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ABSTRACT 

We present a new methodology to estimate rates of energy acquisition, maintenance, 

reproductive investment and the onset of maturation (four-trait estimation) by fitting an 

energy allocation model to individual growth trajectories. The accuracy and precision of 

the method is evaluated on simulated growth trajectories. In the deterministic case, all life 

history parameters are well estimated with negligible bias over realistic parameter ranges. 

Adding environmental variability reduces precision, causes the maintenance and 

reproductive investment to be confounded with a negative error correlation, and tends, if 

strong, to result in an underestimation of the energy acquisition and maintenance and an 

overestimation of the age and size at the onset of maturation. Assuming a priori incorrect 

allometric scaling exponents also leads to a general but fairly predictable bias. To avoid 

confounding in applications we propose to assume a constant maintenance (three-trait 

estimation), which can be obtained by fitting reproductive investment simultaneously to 

size at age on population data. The results become qualitatively more robust but the 

improvement of the estimate of the onset of maturation is not significant. When applied 

to growth curves back-calculated from otoliths of female North Sea plaice (Pleuronectes 

platessa), the four-trait and three-trait estimation produced estimates for the onset of 

maturation very similar to those obtained by direct observation. The correlations between 

life-history traits match expectations. We discuss the potential of the methodology in 

studies of the ecology and evolution of life history parameters in wild populations. 
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INTRODUCTION 

The schedule according to which energy is allocated to either somatic growth or 

reproduction is a cornerstone of life history theory (Kooijman 1986, Roff 1992, Stearns 

1992, Kozlowski 1996, Charnov, et al. 2001). Energy allocation schedules differ among 

species as they reflect adaptation to both the environment and internal constraints 

resulting from sharing a common currency between different functions. Individuals 

indeed face an energy trade-off between somatic growth and reproduction (Roff 1992, 

Stearns 1992, Heino and Kaitala 1999). In case of indeterminate growth, individuals also 

experience a trade-off between current and future reproduction since fecundity generally 

increases with body size. Various energy allocation schedules have been proposed in the 

literature (Von Bertalanffy and Pirozynski 1952, Day and Taylor 1997, Kooijman 2000, 

West, et al. 2001). They differ mostly in terms of priorities of energy flows to the 

different functions. Allocation schedules typically comprise four traits, namely energy 

acquisition, maintenance, onset of maturation, and thereafter reproductive investment, 

whereas somatic growth arises as a by-product: the energy that remains after accounting 

for the primary energy flows to maintenance and reproductive investment is available for 

somatic growth. The study of energy allocation schedules in individual organisms is 

difficult because of a lack of data at the individual level as this would require monitoring 

separate individual organisms throughout their life time. Studies therefore have focused 

on the population level as well as on single traits (Stevenson and Woods Jr. 2006). 

Studying the four traits together (acquisition, maintenance, onset of maturation and 
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reproductive investment) at the individual level would offer several advantages over the 

widely used single trait estimation at the population level: (1) phenotypic correlations 

between traits could be estimated; (2) changes in one trait could be interpreted 

conditionally on changes in other traits, precisely because of the previous correlations; 

(3) it would be more consistent with the fact that physiological trade-offs apply at the 

individual and not at the population level. 

Organisms in which the individual growth history is recorded in hard structures offer a 

unique opportunity to study energy allocation schedules at the individual level. Fish for 

instance show indeterminate growth and the growth history of individuals can be 

reconstructed from the width of the seasonal structures imprinted in hard structures such 

as otoliths or scales (Runnström 1936, Rijnsdorp, et al. 1990, Francis and Horn 1997). 

Earlier studies have attempted to estimate the onset of maturation using growth history 

reconstructed from otoliths or scales (Rijnsdorp and Storbeck 1995, Engelhard, et al. 

2003, Baulier and Heino 2008), but no study has yet attempted to simultaneously 

estimate several life history traits related to life time patterns of energy allocation at the 

individual level. 

