traditional sequential computing could 
become a class of high performance computing. For example, if the user 
is interested to execute the sequential program many times (e.g., for many 
different sets of parameters), then even a rather simple sequential 
program becomes computation-intensive, and requires a substantial 
amount of computing resources. 

In the modest modeling environment of IIASA, approximately 65-70% 
programs/models belong to this class of computing. 

 Sequential, Distributed 

In this class, all sequential programs/models addressed in previous class 
are distributed among several processors by using a cluster of 
workstations along with some batch job management system like Sun Grid 
Engine (SGE), Portable Batch System (PBS) etc.  

Currently, 15-20% IIASA programs/models use such type of computational 
environment for the solution of their computing needs. 

 

 Parallel, Not Distributed 

In the context of real resource demanding programs/models, the high 
performance computing is always considered as parallel computing. 
Particularly, this class deals with parallel computing without using the 
cluster of workstations (in other words computations are “not distributed” 
amongst workstations). In fact such parallel programs will be using the 

Figure 1: High Performance Computing Classifications 

Based on: Bartosz Kozlowski. Crash Course in Resource-Demanding Computing. PJIIT Lectures 2005 

 



3 

 

power of all available processors atone computer; considering the rapid 
advancements in processor architecture; multiple processors are now 
available within a single computer in the form of Dual Core, Quad Core 
etc.  

Such sequential programs can be ported into parallel programs by using 
parallel versions of compilers for commonly used programming languages, 
e.g., C, C++ and FORTRAN, supported by a parallel programming model 
like Parallel Virtual Machine (PVM) or Message Passing Interface (MPI). 
But the user must keep in mind that such type of porting would require a 
substantial amount of time to first learn the parallel programming tools and 
techniques, and then to reprogram (at least parts of) the applications. 

In light of IIASA’s modeling environment, about 10% programs/models 
belongs to this class of computing. 

 Parallel, Distributed 

This class actually deals with real high performance parallel computing 
clusters being used worldwide to solve the highly resource demanding 
problems in optimum time like Global Climate Models (GCM) and 
Regional Climate Models (RCM) etc. 

To the best of author’s knowledge, IIASA researchers have not dealt with 
any computation intensive model that belong to this class of computing, 
and consequentially there is currently no need for high performance 
parallel computing clusters. 

Therefore, in the context of high performance computing classes defined above, 
for the modest modeling environment of IIASA it was rational to explore a 
possibility of implementation of a computational cluster for heterogeneous 
applications and operating environments. Considering the costs of deployment 
and maintenance of such environments, the author focused on the virtualization-
based approaches. 

1. Research Questions  

Taking into account the above summarized arguments, the author decided to 
setup and test a cluster of virtual machines by using a few PCs, the virtual 
machine creation tool VirtualBox, and the powerful batch job scheduling and 
execution system Sun Grid Engine (SGE). In order to implement this approach, 
the following research questions were addressed during the YSSP period. 

 Exploitation of Virtualization 

 Exploitation of Sun Grid Engine (SGE) 
o Installation/Configuration of Master Host (always on Linux/UNIX) 
o Installation/Configuration of Execution Host  



4 

 

 Linux/UNIX 
 WinXP 

 Exploitation of suitable Parallel Programming Model 
o Embed MPICH2 for Linux/UNIX into SGE 
o Embed MPICH2 for WinXP into SGE 

 Design/Build/Test the computational cluster of virtual machines 

2. Experimental Design and Methodology 

The first step in deploying the planned environment was to setup the computing 
hardware infrastructure, which was the basis for the deployment of cluster of 
workstations/virtual machines and exploitation of the Sun Grid Engine. Therefore, 
in order to fulfill the computing hardware needs, the author explored the 
virtualization, and worked with the virtual machine creation tool VirtualBox 
(details are provided in Appendix I). With the help of this tool, multiple virtual 
machines can be created on a physical computer, and each virtual machine can 
have either the same or a different operating system. The virtual machine 
actually mimics a real machine, and as far as the operating system installation, 
utilization and behavior is concerned, such a set-up is in fact similar to a single 
operating system running on a single computer. In addition, it could be said that 
the virtual machine is a mimic of a real machine, but its operating system is in 
fact a real one.   

Therefore, with the help of two physical machines (the specification of the 
machines are shown in Table 1) eight virtual machines were created (the 
specification of the virtual machines are shown in Table 2), and both computers 
were connected via a 100 Mbps Ethernet switch. In this way, a small network of 
virtual machines was created by using a private IP addressing scheme; the 
network consisted of five Linux virtual machines and three Windows virtual 
machines as shown in Figure 1.  

Table 1: Specifications of Real Computers 

       

 Computer 
Name 

Processor Processor 
Speed 

Hard 
Disk 
Space 
(GB) 

RAM 
Space 
(GB) 

Operating 
System 

S1 pc98192 Intel(R) 
Core(TM)2 
Quad Q9650 

3.00 GHz 110 4.00 Windows 
Vista 

S2 Pc98131 Intel(R) 
Core(TM)2 
Quad Q9650 

3.00 GHz 300 4.00 Windows 
Vista 

 
 

 



5 

 

Table 2: Specifications of Virtual Machines 

 

  
 

Virtual Machine 
Name 

Hard Disk 
Space (GB) 

RAM Space 
(MB) 

Virtual Memory 
Space (MB) 

S1 1 vm-ubuntu1 8  512 12 

S1 2 vm-ubuntu2 8 512 12 

S1 3 vm-ubuntu3 8 512 12 

S1 4 vm-winxp1 8 512 12 

S2 5 vm-winxp2 8 512 12 

S2 6 vm-winxp3 8 512 12 

S2 7 vm-ubuntu4 8 512 12 

S2 8 vm-ubuntu5 8 512 12 

 
 

32-Bit Ubuntu Linux and WinXP were the operating systems used for the cluster. 
After successful installation of operating systems on virtual machines, one needs 
to configure the network and the machines to behave like a cluster of virtual 
machines. Prior to the deployment of Sun Grid Engine, the required 
configurations have been addressed in Appendix II in detail. Moreover, the 
details of the deployment of Sun Grid Engine are summarized in Appendix III. 

