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Foreword

In this paper, we focus on stochastic two-level linear programming problems involving
random variable coefficients both in objective functions and constraints. Using the con-
cept of chance constraints, stochastic constraints are transformed into deterministic ones.
Following the probability maximization model, the minimization of each stochastic ob-
jective function is replaced with the maximization of the probability that each objective
function is less than or equal to a certain value. Under some appropriate assumptions for
distribution functions, the formulated stochastic two-level linear programming problems
are transformed into deterministic ones. Taking into account vagueness of judgments of
the decision makers, we present interactive fuzzy programming. In the proposed inter-
active method, after determining the fuzzy goals of the decision makers at both levels, a
satisfactory solution is derived efficiently by updating the satisfactory degree of the deci-
sion maker at the upper level with considerations of overall satisfactory balance among
both levels. It should be emphasized here that the transformed deterministic problems for
deriving an overall satisfactory solution can be easily solved through the combined use of
the bisection method and the phase one of the simplex method. An illustrative numerical
example is provided to demonstrate the feasibility of the proposed method.
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Abstract

This paper considers stochastic two-level linear programming problems. Using the con-
cept of chance constraints and probability maximization, original problems are trans-
formed into deterministic ones. An interactive fuzzy programming method is presented
for deriving a satisfactory solution efficiently with considerations of overall satisfactory
balance.

Keywords: two-level linear programming problems, random variables, chance constraints,
probability maximization, interactive decision making
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Interactive Fuzzy Programming for Stochastic Two-level
Linear Programming Problems through Probability

Maximization

Masatoshi Sakawa (sakawa@hiroshima-u.ac.jp)* **

Kosuke Kato(kosuke-kato@hiroshima-u.ac.jp)*

1 Introduction

Decision making problems in decentralized organizations are often formulated as two-
level programming problems with a DM at the upper level (DM1) and another DM at the
lower level (DM2) [28]. Under the assumption that these DMs do not have motivation
to cooperate mutually, the Stackelberg solution [39, 3, 37, 17] is adopted as a reasonable
solution for the situation. On the other hand, in the case of a project selection problem
in the administrative office of a company and its autonomous divisions, the situation that
these DMs can cooperate with each other seems to be natural rather than the noncoop-
erative situation. Lai [11] and Shih et al. [38] proposed solution concepts for two-level
linear programming problems or multi-level ones such that decisions of DMs in all levels
are sequential and all of the DMs essentially cooperate with each other. In their methods,
the DMs identify membership functions of the fuzzy goals for their objective functions,
and in particular, the DM at the upper level also specifies those of the fuzzy goals for the
decision variables. The DM at the lower level solves a fuzzy programming problem with
a constraint with respect to a satisfactory degree of the DM at the upper level. Unfortu-
nately, there is a possibility that their method leads a final solution to an undesirable one
because of inconsistency between the fuzzy goals of the objective function and those of
the decision variables. In order to overcome the problem in their methods, by eliminating
the fuzzy goals for the decision variables, Sakawa et al. have proposed interactive fuzzy
programming for two-level or multi-level linear programming problems to obtain a sat-
isfactory solution for DMs [29, 30]. The subsequent works on two-level or multi-level
programming have been developing [14, 26, 27, 31, 32, 40, 18, 1, 19, 28]. In actual de-
cision making situations, however, we must often make a decision on the basis of vague
information or uncertain data. For such decision making problems involving uncertainty,
there exist two typical approaches: probability-theoretic approach and fuzzy-theoretic
one. Stochastic programming, as an optimization method based on the probability theory,
have been developing in various ways [45, 4], including two stage problems considered by
Dantzig [8] and chance constrained programming proposed by Charnes et al. [5]. Espe-
cially, for multiobjective stochastic linear programming problems, Stancu-Minasian [44]

* Graduate School of Engineering, Hiroshima University.
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considered the minimum risk approach, while Leclercq [13] and Teghem Jr. et al. [43]
proposed interactive methods.

Fuzzy mathematical programming representing the vagueness in decision making sit-
uations by fuzzy concepts have been studied by many researchers [20, 21]. Fuzzy multi-
objective linear programming, first proposed by Zimmermann [47], have been also devel-
oped by numerous researchers, and an increasing number of successful applications has
been appearing [36, 16, 48, 42, 12, 21, 41, 22].

As a hybrid of the stochastic approach and the fuzzy one, Wang et al. considered
mathematical programming problems with fuzzy random variables [46], Liu et al. [15]
discussed chance constrained programming involving fuzzy parameters. In particular,
Hulsurkar et al. [9] applied fuzzy programming to multiobjective stochastic linear pro-
gramming problems. Unfortunately, however, in their method, since membership func-
tions for the objective functions are supposed to be aggregated by a minimum opera-
tor or a product operator, optimal solutions which sufficiently reflect the DM’s prefer-
ence may not be obtained. To cope with the problem, after reformulating multiobjective
stochastic linear programming problems using several models for chance constrained pro-
gramming, Sakawa et al. [24, 23, 25] presented an interactive fuzzy satisficing method
to derive a satisficing solution for the DM as a generalization of their previous results
[33, 36, 34, 35, 21].