In this study, we estimate simultaneously parameter values at the individual level for 

energy acquisition, maintenance, onset of reproduction, and reproductive investment by 

fitting an energy allocation model to individual growth trajectories. The energy allocation 

model assumes that the onset of maturation is reflected in a discontinuity in the slope of 

the growth trajectory, while the energy acquisition discounted by maintenance is assessed 

by the slope of the growth trajectory before maturation, and reproductive investment is 

translated in the amplitude of the change in the slope of growth trajectory at the 
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discontinuity. The performance of the method and its sensitivity to both model 

uncertainty and inter-annual environmental variability are explored using simulated data. 

The method is applied to an empirical data set of individual growth curves back-

calculated from otoliths of female North Sea plaice (Pleuronectes platessa). Maturity 

status deduced from the age and size at the onset of maturation estimated by our model is 

compared to direct evaluation of maturity status by visual inspection of the gonads in 

market sampling (Grift, et al. 2003). 
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MATERIAL AND METHODS 

PARAMETER ESTIMATION 

Energy allocation model. When an animal becomes mature, a proportion of the 

available energy is channeled towards reproduction and is no longer available for somatic 

growth (Ware 1982). Hence, a decrease in growth rate can be expected after maturation. 

We use a general energy allocation model (Von Bertalanffy and Pirozynski 1952, 

Charnov, et al. 2001, West, et al. 2001, Banavar, et al. 2002) according to which the 

growth rate of juveniles and adults is given by 

   bwaw     if mattt     

t

w




 =           (1) 

 cwbwaw    if  mattt     

where w  is body weight, t  is time, matt is time at the onset of maturation, aw is the rate 

of energy acquisition, bw  is the rate with which energy is spent for maintenance and 

cw  is the rate of reproductive investment with which energy is spent for reproductive 

activity (e.g. gamete production, reproductive behavior). For simplicity we will refer to 

energy acquisition a , maintenance b  and reproductive investment c , although a , b  and 

c  describe the size-specific rates for the corresponding processes. There is disagreement 

about the scaling exponents  ,  , and   involved in the allometries between energy 

rates and body weight. Metabolic theory of ecology (MTE) suggests that metabolism 
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scales with a quarter power law of body weight (West, et al. 1999, Gillooly, et al. 2001, 

Savage, et al. 2004). This hypothesis builds on the fractal-like branching pattern of 

distribution networks involved in energy transport (West, et al. 1997) but the generality 

of this allometric scaling law is contested (Banavar, et al. 2002, Darveau, et al. 2002, 

Clarke 2004, Kozlowski and Konarzewski 2004). Nevertheless, we assumed a scaling 

exponent of energy acquisition  =3/4 (West, et al. 1997) as this is close to empirical 

estimates of   (Gillooly, et al. 2001, Brown, et al. 2004) including our model species 

North Sea plaice (Fonds, et al. 1992). For the scaling exponent of maintenance  , it is 

required that   >   in order to obtain (i) bounded asymptotic growth, i.e. to reach an 

asymptotic maximum body weight in the absence of maturation and (ii) an energetic 

reproductive-somatic index (RSI), defined as the ratio of reproductive investment over 

body weight in terms of energy (in other terms an energetic analogue to the gonado-

somatic index), that increases with age and size as commonly observed in empirical data 

(not shown). MTE suggests  =1 since with increasing size, the energy demand becomes 

relatively more important than its supply (West, et al. 1997, West, et al. 2001) and thus 

fulfills the required conditions. For the scaling exponent of reproductive investment  , 

we assume 1  for the sake of simplicity. This is in line with the assumption that total 

brood mass is a constant fraction of maternal body weight (Blueweiss, et al. 1978, 

Charnov, et al. 2001), although reproductive investment might be related to a body 

weight allometry with an exponent higher than 1 (Roff 1991). 