 

S W I T C H 

100 Mb/s 

System 1 (S1) System 2 (S2) 

vm-ubuntu1 

vm-ubuntu2 vm-ubuntu3 

vm-winxp1 vm-winxp2 vm-winxp3 

vm-ubuntu4 vm-ubuntu5 

Figure 2: Virtualized Computational Cluster 



6 

 

According to the Sun Grid Engine specification and design, there must be one 
host acting as master host, and other hosts act as execution hosts. In fact, the 
master host is the brain of Sun Grid Engine running the scheduler, keeping the 
track of all the computing resources configured, and keeping the accounting and 
reporting information about the executed jobs. The master host can act as 
execution host as well but this is not necessary (please refer the Appendix III for 
the solution of technical issues related to the deployment of SGE). 

 

 

In the light of our experimental setup the master host of Sun Grid Engine is the 
only host which is acting as submit host and configured at hostname “vm-
ubuntu1” and keep in mind that the master of SGE is always configured on 
Linux/UNIX operating system. The submit host of the Sun Grid Engine has great 
importance and this is actually the entry point from where the computational job 
is going to submit by user to master host of SGE then on the bases of idle 
resources among the available resources, the master host dispatch the job to 
execution hosts. After successful completion of job the results gathered back at 
“vm-ubuntu1”. In fact the “vm-ubuntu1” is the host which is acting as brain for our 
computing infrastructure. In order to keep the network traffic load minimized, for 
the explicit communication among hosts other than the SGE communication 
mechanism, passwordless ssh among all the hosts was preferred rather NFS 
configurations. 
 

Figure 3: Sun Grid Engine Components 

Based on: Sun Grid Engine Guide 



7 

 

3. Results and Discussions 

By using the selected computing resources composed of two physical PCs, 
multiple virtual machines were installed with the help of VirtualBox (a virtual 
machine creation tool) and Sun Grid Engine (for batch job scheduling and 
execution) designed by Sun Microsystems; in this way  a virtualized SGE-based 
computational cluster was designed as a heterogeneous environment supporting 
multiple types of applications/models. 

 

 

Figure 4 summarizes the job execution process. As the master host is the only 
host that interacts with the users, and also acts as the SGE submit host. 
Therefore a pool of jobs has been created at master host, where the user can 
submit the computational job pack. The computational job pack is composed of 
executable(s), input data sets and the following necessary information: 

 MPI 

 Multithreading 

 Number of Processors 

 Architecture(s) 

 Command Line Arguments 

 Data Files 

 Repetitions (ITERS) 

 Parameterization etc 

 
While processing the job pack at master host, two important elements are 
considered: first, the job type (either it is a sequential distributed job or a parallel 
distributed job); second, the suitable operating system (a specific version of 
Windows, or Linux, etc). Moreover, the SGE has its own efficient mechanism of 
queuing, where number of machines (execution hosts) can be gathered with 
respect to hardware architecture, software architecture or by using some other 
queue configuration criteria according to the needs of applications. On the bases 
of information provided by the user in job pack and availability of computing 

 
Figure 4: Main flow diagram of job execution process 



8 

 

resources at particular appropriate queue type, the computational job are 
submitted to cluster as shown in Figure 5. 

 

 
Once a computational job has been submitted, the SGE will schedule and 
dispatch the job and assign any available, appropriate and idle execution host(s) 
according to the needs of the job. Figure 6 illustrates the job execution process at 
execution host, where the execution host fetches and reads the job pack from the 
pool of the jobs via password-less SSH mechanism. The cluster is able to 
support multiple types of job executables like binaries, JAVA and shell etc but at 
this stage, we have implemented and tested two types of job executables such 
as binaries and JAVA. Binaries have further two types of job executables like 
MPI or NOT MPI. In short, after carefully identifying the job executable type, an 
appropriate job execution environment will be configured, and finally the job will 
be executed. After successful execution of the job, the execution host will submit 
the results back at the pool of jobs from where the job was initially fetched, and 
clean the utilized local disk space to make it available for future jobs.  