Under these circumstances, in this paper, we deal with two-level linear programming
problems with random variable coefficients in both objective functions and constraints.
Using the concept of chance constraints, stochastic constraints are transformed into deter-
ministic ones. Following the probability maximization model, the minimization of each
stochastic objective function is replaced with the maximization of the probability that each
objective function is less than or equal to a certain value. Under some appropriate assump-
tions for distribution functions, the formulated stochastic two-level linear programming
problems are transformed into deterministic ones. By considering the fuzziness of human
judgments, we present an interactive fuzzy programming method for deriving a satisfac-
tory solution for the DMs by updating the satisfactory degree of the DM at the upper level
with considerations of overall satisfactory balance among both levels.

2 Stochastic two-level linear programming problems

Consider two-level linear programming problems with random variable coefficients for-
mulated as:

minimize
for DM1

z̄1(x1,x2) = c̄11x1 + c̄12x2 + ᾱ1

minimize
for DM2

z̄2(x1,x2) = c̄21x1 + c̄22x2 + ᾱ2

subject to A1x1 +A2x2 ≤ b̄
x1 ≥ 0, x2 ≥ 0


(1)

wherex1 is ann1 dimensional decision variable column vector for the DM at the upper
level (DM1), x2 is ann2 dimensional decision variable column vector for the DM at the
lower level (DM2), c̄lj, l = 1, 2, j = 1, 2 arenj dimensional random variable row vec-
tors expressed as̄clj = c1

lj + t̄lc
2
lj wheret̄l, l = 1, 2 are mutually independent random

variables with meanMl and their distribution functionsTl(·), l = 1, 2 are assumed to be
nondecreasing, and̄αl, l = 1, 2 are random variables expressed asᾱl = α1

l + t̄lα
2
l . In ad-
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dition, b̄i, i = 1, 2, . . . ,m are mutually independent random variables whose distribution
function are also assumed to be nondecreasing.

Stochastic two-level linear programming problems formulated as (1) are often seen in
actual decision making situations, e.g., a supply chain planning [19] where the distribution
center (DM1) and the production part (DM2) hope to minimize the distribution cost and
the production cost respectively under constraints about inventory levels and production
levels. Since coefficients of these objective functions and those of the right-hand side of
constraints like product demands are often affected by the economic conditions varying
at random, they can be regarded as random variables and the supply chain planning is
formulated as (1).

Since (1) contains random variable coefficients, solution methods for ordinary de-
terministic two-level linear programming problems cannot be directly applied. Conse-
quently, in this paper, we consider the constraints involving random variable coefficients
in (1) as chance constraints [5] which mean the probability that each constraint is fulfilled
must be greater than or equal to a certain probability (satisficing level). Namely, replacing
constraints in (1) by chance constraints with satisficing levelsβi ∈ (0, 1), i = 1, 2, . . . ,m,
problem (1) can be transformed as:

minimize
for DM1

z̄1(x1,x2) = c̄11x1 + c̄12x2 + ᾱ1

minimize
for DM2

z̄2(x1,x2) = c̄21x1 + c̄22x2 + ᾱ2

subject to Pr{ai1x1 + ai2x2 ≤ b̄i} ≥ βi, i = 1, 2, . . . ,m
x1 ≥ 0, x2 ≥ 0


(2)

whereai1 andai2 is thei th row vector ofA1 andA2, andb̄i is thei th element of̄b.
Since the distribution functionFi(r) = Pr{b̄i ≤ r} of each random variablēbi is

nondecreasing, thei th constraint in (2) can be rewritten as:

Pr{ai1x1 + ai2x2 ≤ b̄i} ≥ βi ⇔ 1− Pr{ai1x1 + ai2x2 ≥ b̄i} ≥ βi

⇔ 1− Fi(ai1x1 + ai2x2) ≥ βi

⇔ Fi(ai1x1 + ai2x2) ≤ 1− βi
⇔ ai1x1 + ai2x2 ≤ F ∗i (1− βi)

whereF ∗i (·) is a pseudo-inverse function ofFi(·) defined byF ∗i (r) = inf{y | Fi(y) ≥ r}.
Letting b̂i = F ∗i (1− βi), problem (2) can be rewritten as:

minimize
for DM1

z̄1(x1,x2) = c̄11x1 + c̄12x2 + ᾱ1

minimize
for DM2

z̄2(x1,x2) = c̄21x1 + c̄22x2 + ᾱ2

subject to A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0


(3)

whereb̂ = (b̂1, b̂2, . . . , b̂m)T .
In addition to the chance constraints, it is now appropriate to consider objective func-