By integration of Eq. (1) assuming 4/3  and 1  , the somatic weight w  can be 

expressed as a function of time t . To switch from juvenile ( mattt  ) to adult ( mattt  ) 
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growth in Eq. (1), a continuous logistic switch function )(tS  with an inflection point 

located at the time of the onset of maturation matt  is used (Appendix A1). It results that 

the lifespan somatic growth curve is obtained as a continuous function of time though a 

discontinuity in its parameters due to the onset of maturation being introduced by the 

switch function )(tS :  
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where 0w  is body weight at 0t and matw  is body weight at mattt   given by 

mat)1(1
0

1
mat e tbw

b
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b

a
w   






  .        (3.1) 

The growth curve levels off at the asymptotic weight w ,  

)/(1 cbaw 

 .         (3.2) 

Total reproductive investment R  (including gonadic and behavioral costs) is obtained by 

integrating the rate of energy conversion to reproduction from t  to tt  : 

,d)()( 



tt

t

cwttR         (4) 

where t  describes the reproductive cycle over which the reproductive products are built 

up, fertilized and cared until the offspring is autonomous. An analytical expression of 

)( ttR   as a function of )(tw  and )( ttw   can be obtained (Appendix A2). 

Reproduction generally occurs at certain periods during lifespan. Fish for instance are 
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often annual spawners (including North Sea plaice) and hence reproductive investment is 

given over annual time steps ( 1t ). Energy for reproduction is first stored in various 

body tissues during the feeding period and then re-allocated to the gonad and released 

during the spawning period. Since the currency of the model is energy, different energy 

densities of different tissues have to be accounted for when fitting the model to real data. 

Fitting procedure. The energy allocation model was fitted using a general-purpose 

optimization procedure (R 2.6., optim) by restricting all parameters to be positive using 

box-constraints specification (Byrd, et al. 1995). Life history parameters a , b , c  and 

matt  were estimated by using this procedure to minimize the sum of squared residuals of 

weight at age data versus predicted weight at age. Q-Q-plots indicated that the 

distribution of residuals is close to normal. The algorithm was given a grid of possible 

combinations of a , b , c  and matt  as starting values and the best solution was selected 

based on the lowest AIC. A genetic algorithm (http://www.burns-stat.com/) yielded 

similar results as those presented in this paper (not shown). The estimates of the time at 

the onset of maturation matt  and the asymptotic weight )/(4/1 cbaw   were constrained 

to a species-specific range (e.g. North Sea plaice 0.5yr≤ matt ≤8.5yr, 400g≤ matw ≤4000g). 

 Confounding. Preliminary analyses of the plaice data set (see below) has shown that the 

estimation of the 4 life history parameters a , b , c  and matt  (four-trait-estimation) yields 

an unimodal distribution for energy acquisition a  but a bimodal distribution for 

maintenance b  and reproductive investment c  (Figure 1). The  mode in the distribution 

of b  is likely an underestimation at 0, which is related to an overestimation of c  

reflected in the 2nd mode of its distribution. Selection of observations belonging to the 2nd 



 10

mode of the b  distribution thanks to a Gaussian mixture model (R 2.6., MClust, Fraley 

and Raftery 2006) also removes the 2nd mode in the c  distribution (dotted line, Figure 1). 

To remove the confounding between b  and c  several options were considered: 1) use 

only observations belonging to the 2nd b -mode – the correlation structure in these 

observations was considered to be the most representative (Table 3) and was used for 

simulations – or 2) assume parameter b  to be fixed at the population level (three-trait 

estimation). The rationale for this choice is that maintenance costs are generally 

acknowledged to be species- rather than individual-specific (Kooijman 2000) and our 

main interest is in variation in reproductive investment. The population level value of b  

was estimated by fitting a mean growth trajectory (Eq. 1) to the whole somatic weight-at-

age dataset. Confounding between b  and c  on this level was avoided by fitting 

concomitantly reproductive investment )( ttR   to an independent dataset of 

reproductive investment-at-age (see application to real data). The partitioning of b  in the 

sum cb   could thereby be estimated accurately. The population mean growth trajectory 

and reproductive investment were fitted simultaneously by minimizing the sum of 

weighted squared residuals of somatic weight-at-age data and reproductive investment-at-

age data versus their predictions. 