Figure 5: Flow diagram of job execution process at master host  

 



9 

 

 

 
4. Summary and Future Work 

In the context of exploring the High Performance Computing environments 
suitable for the computing needs of IIASA, a virtualized SGE-based cluster for 
heterogeneous environments has been designed, built and tested successfully. 
The doubts and fears related to the data and process security of physical 
machines by the use of virtual machines were found to be unjustified, i.e., each 
job is executed in a dedicated space, and has no access to other parts of the file 
system; if the job causes a crash of the operating system, then it crashes only 
the virtual machine on which the job runs, and this does not affect other virtual 
machines. In addition, the Sun Grid Engine was deployed with multiple types of 
operating systems and tested its job execution mechanism with simple 
applications and on the bases of its batch job scheduling and execution 
mechanism multiple preliminary conducted such as reading and writing into a file, 

Figure 6: Flow diagram of job execution process at execution host  

 



10 

 

reading and writing from standard input and output and writing into the standard 
error etc. Basic purpose of these tests was to be assured about the job execution 
mechanism and related basic operations which are always required by any type 
of computational job. Moreover, to execute the MPI and JAVA jobs, the 
respective tools and environments were configured and tested with simple MPI 
and JAVA applications successfully. Therefore the virtualized SGE-based 
computational cluster is able to execute heterogeneous jobs for heterogeneous 
environments. 

In future, there will be requirement to embed more job execution types such 
shell, python, Matlab, CPLEX etc and there will be requirement to introduce other 
parallel programming models as well like PVM etc. From the user perspective, an 
efficient graphical user interface (GUI) is highly desired to a user-friendly support 
of users in specification and submission of computational jobs, as well as 
monitoring the job and finding the computation results. Although the Sun Grid 
Engine provides the basic scheduling and accounting information mechanism 
regarding the computing resources and executed jobs through its scheduler and 
accountant, it is recommended to design and implement a hyper-scheduler and 
accountant dedicated to IIASA computing environment. 



11 

 

References 

1. Virtualization tool: Information http://www.virtualbox.org/ 

2. Sun Grid Engine packages: Information http://www.sun.com/software/sge/ 

3. http://gridengine.sunsource.net/ 

4. http://wikis.sun.com    

5. http://docs.sun.com/app/docs/coll/1017.3   

6. http://biowiki.org/  

7. http://shef.ac.uk/wrgrid/  

8. Introduction to Microsoft Windows Services for UNIX 3..5: 

http://technet.microsoft.com/en-us/library/bb463212.aspx 

9. http://shum.huji.ac.il/~agay/sge/blog.cgi?notes  

10. http://www.interopsystems.com/downloads/Configuring_OpenSSH.pdf  

11. http://www.ks.uiuc.edu/Research/namd/wiki/index.cgi?NamdOnGridEngin

e  

12. http://hifi.metalabs.org/docs/sge.pdf   

 



12 

 

Appendix I 

VirtualBox 

VirtualBox is a freely available (http://www.virtualbox.org/) powerful tool that 
allows the users to create virtual machines by using a physical machine for 
testing a variety of applications. The users can build and test a computational 
cluster for sequential and parallel distributed applications by using VirtualBox; it 
supports multiple virtual machines with multiple operating systems running on a 
single physical computer. 

VirtualBox supports the Microsoft Windows (Windows 2000, Windows 2003, 
WinXP and Windows Vista), Linux, Solaris, BSD, IBM/OS2 etc operating 
systems. For the reported research, VirtualBox version VirtualBox-2.2.4-47978-
Win was used for creating eight virtual machines on two PCs running Windows 
Vista. The following snapshots are just introducing the way for creating a virtual 
machine; note that the use of operating system installed on each virtual machine 
is exactly the same as for the stand-alone installation of the operating system. 

 



13 

 

 

 



14 

 

 

 

 



15 

 

System 1 

 
 

System 2 

 
 
 



16 

 

Appendix II 

Prior to the Installation/Configuration of Sun Grid Engine (SGE) 

Use of the Sun Grid Engine requires a prior setup of the hardware and operating 
system software for cluster of workstations. For the research described in this 
paper we used two physical machines, eight virtual machines (four virtual 
machines installed on each system), and a dedicated network of virtual 
machines. Among these eight virtual machines, there were five 32-Bit 
Linux/UNIX machines and three 32-Bit Microsoft Windows machines.  

After successful setup of hardware and proper installation of operating 
environments follow the instructions below which are essential for 
installation/configuration of SGE. 

Linux/UNIX Installation/Configuration 

Sun Grid Engine supports different versions of Linux/Unix operating systems; the 
master host of the SGE is always configured on a Linux/UNIX platform, and 
controls the system. 

In the described work we used the Ubuntu Linux (ubuntu-9.04-desktop-i386) on 
our Linux master host and on Linux/UNIX execution hosts; the main reason for 
this choice was that it is a reliable operating system,  freely available on the 
Internet, and can be easily updated as well. After creating virtual machines with 
the help of VirtualBox we installed the Ubuntu Linux by providing its installation 
image or CD/DVD and following the default instructions. There are a few things 
which should be considered during the installation process; these are familiar for 
Unix administrators, and include selection of the hostname, IP address and the 
user login name and its password for the system and try to keep the 
configurations simple and similar (if possible), for example all the virtual 
machines have the same user login name and its password (like in our case that 
is “sgeadmin” and “imeasif” respectively). 

VirtualBox has its own DHCP server which always sets the IP addresses for the 
network interfaces, there is one network interface having IP address 10.0.0.15 on 
every virtual machine and this is used by the VirtualBox as default 
communication link to control and command the virtual machine(s). Thus, for the 
deployment of the SGE and its operation, there is need to enable another 
interface from the VirtualBox settings option, and set the IP address for this 
interface manually. 