tions with randomness on the basis of some decision making model. As such decision
making models, expectation optimization, variance minimization, probability maximiza-
tion and fractile criterion optimization are typical. For instance, let the objective function
represent a profit. If the DM wishes to simply maximize the expected profit without car-
ing about the fluctuation of the profit, the expectation optimization model [7] to optimize
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the expectation of the objective function is appropriate. On the other hand, if the DM
hopes to decrease the fluctuation of the profit as little as possible from the viewpoint of
the stability of the profit, the variance minimization model [7] to minimize the variance of
the objective function is useful. In contrast to these two types of optimizing approaches,
as satisficing approaches, the probability maximization model [7] and the fractile criterion
optimization model or Kataoka’s model [10] have been proposed. When the DM wants
to maximize the probability that the profit is greater than or equal to a certain permissible
level, probability maximization model [7] is recommended. In contrast, when the DM
wishes to optimize such a permissible level as the probability that the profit is greater
than or equal to the permissible level is greater than or equal to a certain threshold, the
fractile criterion optimization model will be appropriate. In this paper, assuming that the
DM wants to maximize the probability that the profit is greater than or equal to a certain
permissible level for safe management, we adopt the probability maximization model as
a decision making model.

In the probability maximization model, the minimization of each objective function
z̄l(x1,x2) in (3) is substituted with the maximization of the probability thatz̄l(x1,x2) is
less than or equal to a certain permissible levelhl under the chance constraints. Through
probability maximization, problem (3) can be rewritten as:

maximize
for DM1

Pr{z̄1(x1,x2) ≤ h1}
maximize

for DM2
Pr{z̄2(x1,x2) ≤ h2}

subject to A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0


. (4)

Supposing thatc2
l1x1 + c2

l2x2 + α2
l > 0, l = 1, 2, . . . , k for any feasible solution

(x1,x2) to (4), from the assumption on the distribution functionTl(·) of each random
variablet̄l, we can rewrite objective functions in (4) as follows.

Pr{z̄l(x1,x2) ≤ hl}
= Pr

{
(c1
l1 + t̄lc

2
l1)x1 + (c1

l2 + t̄lc
2
l2)x2 + (α1

l + t̄lα
2
l ) ≤ hl

}
= Pr

{
(c2
l1x1 + c2

l2x2 + α2
l )t̄l + (c1

l1x1 + c1
l2x2 + α1

l ) ≤ hl
}

= Pr

{
t̄l ≤

hl − (c1
l1x1 + c1

l2x2 + α1
l )

(c2
l1x1 + c2

l2x2 + α2
l )

}

= Tl

(
hl − c1

l1x1 − c1
l2x2 − α1

l

c2
l1x1 + c2

l2x2 + α2
l

)

Hence, (4) can be equivalently transformed into the following deterministic two-level
programming problem.

maximize
for DM1

p1(x1,x2) = T1

(
h1 − c1

11x1 − c1
12x2 − α1

1

c2
11x1 + c2

12x2 + α2
1

)

maximize
for DM2

p2(x1,x2) = T2

(
h2 − c1

21x1 − c1
22x2 − α1

2

c2
21x1 + c2

22x2 + α2
2

)
subject to A1x1 +A2x2 ≤ b̂

x1 ≥ 0, x2 ≥ 0


(5)
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3 Interactive fuzzy programming

In general, it seems natural that the DMs have fuzzy goals for their objective functions
when they take fuzziness of human judgments into consideration. For each of the objec-
tive functionspl(x1,x2), l = 1, 2 in (5), assume that the DMs have fuzzy goals such as
“pl(x1,x2) should be substantially greater than or equal to some specific value.” Then,
(5) can be rewritten as:

maximize
for DM1

µ1(p1(x1,x2))

maximize
for DM2

µ2(p2(x1,x2))

subject to A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0


(6)

whereµl(·) is a membership function to quantify a fuzzy goal for thel th objective func-
tion in (5) and it is assumed to be nondecreasing.

Although the membership function does not always need to be linear, for the sake of
simplicity, we adopt a linear membership function. To be more specific, if the DM feels
thatpl(x1,x2) should be greater than or equal to at leastpl,0 andpl(x1,x2) ≥ pl,1(> pl,0)
is satisfactory, the linear membership functionµl(pl(x1,x2)) is defined as:

µl(pl(x1,x2)) =


0 , pl(x1,x2) < pl,0

pl(x1,x2)− pl,0
pl,1 − pl,0

, pl,0 ≤ pl(x1,x2) ≤ pl,1
1 , pl(x1,x2) > pl,1

(7)

and it is depicted in Fig. 1.