PERFORMANCE ANALYSIS 

 Performance. To test its performance, the method was applied to 2000 growth 

trajectories simulated with known life history parameters. The life history parameters a , 

b , c  and matt  were drawn from a multivariate normal distribution with the co-variance 

matrix taken from the results of the application to North Sea plaice data, after having 

selected only observations belonging to the representative b -mode in the distribution of 
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parameter estimates (see above, Table 3). To simulate weight-at-age data, )( ttw   was 

expressed as a function of )(tw  by using a function similar to Eq. (3) but in which 

)(1 tw   was replaced with )(1 ttw  , and 1
0w  (for mattt  ) and 1

matw  (for mattt  ) 

with )(1 tw  . To evaluate the estimation bias on the population level and assess its 

dependency on life-history strategy and environmental variability, the mean relative bias 

over all life history parameters (the average absolute difference between estimated and 

true values relative to true values) was used for each individual i  as a measure of 

accuracy:  


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
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To test performance in the deterministic case, i.e. without environmental variability, the 

bias ie  was analyzed in dependence of a combination of two of the following factors: (i) 

the relative reproductive investment )/( cbcq  , (ii) the relative onset of maturation 

)(mat cbt  , (iii) the relative initial size 4
00 ))/((  cbaw , (iv) age t  and (v) the 

number of observations in the mature stage maty . Variation in the three dimensionless 

parameters q ,   and 0  accounts for any variation in the parameters they are comprised 

of, i.e. a , b , c , matt  and 0w , which allows investigating the whole parameter space at a 

smaller cost. 

Effects of temporal variability in environmental conditions. Individual growth 

trajectories will be affected by environmental variability. To test whether the parameters 

corresponding to energy acquisition a , maintenance b , reproductive investment c  and 
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time at the onset of maturation matt  can be estimated reliably, annual stochasticity was 

introduced in the individuals’ life-history traits drawn from the multivariate normal 

distribution (see deterministic case). As environmental variability is likely to be auto-

correlated, for simplicity a first order autoregressive process AR(1) was used to simulate 

the lifespan series of the energy acquisition parameter a  (constrained to be positive): 

ttt aEaaEa    ))(()( 1     ))1(,0(~ 22  at N   (6) 

where )(aE  denotes the expected value of a ,   is the autoregressive parameter and t  is 

a normally distributed noise term with mean 0 and variance )1( 22  a  where 2
a  is the 

variance of ta . The corresponding series of tb  and tc  were simulated by sampling tb  

and tc  from the normal distributions that yielded correlations with the autoregressive ta  

series which were the same as those observed among the individual estimations. The 

rationale here is that we assume that observed correlations between energy acquisition 

and other life history traits across individuals are mainly due to plastic physiological 

processes (versus genetic correlations) that therefore can also apply within individuals 

through time in case of temporal variation in energy acquisition. More precisely, tb  and 

tc  were sampled from the normal distributions ),( 10  taN   that yielded linear 

regressions of parameters b  and c  on a  that were consistent with observed means, 

variances and correlations, that is with intercept 0 , slope 1  and residual variance 2  

defined as: 