After settings and testing the network interfaces, there is need to update the 
necessary packages and tools by following the instructions given below. 

 sudo apt-get update 

 sudo apt-get install build-essential 



17 

 

 sudo apt-get install g++ 

 sudo apt-get install fort77  

 sudo apt-get install ssh  

Microsoft Windows and SFU Installation/Configuration 

Microsoft Windows XP is the operating system for the applications which 
supports Windows architecture in our setup. The creation of virtual machine is 
very much similar like Ubuntu Linux created in Appendix I and after successful 
creation of having virtual machine(s) for WinXP then simply follows the traditional 
WinXP installation instructions to put the virtual machine into function. 

Before starting the installation of execution host for WinXP, it is recommended to 
install the master host of the SGE and one execution host for Linux/UNIX 
platform.  

Installation of the execution host of SGE on WinXP is not possible directly, 
therefore a software suit “Services for UNIX” (SFU) needs to be used which has 
been designed by Microsoft to enable Linux/UNIX services for Windows 
environment and this is freely available for 32-Bit WinXP on Microsoft website. 

Login the WinXP as “Administrator” user and complete the following tasks before 
installation of SGE execution host for WinXP.  

I. Create files passwd and group 

There is need of two files (passwd and group) which are required during the 
installation process of SFU. To create these files login the master host of SGE as 
“sgeadmin” user (in our case) and follow the following procedure. 

sgeadmin@vm-ubuntu1:~/sge$ fgrep sgeadmin /etc/passwd 

sgeadmin:x:1000:1000:Muhammad Asif,,,:/home/sgeadmin:/bin/bash 

Now with the help above output write the required files like as follow 

 passwd 

sgeadmin:x:1000:1000:SGE admin:/home/sgeadmin:/bin/csh 

 group 

Users:x:1000:sgeadmin 

II. Disable DEP 



18 

 

Open the system properties window then go to “Advanced” tab, the option of 
Startup and Recovery has the “Settings” button. By clicking the settings button, 
another window will appear having “Edit” button and click it. A notepad will 
appear by opening “boot” system file with booting options. So, to disable the Data 
Execution Prevention modify the “noexecute” option like the following: 

/noexecute=always off 

III. Install SFU/SUA 

The system is ready for the installation of SFU now, download the 
SFU35SEL_EN and follow the instructions below (the un-selected options are 
crossed-out). 

 Custom 
o Utilities 
o Interix GNU Components 

 Interix GNU Utilities 
 Interix GNU SDK 

o NFS 
 Client for NFS 
 Server for NFS 

o Password Synchronization 
o Remote Connectivity 

 Windows Remote Shell Service 
o Authentication tools for NFS 

 User Name Mapping 
 Server for NFS Authentication 
 Server for PCNFS 

o Interix SDK 
o Active State Perl 

 Enable setuid 

 Enable case sensitive filesystem 

 Local User Name Mapping Server 
o Password and group files 

 Leave file paths empty 

IV. Installation of OpenSSH for SFU/SUA 

SUA community (http://www.suacommunity.com/pkg_install.htm) is actively 
designing the packages and tools for SFU Interix Sub system for Windows. 
There is need to install the bootstrap installer tool immediate after SFU 
installation for online updating of required packages and tools. Login the WinXP 
as “Administrator” user and download the bootstrap (pkg-current-
bootstrap35.exe) tool from the above web link and install it. 

http://www.suacommunity.com/pkg_install.htm


19 

 

Now login the “C Shell” as “Administrator” user and dispatch the following 
command. 

$ pkg_update –L openssh 

This will install the openssh and necessary openssl libraries. After the successful 
installation of openssh, you will find the “sshd” daemon running and ready to 
accept the ssh connections like we observe in Linux/UNIX environment. 

V. System Settings 

Prior to the installation of the SGE execution host, there is need to perform 
necessary settings. Therefore, after successful installation of SFU and bootstrap 
tools, open the “C Shell” and login as “Administrator”. 

Modify the /etc/inetd.conf file and enable the following services: 

 telnet 

 shell 

 ftp 

 login (if not enable yet) 

Modify the /etc/hosts file for accessing the master host of SGE via hostname. 
The system name of WinXP will be the hostname of “C Shell”. 

Modify the /etc/services file and add the following ports for SGE. 

 sge_qmaster 6444/tcp 

 sge_qmaster 6444/udp 

 sge_execd 6445/tcp 

 sge_execd 6445/udp 

Create a directory “home” directory first on “/” path, inside the home directory 
create another directory “sgeadmin” for user and change the ownership of this 
sgeadmin directory as “sgeadmin” user. 

$ chown –R VM-WINXP1+sgeadmin /home/sgeadmin 

Now simply exit the “C Shell” and create another user “sgeadmin” from the 
control panel, the user must be member of “Users” group and set the profile path 
for this user like where we have recently created the “sgeadmin” directory by 
using “C Shell”. 

 
 



20 

 

 
Domain Name System (DNS) Configuration 

The configuration of Domain Name System (DNS) is not the essential part of 
SGE installation but it is recommended for the ease of work and easily 
remembering a lot of things going on in its operation on many hosts. In fact, it is 
not difficult to configure the DNS in Linux/UNIX environment; there is need to 
setup IP address of same IP scheme on all the systems which are going to play 
any role in Sun Grid Engine. Like in our case, we have eight (8) machines and 
the SGE master host has the following entries in its /etc/hosts file. 