Figure 1: Linear membership function

Zimmermann [47] suggested a method for assessing the parameter values of the linear
membership function. In his method, the parameter valuespl,1, l = 1, 2 are determined as

p1,1 = p1,max = p1(x1
1,max,x

1
2,max) = max

(xT1 ,x
T
2 )T∈X

p1(x1,x2)

p2,1 = p2,max = p2(x2
1,max,x

2
2,max) = max

(xT1 ,x
T
2 )T∈X

p2(x1,x2)

and the parameter valuespl,0, l = 1, 2 are specified as

p1,0 = p1(x2
1,max,x

2
2,max)

p2,0 = p2(x1
1,max,x

1
2,max)
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where(xl1,min,x
l
2,min) is an optimal solution to the following problem

maximize pl(x1,x2) = Tl

(
hl − c1

l1x1 − c1
l2x2 − α1

l

c2
l1x1 + c2

l2x2 + α2
l

)
subject to A1x1 +A2x2 ≤ b̂

x1 ≥ 0, x2 ≥ 0

 . (8)

From the monotonicity of the distribution functionTl(·), problem (8) is equivalent to:

maximize
hl − c1

l1x1 − c1
l2x2 − α1

l

c2
l1x1 + c2

l2x2 + α2
l

subject to A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0

 . (9)

Using the variable transformation method by Charnes and Cooper [6]:sl = 1/(c2
l1x1+

c2
l2x2+α2

1), yj = sl ·xj, sl > 0, l = 1, 2, j = 1, 2, problem (9) is equivalently transformed
as:

maximize −c1
l1y1 − c1

l2y2 − (α1
l − hl) · sl

subject to A1y1 +A2y2 − b̂ · sl ≤ 0
c2
l1y1 + c2

l2y2 + α2
l · sl = 1

y1 ≥ 0, y2 ≥ 0, sl > 0

 . (10)

Since (10) is a linear programming problem, it can be easily solved by the simplex method
of linear programming.

To derive an overall satisfactory solution to the membership function maximization
problem (6), we first find the maximizing decision of the fuzzy decision proposed by
Bellman and Zadeh [2]. Namely, the following problem is solved for obtaining a solution
which maximizes the smaller degree of satisfaction between those of the two DMs:

maximize min
l=1,2
{µl(pl(x1,x2))}

subject to A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0

 , (11)

or equivalently,
maximize v
subject to µ1(p1(x1,x2)) ≥ v

µ2(p2(x1,x2)) ≥ v

A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0


. (12)

Sinceµl(·), l = 1, 2 are nondecreasing, (12) can be converted as:

maximize v
subject to p1(x1,x2) ≥ µ∗1(v)

p2(x1,x2) ≥ µ∗2(v)

A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0


(13)
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whereµ∗l (·) is a pseudo-inverse function ofµl(·) defined byµ∗l (r) = inf{y | µl(y) ≥ r}.
Since

pl(x1,x2) = Tl

(
hl − c1

l1x1 − c1
l2x2 − α1

l

c2
l1x1 + c2

l2x2 + α2
l

)
and distribution functionsTl(·) are assumed to be nondecreasing, problem (13) is equiva-
lently transformed as:

maximize v

subject to
h1 − c1

11x1 − c1
12x2 − α1

1

c2
11x1 + c2

12x2 + α2
1

≥ T ∗1 (µ∗1(v))

h2 − c1
21x1 − c1

22x2 − α1
2

c2
21x1 + c2

22x2 + α2
2

≥ T ∗2 (µ∗2(v))

A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0


, (14)

whereT ∗l (·) is a pseudo-inverse function ofTl(·) defined byT ∗l (r) = inf{y | Tl(y) ≥ r}.
Obtaining the optimal value ofv to (14) is equivalent to finding the maximum ofv so

that the set of feasible solutions to (14) is not empty. Noting that the constraints of (14)
are linear whenv is fixed, we can easily find the maximum ofv through the combined use
of the bisection method and the phase one of the simplex method.

The combined use of the bisection method and the phase one of the simplex method

Step 1: Setr := 0 andv := 0. Test whether the set of feasible solutions to (14) forv = 0
is empty or not using the phase one of the simplex method. Letvfeasible:= v and go
to step 2.

Step 2: Setv := 1. Test whether the set of feasible solutions to (14) forv = 1 is empty
or not using the phase one of the simplex method. If it is not empty,v = 1 is the
optimal valuev∗ to (14) and the algorithm is terminated. Otherwise, the maximum
of v so that the set of feasible solutions to (14) is not empty exists between0 and1.
Let vinfeasible:= v and go to step 3.

Step 3: Setv := (vfeasible+ vinfeasible)/2, r := r + 1 and go to step 4.

Step 4: Test whether the set of feasible solutions to (14) forv determined in step 3 is
empty or not using the phase one of the simplex method. It should be noted that we
can use the sensitivity analysis technique when we carry out the above test. If it is
not empty and(1/2)r ≤ ε, the current value ofv is regarded as the optimal value
v∗ to (14) and the algorithm is terminated. If it is not empty and(1/2)r > ε, let
vfeasible:= v and go to step 3. On the other hand, if it is empty, letvinfeasible:= v and
go to step 3.