10  ax    
a

xxa





),(

1     22
1

22
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where x  stands for b  or c  and the means x  and a , variances 2
x  and 2

a , and 

correlations ),( xa  were taken from the empirical results of the application to North Sea 

plaice ),( xar  (see Table 3). Body weight was constrained to be monotonously increasing 

while prioritizing reproduction over growth. Available surplus energy bwaw 4/3  was 

first allocated to reproduction and the remaining energy thereafter wcbaw )(4/3   was 

allocated to growth. If surplus energy happened to be negative 04/3  bwaw  acquisition 

a  and maintenance b  were resampled until obtaining a positive amount. If the remaining 

energy was negative 0)(4/3  wcbaw , reproductive investment c  was adjusted such 

that all available surplus energy was used for reproduction and none for somatic growth 

by setting bawc   4/1 . The initial conditions of the simulation were chosen such that 

the realized a  of the initial at-series was within [0,1], and that the realized CV ’s in a , 

b  and c  where within [0,0.5]. In addition to the relative reproductive investment q , 

timing of onset of maturation   and initial weight 0 , the effect of the expected value 

)(xE of the parameters ( x  standing for a , b  or c ), the realized coefficients of variation 

of the parameters xCV , the realized degree of auto-correlation x , and the realized 

correlation )',(sim xxr  between the simulated series of a , b  and c , the age t  and the 

number of observations in the mature stage maty  on the mean of bias percentages (Eq. 5) 

was analyzed by a linear model: 

  )',(876mat5403210 xxrCVytqe xx   (8) 

where the  ’s are the statistical parameters and   is a normal error term (also in all 

subsequent statistical models). In this case the true values of parameters a , b  and c  used 
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for bias computation (see Eq. 5) were the geometric means of the respective realized time 

series 

Model uncertainty. The effect of uncertainty about the scaling exponent   of energy 

acquisition rate with body weight was explored by fitting an energy allocation model to 

the generated deterministic data set (i.e. without environmental noise) postulating a 

scaling exponent lower (  = 2/3) or higher (  = 4/5) than the one used to generate the 

data (  = 3/4). A wrong assumption on   would lead to a different population level 

estimate of the fixed b  and the effect of uncertainty about   in this approach was 

explored along the same line as above. 

APPLICATION TO DATA 

Data. The method developed was applied to an empirical dataset of individual growth 

trajectories back-calculated from otoliths of 1779 female North Sea plaice from cohorts 

from the 1920s to the 1990s, aged at least 6 years (Rijnsdorp and Van Leeuwen 1992, 

Rijnsdorp and Van Leeuwen 1996). This age threshold was chosen as these females then 

have 90% probability of being sexually mature for at least one year (Grift, et al. 2003). 

Because the otolith samples were length stratified, the observations of each length class 

were weighted according to its relative frequency in the population to obtain population 

level estimates. 

Length-weight relationship. The back-calculated growth trajectories, which are in body 

length units ( l  in cm), were converted into body weight ( w  in g). We used the 

relationship between body weight w  and length l  of post spawning fish, estimated from 

market sampling data by a linear model. The rationale was that spent fish have a low 

condition, i.e. there are no energy reserves for reproduction in the post-spawning state:  
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  )log()log( 3
3

3
2

2
1

10 ldddw       (9) 

where d  is the day in the year accounting for the high condition early in the year before 

spawning, the condition low after spawning and the building up of resources thereafter. 

The body weight at )0(0  tww  was assumed to be constant across individuals and 

equal to 2.5mg corresponding to the weight of fish as large as the circumference of an 

egg with a radius of 2mm (Rijnsdorp 1991). 

Maintenance. To avoid confounding between parameters, maintenance b  was assumed 

to be fixed across individuals at its population level estimate (see section confounding 

above). To obtain this estimate, the population mean growth trajectory and an 

independent estimate of reproductive investment (see details below) were fitted 

simultaneously by minimizing the sum of weighted squared residuals of somatic weight-

at-age data and reproductive investment-at-age data versus their predictions. The 

population level estimates assuming the scaling exponent  =3/4 were a =4.84.g1/4.yr-1, 

b =0.47 yr-1, c =0.40 yr-1, matt =4.00 yr (Figure 2). The population 4/3b =0.47 yr-1 (see 

results) was used as a constant in the three-trait estimation.  