127.0.0.1 localhost 

192.168.1.11 vm-ubuntu1 

192.168.1.12 vm-ubuntu2 

192.168.1.13 vm-ubuntu3 

192.168.1.14 vm-ubuntu4 

192.168.1.15 vm-ubuntu5 

192.168.1.21 vm-winxp1 

192.168.1.22 vm-winxp2 

192.168.1.23 vm-winxp3 

Therefore for the full operation of DNS, simply replicate the all above entries on 
all the /etc/hosts files of all Linux/UNIX and WinXP/SFU virtual machines. 

Now all the machines can ping each other by supplying their hostnames instead 
of IP addresses and you will find that the DNS successful configured. 

Password-less SSH Configuration 

As far as SGE configurations are concerned, the  password-less SSH 
configuration for the cluster of workstations is not essential. In fact, SGE has its 
own powerful mechanism of communication among execution hosts. But as far 
as user defined data needs to be transferred to and fro SGE master host and 
SGE execution hosts dynamically, the password-less SSH makes the life easy. 
In addition, for MPI based parallel applications, it is a necessary part of cluster. 

The cluster of workstations can be configured as password-less SSH by adopting 
multiple procedures; the main thing is to create a pair of keys (public and private) 
and distribute these keys among hosts. For achieving this one can follow the 



21 

 

procedure summarized below; it is a simple procedure to make the cluster 
password-less SSH enabled. Login the SGE master host as “sgeadmin” user (as 
like in our case) and issue the following commands. 

 rm -rf ~/.ssh/* 

 ssh-keygen -t rsa 

 cat ~/.ssh/id_rsa.pub  >> ~/.ssh/authorized_keys 

 chmod 700 ~/.ssh 

 chmod 644 ~/.ssh/authorized_keys 

Now the last step is to copy the .ssh directory to all other hosts by using scp 
command, for this time and in fact for the last time it will ask about the password 
and the whole cluster of workstations will become password-less SSH configured 
(in our case the .ssh directory is being copied to all seven machines as shown 
below) 

 scp ~/.ssh vm-ubuntu2:~/ 

 scp ~/.ssh vm-ubuntu3:~/ 

 scp ~/.ssh vm-ubuntu4:~/ 

 scp ~/.ssh vm-ubuntu5:~/ 

 scp ~/.ssh vm-winxp1:~/ 

 scp ~/.ssh vm-winxp2:~/ 

 scp ~/.ssh vm-winxp3:~/ 

 

 

 



22 

 

Appendix III 

Installation/Configuration of SGE 

SGE is the batch scheduling system designed by Sun Microsystems. Due to its 
powerful features, excellent control over hosts and wide community of users, this 
is very popular batch scheduling system among industries and research 
institutes/organizations to efficiently manage the computing resources for their 
computational intensive (sequential and parallel) jobs.  

Deployment of the Sun Grid Engine appears to be a little bit difficult, therefore it 
is helpful to be familiar with some tricks, especially important for configuring the 
execution host of Microsoft Windows and setting the Microsoft Windows 
applications and their environments. Therefore we provide below a brief overview 
of a rathe simple way of installation/configuration of Sun Grid Engine 6.2 Update 
3 on 32-Bit Ubuntu Linux and 32-Bit WinXP. 

Prior to Installation of SGE 

Prior to the installation of Sun Grid Engine make sure that all the following steps 
are perfectly working. 

 Master host and execution host must be able to ping each other 

 Similarly, the master host and execution host has to be able to resolve 
each other by their hostnames 

 Password-less ssh access working among master host and execution 
hosts is optional 

 Try to make the things simple and consistent on each host (either 
master or execution); for example:  

i. Create the set of default users, like “sgeadmin” 
ii. Keep the directory structure of SGE similar as well like  

“SGE_ROOT=/home/sgeadmin/sge” 

Installation of Master Host 

The master host of SGE should  always be on Linux/UNIX operating system. 
With respect to the architecture of the operating system, download the SGE suit 
from Sun’s website. 

Login to the master host as sgeadmin user and unzip the SGE suit in some 
directory like in our case it is “/home/sgeadmin/sge’. 

sgeadmin@vm-ubuntu1:~/sge$ ./inst_sge –m 

-m switch is for installing master host of SGE, if master host is also going to 
perform as execution host in cluster then you may add another switch –x for that 
purpose while starting this bash script (inst_sge). It is not necessary to install 



23 

 

master and execution hosts at the same time; in fact, after successful installation 
of master host, the execution host can later be installed on the same machine 
where master host is running. 

The SGE scripts have been coded well. Therefore, in order to ease later 
installations of Windows execution hosts, one should - during the installation of 
the master host - generate a few special keys for enabling the Windows 
execution host support. In the end, the master host (sge_qmaster) will be 
successfully running, and can be checked by issuing the following command. 

sgeadmin@vm-ubuntu1:~/sge$ ps aux | grep sge_ 

Before the installation of the execution host on another machine, one should 
perform the following set of actions: 

1. Identify the ports on which sge_qmaster program is listening requests 
from execution hosts. 

 sge_qmaster 6444/tcp 

 sge_execd  6445/tcp (if an execution host is also installed on the 

same machine) 

2. Select a name of the grid engine cell, which is the “default”. There will be a 
folder in the SGE_ROOT directory with the same name. As far as 
installation of execution host is concerned this default directory is very 
important. Therefore, one should copy this default directory by some mean 
(scp, pen drive etc) into the SGE_ROOT directory of all execution hosts. 