For the optimal valuev∗ obtained in this way, we can determine the corresponding
optimal solutionx∗ by solving the following linear programming problem.

maximize
h1 − c1

11x1 − c1
12x2 − α1

1

c2
11x1 + c2

12x2 + α2
1

subject to
h2 − c1

21x1 − c1
22x2 − α1

2

c2
21x1 + c2

22x2 + α2
2

≥ T ∗2 (µ∗2(v∗))

A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0


(15)
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Letting τ = T ∗2 (µ∗2(v∗)) and using the variable transformation method by Charnes
and Cooper [6], problem (15) can be transformed into the following linear programming
problem:

maximize −c1
11y1 − c1

12y2 − (α1
1 − h1) · s

subject to τ · (c2
21y1 + c2

22y2 + α2
2 · s)

+c1
21y1 + c1

22y2 + (α1
2 − h2) · s ≤ 0

A1y1 +A2y2 − b̂ · s ≤ 0
c2

11y1 + c2
12y2 + α2

1 · s = 1
y1 ≥ 0, y2 ≥ 0, s > 0


. (16)

From the optimal solution(y∗1,y
∗
2, s
∗) to (16), we can obtain the optimal solution(x∗1,x

∗
2)

to (11) which maximizes the smaller satisfactory degree between those of both DMs.
If DM 1 is satisfied with the optimal solution(x∗1,x

∗
2) to (11), it follows that the opti-

mal solution(x∗1,x
∗
2) becomes a satisfactory solution; however, DM1 is not always sat-

isfied with the solution(x∗1,x
∗
2). It is quite natural to assume that DM1 specifies the

minimal satisfactory level̂δ ∈ (0, 1) for the membership functionµ1(p1(x1,x2)) subjec-
tively.

Consequently, if DM1 is not satisfied with the solution(x∗1,x
∗
2) to problem (11), the

following problem is formulated:

maximize µ2(p2(x1,x2))

subject to µ1(p1(x1,x2)) ≥ δ̂

A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0

 (17)

equivalently,

maximize
h2 − c1

21x1 − c1
22x2 − α1

2

c2
21x1 + c2

22x2 + α2
2

subject to
h1 − c1

11x1 − c1
12x2 − α1

1

c2
11x1 + c2

12x2 + α2
1

≥ T ∗1 (µ∗1(δ̂))

A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0


. (18)

where DM2’s membership functionµ2(p2(x1,x2)) is maximized under the condition that
DM1’s membership functionµ1(p1(x1,x2)) is larger than or equal to the minimal satis-
factory levelδ̂ specified by DM1.

Using the variable transformation method by Charnes and Cooper [6], problem (18)
can be easily reduced to the following linear programming problem:

maximize −c1
21y1 − c1

22y2 − (α1
2 − h2) · s

subject to λ · (c2
11y1 + c2

12y2 + α2
1 · s)

+c1
11y1 + c1

12y2 + (α1
1 − h1) · s ≤ 0

A1y1 +A2y2 − b̂ · s ≤ 0
c2

21y1 + c2
22y2 + α2

2 · s = 1
y1 ≥ 0, y2 ≥ 0, s > 0


(19)

whereλ = T ∗1 (µ∗1(δ̂)).
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If there exists an optimal solution(x∗1,x
∗
2) to problem (17), it follows that DM1 ob-

tains a satisfactory solution having a satisfactory degree larger than or equal to the min-
imal satisfactory level specified by DM1’s self. However, the larger the minimal satis-
factory levelδ̂ is assessed, the smaller the DM2’s satisfactory degree becomes when the
membership functions of DM1 and DM2 conflict with each other. Consequently, a rela-
tive difference between the satisfactory degrees of DM1 and DM2 becomes larger, and it
follows that the overall satisfactory balance between both DMs is not appropriate.

In order to take account of the overall satisfactory balance between both DMs, DM1
needs to compromise with DM2 on DM1’s own minimal satisfactory level. To do so, the
following ratio of the satisfactory degree of DM2 to that of DM1 is helpful:

∆ =
µ2(p2(x1,x2))

µ1(p1(x1,x2))

which is originally introduced by Lai [11].
DM1 is guaranteed to have a satisfactory degree larger than or equal to the minimal

satisfactory level for the fuzzy goal because the corresponding constraint is involved in
problem (17). To take into account the overall satisfactory balance between both DMs,
DM1 specifies the lower bound∆min and the upper bound∆max of the ratio∆, and∆ is
evaluated by verifying whether or not it is in the interval[∆min,∆max]. The condition that
the overall satisfactory balance is appropriate is represented by

∆ ∈ [∆min,∆max].

At the iterationk, let (xk1,x
k
2), pkl = pl(xk1,x

k
2), µl(pkl ) and∆k = µ2(pk2)/µ1(pk1)

denote the current solution, DMl’s objective function value, DMl’s satisfactory degree
and the ratio of satisfactory degrees of the two DMs, respectively. The interactive process
terminates if the following two conditions are satisfied and DM1 concludes the solution
as an overall satisfactory solution.