3. One should add the execution hosts into the list of admin hosts at master 
host. So, in our case for the time being, we are going to add seven 
execution hosts four Linux/UNIX execution hosts (“vm-ubuntu2” to “vm-
ubuntu5”) and three Microsoft Windows execution hosts (“vm-winxp1” to 
“vm-winxp3”). 

 qconf –ah ubuntu2 (add (admin) host, similarly add rest of Linux hosts) 

 qcong –ah vm-winxp1 (Similarly add rest of WinXP hosts) 

 qconf –sh (this command will show the list of admin hosts) 

Installation of Execution Host on Linux/UNIX 

Login the system as sgeadmin user and unzip the SGE suit and issue the 
following command. 

sgeadmin@vm-ubuntu2:~/sge$ ./inst_sge –x 

As the username, directory structure and grid engine cell (default) all are same 
on execution host. In addition, the execution host has already added into the 
admin host list of master host. So, the things will be smooth and the execution 



24 

 

host (sge_execd) will be successfully running on the system and can be verified 
like issuing the following command. 

sgeadmin@vm-ubuntu2:~/sge$ ps aux | grep sge_ 

As far as the installation of execution host is concerned for this the execution 
host needs to be present in the list of admin hosts at the master host and rest of 
things the SGE will accommodate itself. After the successful installation of 
execution host login at master host again and assign the following job 
designations to the execution host. 

 Submit Host (Submit hosts are the hosts which are able to submit the job 
on Grid Engine) (optional) 

o qconf –as vm-ubuntu2 (add submit host) 
o qconf –ss (this command will show the list of submit hosts) 

 Execution Host (Execution hosts are the hosts which are able to execute 
the job) 

o qconf –ae vm-ubuntu2 (add execution host) 
o qconf –sel (this command will show the list of execution hosts) 

Similarly rest of Linux/UNIX execution hosts can also be added into the Sun Grid 
Engine. 

Installation of Execution Host on WinXP 

Open the “C Shell” and login as “sgeadmin” user and rest of the procedure is 
similar as the execution host configured for Linux. Then download the SGE suit 
for windows from the Sun’s website, unzip the pack by keeping the directory 
structure same, and copy the grid cell directory from master host of the SGE (in 
our case the directory named “default”). 

$ ./inst_sge –x 

Then the execution host (sge_execd) should be successfully running on the 
system; this can be checked by issuing the following command: 

$ ps aux | grep sge_ 

After a successful installation of execution host, its name shall be present in the 
list of admin host at the master host.To check this, login at the master host again, 
and assign the following job designations to the execution host. 

 Submit Host (Submit hosts are the hosts which are able to submit the job 
on Grid Engine) (optional) 

o qconf –as vm-winxp1 (add submit host) 
o qconf –ss (this command will show the list of submit hosts) 



25 

 

 Execution Host (Execution hosts are the hosts which are able to execute 
the job) 

o qconf –ae vm-winxp1 (add execution host) 
o qconf –sel (this command will show the list of execution hosts) 

Similarly all the rest of Microsoft Windows execution hosts can be added.



26 

 

Appendix IV 

Installation/Configuration of MPICH2 for Linux/UNIX and WinXP 

For a high performance parallel processing on the cluster of workstations and 
massively parallel systems, one should choose suitable parallel programming 
model for the required parallel applications. Parallel Virtual Machine (PVM) and 
Message Passing Interface (MPI) are famous parallel programming models and 
popular among the community of parallel programmers.  

In the context of this work, the MPI is our parallel programming model with the 
support of C, C++ and FORTRAN programming languages. The MPI is the 
specification for Application Programming Interface (API), according to MPI 
specification many organizations and research teams are constantly developing 
and updating various libraries. Among the cluster and grid computing community, 
the freely available versions of MPI like MPICH2 for Linux/UNIX and Microsoft 
Windows is preferred for high performance computing. 

As far as parallel programming models are concerned, models configured for 
Linux/UNIX and those for Windows are not able to work together. Similarly, a 
single parallel application cannot be executed on Linux and Windows platforms 
together unless successfully recompiled for other platform. 

Installation of MPICH2 for Linux/UNIX 

The version of MPICH2 (mpich2-1.1.1p1.tar) developed by Argonne National 
Laboratory (ANL) is used to embed with Sun Grid Engine for Linux/UNIX 
architecture and is freely available on the link below: 

http://www.mcs.anl.gov/research/projects/mpich2/ 

Install/configure the MPICH2 on every workstation separately and then start the 
demons collectively from the host which is selected as master host of Sun Grid 
Engine by using “mpdboot” command. 

To make the MPICH2 jobs operational with Sun Grid Engine, there are multiple 
methods to couple both MPICH2 and SGE. The major thing which is common for 
every method is to create some parallel environment by using the command 
“qconf –ap mpi” (“mpi” might be any name) and modify the option “pe_list” with 
this created parallel environment “mpi” at specific queue where the MPICH2 job 
will be submitted. The template for “mpi” is available within the suit of SGE in the 
folder “mpi” by the name of “mpi.template”. 

 

 



27 

 

Installation of MPICH2 for WinXP 

The MPICH2 installation/configuration for Microsoft Windows differs from that for 
Linux/UNIX architecture. Before the installation, one should install Microsoft .NET 
Framework and Microsoft Visual C++. The version of MPICH2 (mpich2-1.1.1p1-
win-ia32.msi) actually requires WinXP (Service Pack 3). We used the MPICH2 
(mpich2-1.0.8-win-ia32) version, which is freely available on the following link, 
and works correctly with WinXP (Service Pack 2): 

http://www.mcs.anl.gov/research/projects/mpich2/downloads/tarballs/1.0.8/ 

After successful installation of MPICH2 on all WinXP workstations, the daemon 
“smpd” will be running on every WinXP workstation for computation of WinXP 
parallel jobs. As far as the submission of parallel job for WinXP architecture is 
concerned by using SGE, the method is almost same as the things happening in 
the case of Linux/UNIX architecture but for this the queue management is 
different. 