[Termination conditions of the interactive process]

Condition 1 DM1’s satisfactory degree is larger than or equal to the minimal satisfactory
level δ̂ specified by DM1’s self, i.e.,µ1(pk1) ≥ δ̂.

Condition 2 The ratio∆k of satisfactory degrees lies in the closed interval between the
lower and the upper bounds specified by DM1, i.e.,∆k ∈ [∆min,∆max].

Condition 1 ensures the minimal satisfaction to DM1 in the sense of the attainment of
the fuzzy goal, and condition 2 is provided in order to keep overall satisfactory balance
between both DMs. If these two conditions are not satisfied simultaneously, DM1 needs
to update the minimal satisfactory levelδ̂. The updating procedures are summarized as
follows.

[Procedure for updating the minimal satisfactory levelδ̂]

Case 1 If condition 1 is not satisfied, then DM1 decreases the minimal satisfactory level
δ̂.
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Case 2 If the ratio∆k exceeds its upper bound, then DM1 increases the minimal satis-
factory level δ̂. Conversely, if the ratio∆k is below its lower bound, then DM1
decreases the minimal satisfactory levelδ̂.

Case 3 Although conditions 1 and 2 are satisfied, if DM1 is not satisfied with the obtained
solution and judges that it is desirable to increase the satisfactory degree of DM1
at the expense of the satisfactory degree of DM2, then DM1 increases the minimal
satisfactory level̂δ. Conversely, if DM1 judges that it is desirable to increase the
satisfactory degree of DM2 at the expense of the satisfactory degree of DM1, then
DM1 decreases the minimal satisfactory levelδ̂.

In particular, if condition 1 is not satisfied, there does not exist any feasible solution
for problem (17), and therefore DM1 has to moderate the minimal satisfactory level.

Now we are ready to propose interactive fuzzy programming for deriving a satis-
factory solution by updating the satisfactory degree of the DM at the upper level with
considerations of overall satisfactory balance among all the levels.

Computational procedure of interactive fuzzy programming

Step 1: Ask the DM at the upper level, DM1, to subjectively determine satisficing levels
βi ∈ (0, 1), i = 1, 2, . . . ,m for constraints in (2). Go to step 2.

Step 2: In order to determine permissible levelshl, l = 1, 2, the following problems are
solved to find the minimum and maximum of E{z̄l(x1,x2)} = (c1

l1 + Mlc
2
l1)x1 +

(c1
l2 + Mlc

2
l2)x2 + (α1

l + Mlα
2
l ) for each objective function under the chance con-

straints with satisficing levelsβi, i = 1, 2, . . . ,m.

minimize (c1
l1 +Mlc

2
l1)x1 + (c1

l2 +Mlc
2
l2)x2 + (α1

l +Mlα
2
l )

subject to A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0

 (20)

maximize (c1
l1 +Mlc

2
l1)x1 + (c1

l2 +Mlc
2
l2)x2 + (α1

l +Mlα
2
l )

subject to A1x1 +A2x2 ≤ b̂
x1 ≥ 0, x2 ≥ 0

 (21)

If the set of feasible solutions to these problems is empty, the satisficing levelsβi,
i = 1, 2, . . . ,m must be reassessed and return to step 1. Otherwise, letzEl,min and
zEl,max be optimal objective function values to (20) and (21). Since (20) and (21) are
linear programming problems, they can be easily solved by the simplex method.
Ask DM1 to determine permissible levelshl, l = 1, 2 for objective functions in
consideration ofzEl,min andzEl,max. Go to step 3.

Step 3: Solve (8) for obtaining optimal solutions(xl1,max, xl2,max), l = 1, 2 and calculate
pl,max. Then, identify the linear membership functionµl(pl(x1,x2)) of the fuzzy
goal for the corresponding objective function. Go to step 4.

Step 4: Setk := 1. Solve the maximin problem (11) for obtaining an optimal solution
which maximizes the smaller degree of satisfaction between those of the two DMs.
For the optimal solution(xk1,x

k
2) to (11), calculatepkl = pl(x

k
1,x

k
2), µl(pkl ), l = 1, 2
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and∆k = µ2(pk2)/µ1(pk1). If DM1 is satisfied with the optimal solution to (11), the
optimal solution becomes a satisfactory solution and the interaction procedure is
terminated. Otherwise, ask DM1 to subjectively set the minimal satisfactory level
δ̂ ∈ (0, 1) for the membership functionµ1(p1(x1,x2)). Furthermore, ask DM1 to
set the upper bound∆max and the lower bound∆min for ∆. Go to step 5.

Step 5: Setk := k + 1. Solve problem (17) for finding an optimal solution to maximize
DM2’s membership functionµ2(p2(x1,x2)) under the condition that DM1’s mem-
bership functionµ1(p1(x1,x2)) is larger than or equal to the minimal satisfactory
level δ̂. For the optimal solution(xk1,x

k
2) to (17), calculatepkl = pl(xk1,x

k
2), µl(pkl ),

l = 1, 2. and∆k = µ2(pk2)/µ1(pk1) and go to step 6.

Step 6: If the current solution(xk1,x
k
2) satisfies the termination conditions and DM1 ac-

cepts it, then the procedure stops and the current solution becomes a satisfactory
solution. Otherwise, ask DM1 to update the minimal satisfactory levelδ̂, and go to
step 5.

It should be noted that all problems (8), (11), (17), (20) and (21) in the interactive
fuzzy programming algorithm can be solved by either the simplex method of linear pro-
gramming or the combined use of the bisection method and the phase one of the simplex
method.

4 Numerical Example

To demonstrate the feasibility and efficiency of the proposed method, consider the stochas-
tic two-level linear programming problem formulated as:

minimize
for DM1

z̄1(x1,x2) = (c1
11 + t̄1c

2
11)x1 + (c1

12 + t̄1c
2
12)x2 + (α1

1 + t̄1α
2
1)

minimize
for DM2

z̄2(x1,x2) = (c1
21 + t̄2c

2
21)x1 + (c1

22 + t̄2c
2
22)x2 + (α1

2 + t̄2α
2
2)

subject to ai1x1 + ai2x2 ≤ b̄i, i = 1, 2, . . . , 7
x1 = (x11, x12, x13, x14, x15)T ≥ 0
x2 = (x21, x22, x23, x24, x25)T ≥ 0


(22)

wheret̄1 andt̄2 are Gaussian random variablesN(4, 22) andN(3, 32), and right side coef-
ficientsb̄i, i = 1, 2, . . . , 7 are also Gaussian random variablesN(164, 302),N(−190, 202),
N(−184, 152), N(99, 222), N(−150, 172), N(154, 352), N(142, 422). HereN(p, q2)
stands for a Gaussian random variable with meanp and varianceq2. Coefficient values of
objective functions and constraints are respectively shown in Table 1 and 2.

In step 1 of the interactive fuzzy programming, DM1 specifies satisficing levelsβi,
i = 1, 2, . . . , 7 as:

(β1, β2, β3, β4, β5, β6, β7)
T = (0.85, 0.95, 0.80, 0.90, 0.85, 0.80, 0.90)T .

For the specified satisficing levelsβi, i = 1, 2, . . . , 7, in step 2, minimal valueszEl,min

and maximal valueszEl,max of objective functions E{z̄l(x1,x2)} under the chance con-
straints are calculated aszE1,min = 1819.513, zE2,min = 286.583, zEl,max = 2307.626 and
zE2,max = 758.279. By considering these values, the DMs subjectively specifies permissi-
ble levels ash1 = 2150.0 andh2 = 450.0.
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Table 1: Coefficient values of objective functions

(c1
11, c

1
12) 19 48 21 10 18 35 46 11 24 33 α1

1 −18
(c2

11, c
2
12) 3 2 2 1 4 3 1 2 4 2 α2

1 5
(c1

21, c
1
22) 12 −46 −23 −38 −33 −48 12 8 19 20 α1

2 −27
(c2

21, c
2
22) 1 2 4 2 2 1 2 1 2 1 α2

2 6

Table 2: Coefficient values of constraints

(a11,a12) 12 −2 4 −7 13 −1 −6 6 11 −8
(a21,a22) −2 5 3 16 6 −12 12 4 −7 −10
(a31,a32) 3 −16 −4 −8 −8 2 −12 −12 4 −3
(a41,a42) −11 6 −5 9 −1 8 −4 6 −9 6
(a51,a52) −4 7 −6 −5 13 6 −2 −5 14 −6
(a61,a62) 5 −3 14 −3 −9 −7 4 −4 −5 9
(a71,a72) −3 −4 −6 9 6 18 11 −9 −4 7

In step 3, maximal valuespl,max of pl(x1,x2) are calculated as:

p1,max = p1(x1
1,max,x

1
2,max) = 0.880, p2,min = p2(x2

1,max,x
2
2,max) = 0.783.

Assume that the DMs identify the linear membership function (7) whose parameter values
are determined by the Zimmermann method [47]. Then, the parameter valuespl,1 andpl,0,
l = 1, 2 characterizing membership functionsµl(·) are becomes:

p1,1 = p1(x1
1,max,x

1
2,max) = 0.880,

p1,0 = p1(x2
1,max,x

2
2,max) = 0.598,

p2,1 = p2(x2
1,max,x

2
2,max) = 0.783,

p2,0 = p2(x1
1,max,x

1
2,max) = 0.060.