 

 



28 

 

Appendix V 

Listing of developed Scripts 

submit.sh 

#!/bin/sh 
 
# $1 - name of the computational pack at pool 
 
###################################### 
STORAGE=/home/sgeadmin/storage # pool of computational packs 
INPUT=$STORAGE/$1 
RUN_SCRIPT=run_script.sh 
LIN=linux.q 
WIN=win.q 
LINWIN=all.q 
ARRAY=1 
 
###################################### 
MPI=`cat $INPUT/META-INF/packinfo | grep "MPI" | cut -d "=" -f 2`; 
NUM_PROC=`cat $INPUT/META-INF/packinfo | grep "NUM_PROC" | cut -d "=" -f 2`; 
 
###################################### 
CMD_ARG=`cat $INPUT/META-INF/packinfo | grep "CMD_ARG" | cut -d "=" -f 2`; 
ITERS=`cat $INPUT/META-INF/packinfo | grep "ITERS" | cut -d "=" -f 2`; 
 
if [ $CMD_ARG =  ]; then 
 lines=`wc -l $INPUT/META-INF/run_params.tsv | cut -d " " -f 1` 
 ARRAY=$((ITERS*lines)) 
else 
 ARRAY=$ITERS 
fi 
 
###################################### 
ARCH_TYPE=`cat $INPUT/META-INF/packinfo | grep "^EXE_" | cut -b 5- | cut -d "=" -f 1` 
count=0 
 
for arch in $ARCH_TYPE 
do 
 if [ $arch = lx24-x86 ]; then 
  QUEUE=$LIN 
  count=$((count+1)) 
 elif [ $arch = win32-x86 ]; then  
  QUEUE=$WIN 
  count=$((count+1)) 
 else 
  echo "Architecture mismatch in packinfo" 
  exit 
 fi 
done 
 
###################################### 
if [ $MPI = yes ]; then 
 if [ $count -eq 1 ]; then 



29 

 

  echo qsub -q $QUEUE -pe mpi $NUM_PROC -t 1:$ARRAY:1 $RUN_SCRIPT 
$INPUT  
  qsub -q $QUEUE -pe mpi $NUM_PROC -t 1:$ARRAY:1 $RUN_SCRIPT $INPUT 
 elif [ $count -gt 1 ]; then  
  echo "MPI Job can not be submitted for general queue" 
 fi 
elif [ $MPI = no ]; then 
 if [ $count -eq 1 ]; then 
  echo qsub -q $QUEUE -t 1:$ARRAY:1 $RUN_SCRIPT $INPUT  
  qsub -q $QUEUE -t 1:$ARRAY:1 $RUN_SCRIPT $INPUT 
 elif [ $count -gt 1 ]; then 
  QUEUE=$LINWIN 
  echo qsub -q $QUEUE -t 1:$ARRAY:1 $RUN_SCRIPT $INPUT  
  qsub -q $QUEUE -t 1:$ARRAY:1 $RUN_SCRIPT $INPUT 
 fi 
fi 
 
###################################### 

 

run_script.sh 

#!/bin/sh 
 
#$ -S /bin/sh 
# $1 - name of computation pack at pool with path 
 
###################################### 
PROGRAM=$1 
QMASTER_HOSTNAME=vm-ubuntu1 
OUTPUT=$JOB_ID.$SGE_TASK_ID.$HOSTNAME 
LOG=jobinfo.txt 
 
###################################### 
scp -r $USER@$QMASTER_HOSTNAME:$PROGRAM $OUTPUT 
 
###################################### 
MPI=`cat $OUTPUT/META-INF/packinfo | grep "MPI" | cut -d "=" -f 2`; 
REQS=`cat $OUTPUT/META-INF/packinfo | grep "REQS" | cut -d "=" -f 2`; 
CMD_ARG=`cat $OUTPUT/META-INF/packinfo | grep "CMD_ARG" | cut -d "=" -f 2`; 
STDIN_NAME=`cat $OUTPUT/META-INF/packinfo | grep "STDIN_NAME" | cut -d "=" -f 2`; 
 
 
if [ $CMD_ARG =  ]; then 
 CMD_ARG=`$OUTPUT/META-INF/get_params.sh $OUTPUT/META-INF/run_params.tsv 
$SGE_TASK_ID`; 
fi 
 
if [ $MPI = yes ]; then 
 MACHINES=`awk '{print $1}' $TMPDIR/machines` 
 for machine in $MACHINES 
 do 
  if [ $machine != `hostname` ]; then 
  `scp -r $OUTPUT $USER@$machine:~/` 
  fi 
 done 



30 

 

fi 
 
###################################### 
S_TIME=`date` 
 
cd $OUTPUT 
 
if [ $MPI = yes ] && [ $REQS = bin ]; then 
cp $TMPDIR/machines . 
 if [ $SGE_ARCH = lx24-x86 ]; then 
  EXE_FILE=`cat META-INF/packinfo | grep "EXE_"$SGE_ARCH"=" | cut -d "=" -f 
2`; 
  MPI_ROOT=/home/sgeadmin/mpich 
  $MPI_ROOT/bin/mpiexec -machinefile machines -np $NSLOTS ./$EXE_FILE 
$CMD_ARG < META-INF/$STDIN_NAME 
 elif [ $SGE_ARCH = win32-x86 ]; then  
  EXE_FILE=`cat META-INF/packinfo | grep "EXE_"$SGE_ARCH"=" | cut -d "=" -f 
2`; 
  MPI_ROOT=/dev/fs/C/SFU/bin/mpich 
  $MPI_ROOT/bin/mpiexec.exe -machinefile machines -np $NSLOTS 
./$EXE_FILE $CMD_ARG < META-INF/$STDIN_NAME 
 fi 
 
elif [ $MPI = no ] && [ $REQS = bin ]; then 
 if [ $SGE_ARCH = lx24-x86 ]; then 
  EXE_FILE=`cat META-INF/packinfo | grep "EXE_"$SGE_ARCH"=" | cut -d "=" -f 
2`; 
  ./$EXE_FILE $CMD_ARG < META-INF/$STDIN_NAME 
 elif [ $SGE_ARCH = win32-x86 ]; then  
  EXE_FILE=`cat META-INF/packinfo | grep "EXE_"$SGE_ARCH"=" | cut -d "=" -f 
2`; 
  ./$EXE_FILE $CMD_ARG < META-INF/$STDIN_NAME 
 fi 
 
elif [ $MPI = no ] && [ $REQS = java ]; then 
 if [ $SGE_ARCH = lx24-x86 ]; then 
  EXE_FILE=`cat META-INF/packinfo | grep "EXE_"$SGE_ARCH"=" | cut -d "=" -f 
2`; 
  java -jar $EXE_FILE $CMD_ARG < META-INF/$STDIN_NAME 
 elif [ $SGE_ARCH = win32-x86 ]; then  
  EXE_FILE=`cat META-INF/packinfo | grep "EXE_"$SGE_ARCH"=" | cut -d "=" -f 
2`; 
  JAVA_ROOT=/dev/fs/C/SFU/bin/java/jdk1.6.0_14 
  $JAVA_ROOT/bin/java.exe -jar $EXE_FILE $CMD_ARG < META-
INF/$STDIN_NAME 
 fi 
fi 
 
E_TIME=`date` 
 
###################################### 
cd .. 
 
if [ $SGE_TASK_ID = undefined ]; then 
 cp $JOB_NAME.o$JOB_ID $OUTPUT/META-INF/stdout.txt 
 cp $JOB_NAME.e$JOB_ID $OUTPUT/META-INF/stderr.txt 
 if [ $MPI = yes ]; then 



31 

 

  cp $JOB_NAME.po$JOB_ID $OUTPUT/META-INF/stdpout.txt 
  cp $JOB_NAME.pe$JOB_ID $OUTPUT/META-INF/stdperr.txt 
 fi 
else 
 cp $JOB_NAME.o$JOB_ID.$SGE_TASK_ID $OUTPUT/META-INF/stdout.txt 
 cp $JOB_NAME.e$JOB_ID.$SGE_TASK_ID $OUTPUT/META-INF/stderr.txt 
 if [ $MPI = yes ]; then 
  cp $JOB_NAME.po$JOB_ID.$SGE_TASK_ID $OUTPUT/META-INF/stdpout.txt 
  cp $JOB_NAME.pe$JOB_ID.$SGE_TASK_ID $OUTPUT/META-INF/stdperr.txt 
 fi 
fi 
 
echo JOB_NAME=$JOB_NAME >$OUTPUT/META-INF/$LOG 
echo QUEUE_NAME=$QUEUE >>$OUTPUT/META-INF/$LOG 
echo HOSTNAME=$HOSTNAME >>$OUTPUT/META-INF/$LOG 
if [ $MPI = yes ]; then 
 echo MACHINES= `cat $TMPDIR/machines` >>$OUTPUT/META-INF/$LOG 
fi 
echo ARCH=$SGE_ARCH >>$OUTPUT/META-INF/$LOG 
echo TASK_ID=$SGE_TASK_ID >>$OUTPUT/META-INF/$LOG 
echo EXE_FILE=$EXE_FILE >>$OUTPUT/META-INF/$LOG 
echo STARTED=$S_TIME >>$OUTPUT/META-INF/$LOG 
echo FINISHED=$E_TIME >>$OUTPUT/META-INF/$LOG 
 
###################################### 
if  [ $MPI = yes ]; then 
 for machine in $MACHINES 
 do 
  if [ $machine != `hostname` ]; then 
   `ssh $USER@$machine rm -rf $OUTPUT` 
  fi 
 done 
fi 
 
scp -r $OUTPUT $USER@$QMASTER_HOSTNAME:~/ 
rm $JOB_NAME.* 
rm -rf $OUTPUT 
 
###################################### 

get_params.sh 

#!/bin/sh 
 
# $1 - file name "run_params.tsv" 
# $2 - SGE_TASK_ID which is pointing to the line no. in fact 
 
###################################### 
fname=$1 
 
exec < $fname 
i=0 
while read line 
do 
 i=$((i + 1)) 
 if [ $i = $2 ]; then 
  echo $line 



32 

 

  exit 0 
 fi 
done 
echo "Wrong line number supplied, not enough lines in the file ****$i"; 
exit 1; 
###################################### 

 