In step 4, letk := 1 and the maximin problem is solved. The obtained result is
shown at the column labeled “1st” in table 3. For the obtained optimal solution(x1

1,x
1
2)

to the maximin problem, corresponding membership function values are calculated as
µ1(p1(x1

1,x
1
2)) = 0.551 andµ2(p2(x1

1,x
1
2)) = 0.551. Then, the ratio of satisfactory

degrees∆1 is equal to1.000. Since DM1 is not satisfied with this solution, DM1 sets the
minimal satisfactory level̂δ ∈ (0, 1) for µ1(p1(x1,x2)) to 0.600 so thatµ1(p1(x1,x2))
will be improved from its current value0.551. Furthermore, the upper bound and the
lower bound of the ratio of satisfactory degrees∆ are set as∆max = 0.700 and∆min =
0.600.

In step 5, letk := 2 and (17) for̂δ = 0.600 is solved. For the obtained optimal solution
(x2

1,x
2
2) to (17),µ1(p1(x2

1,x
2
2)) = 0.600, µ2(p2(x2

1,x
2
2)) = 0.478. and∆2 = 0.797,

shown at the column labeled “2nd” in table 3.
In step 6, DM1 is asked whether he is satisfied with the obtained solution. Since the

ratio of satisfactory degrees∆2 exceeds∆max = 0.700, the second condition of termina-
tion of the interactive process is not fulfilled. Suppose that DM1 feels thatµ1(p1(x1,x2))
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Table 3: Interaction process

Interaction 1st 2nd 3rd 4th
δ̂ 0.600 0.700 0.650
xk11 15.368 15.066 14.423 14.749
xk12 2.162 1.960 1.532 1.750
xk13 0.000 0.000 0.000 0.000
xk14 0.000 0.000 0.000 0.000
xk15 0.000 0.000 0.000 0.000
xk21 6.033 5.784 5.255 5.524
xk22 0.118 0.108 0.086 0.097
xk23 14.276 14.489 14.953 14.707
xk24 1.516 1.775 2.325 2.046
xk25 17.848 17.997 18.315 18.153

p1(xk1 ,x
k
2) 0.734 0.767 0.796 0.781

p2(xk1 ,x
k
2) 0.458 0.406 0.301 0.353

µ1(p1(xk1,x
k
2)) 0.551 0.600 0.700 0.650

µ2(p2(xk1,x
k
2)) 0.551 0.478 0.333 0.405

∆k 1.000 0.797 0.475 0.623

should be considerably better thanµ2(p2(x1,x2)), and DM1 updates the minimal satis-
factory levelδ̂ from 0.600 to 0.700 in order to improveµ1(p1(x1,x2)). Consequently,
in step 5, letk := 3 and (17) forδ̂ = 0.700 is solved. The obtained result is shown at
the column labeled “3rd” in table 3. For the obtained optimal solution(x3

1,x
3
2) to (17),

µ1(p1(x3
1,x

3
2)) = 0.700, µ2(p2(x3

1,x
3
2)) = 0.333 and∆3 = 0.475.

In step 6, since the ratio of satisfactory degrees∆3 is less than∆min = 0.600, the
second condition of termination of the interactive process is not fulfilled. Hence, he up-
dates the minimal satisfactory levelδ̂ from 0.700 to 0.650 for improvingµ2(p2(x1,x2))
at the sacrifice ofµ1(p1(x1,x2)). As a result, in step 5, letk := 4 and (17) for̂δ = 0.650
is solved. For the obtained optimal solution(x4

1,x
4
2) to (17), corresponding membership

function values are calculated asµ1(p1(x4
1,x

4
2)) = 0.650 andµ2(p2(x4

1,x
4
2)) = 0.405 as

shown at the column labeled “4th” in table 3. Then, the ratio of satisfactory degrees∆4 is
equal to0.623.

In step 6, since the current solution satisfies all termination conditions of the inter-
active process and DM1 is satisfied with the current solution, the satisfactory solution is
obtained and the interaction procedure is terminated.

5 Conclusions

In this paper, we focused on stochastic two-level linear programming problems with ran-
dom variable coefficients in both objective functions and constraints. Through the use
of the probability maximization model in chance constrained programming, the stochas-
tic two-level linear programming problems are transformed into deterministic linear pro-
gramming ones under some appropriate assumptions for distribution functions. Taking
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into account vagueness of judgments of the DMs, interactive fuzzy programming has
been proposed. In the proposed interactive method, after determining the fuzzy goals of
the DMs at both levels, a satisfactory solution is derived efficiently by updating the sat-
isfactory degree of the DM at the upper level with considerations of overall satisfactory
balance among both levels. It is significant to note here that the transformed deterministic
problems to derive an overall satisfactory solution can be easily solved through the com-
bined use of the bisection method and the phase one of the simplex method. An illustrative
numerical example was provided to demonstrate the feasibility of the proposed method.
Extensions to other stochastic programming models will be considered elsewhere. Also
extensions to two-level linear programming problems involving fuzzy random variable
coefficients will be required in the near future.
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