Reproductive investment. Reproductive investment data included the cost of building 

gonads as well as the cost of migration between the feeding and spawning grounds. 

Reproductive investment somaticR , expressed in units of energy-equivalent somatic weight, 

was thus obtained as 

)/( respadultsomatic  MgpR         (10) 
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where adultp  is the probability of being mature, g  is the gonad weight,   is the 

conversion factor to account for different energy densities between gonad and soma, M  

is the energy spent for migration and   is the energy density of soma. Gonad weight g  

and the probability of being mature adultp  were estimated as functions of size or age and 

size, respectively, using linear models fitted to market samples of pre-spawning females: 

  )log()log( 10 lg         (11) 

Gonad weight was set to zero for females for which the probability of being mature adultp  

was less than 50%, given age and size: 

  ltltp 3210adult )(logit       (12) 

The factor used to convert gonad weight g  to energy-equivalent somatic weight was 

 =1.75, corresponding to the ratio between energy densities in pre-spawning gonad and 

in post-spawning soma (Dawson and Grimm 1980). Migration cost was estimated 

assuming a cruising speed V  of 1 body length per second (Videler and Nolet 1990). The 

migration distance D  is positively related to body size (Rijnsdorp and Pastoors 1995) 

with an average of about 140 nautical miles for a body length of 40cm in plaice (Bolle, et 

al. 2005). The energetic cost of swimming is then given by:  

VDwTVM /))3.8439.77(10( 4/33318.0
resp        (13)   

where respM  is the respiration rate in J per month (Priede and Holliday 1980), VD /  is 

the duration of active migration (in months) and T  is temperature in °C, set to 10°C. The 

energy spent for respiration respM  was converted into energy-equivalent somatic weight 
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assuming an energy density in post-spawning condition of  =4.666kJ.g-1 (Dawson and 

Grimm 1980). 

The resulting size-dependent energy-based reproductive investment relative to the 

somatic weight, i.e. the reproductive-somatic index RSI, increased with length l , and the 

resulting gonadic investment relative to the reproductive investment, i.e. the gonado-

reproductive index GRI, was minimal for intermediate size classes (Figure 3). Using this 

model, an average plaice of 40cm length had a reproductive investment, expressed as a 

percentage of the post-spawning body weight, of about 38.0%, of which about 86% is 

used for gonads and 14% for migration. 

Validation. To validate the approach, the estimates of the time at the onset of maturation 

matt  were compared to independent estimates. Since matt  is estimated in continuous time 

but reproduction occurs only at the start of the year, the age at first spawning matA  was 

estimated by rounding up matt  to the next integer, assuming a minimal time interval of 4 

months between the onset of maturation and the actual spawning season ( matmat tA  ≥ 1/3 

year). These 4 months correspond to the minimal period of time during which gonads are 

built up in typical annual spawners (Rijnsdorp 1990, Oskarsson, et al. 2002). From the 

estimated matA , the probabilities of becoming mature at given ages and sizes were 

estimated and compared to estimates obtained from independent population samples 

(Grift, et al. 2003). Since the individuals’ age at first spawning matA  was known, the 

probability of becoming mature was estimated directly by logistic regression of the ratio 

between the number of first time spawners and the number of juveniles plus first time 

spawners (in population samples, first time and repeat spawners can usually not be 
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distinguished and the fraction of first spawners has to be estimated separately). As in 

Grift, et al. (2003), the probability of becoming mature was modeled as: 

  ltlYCtYCltYCp tlYClYCtltYC0mat )(logit   (14) 

i.e., the probability of becoming mature matp  depended on the individuals’ year class YC  

(cohort), age t  and length l . Year class was treated as a factor while age and length were 

treated as continuous variables. The probability of becoming mature matp  is also referred 

to as the probabilistic maturation reaction norm (PMRN, Heino, et al. 2002) and is 

usually visualized using the 50% probability isoline in the age-length plane (also referred 

to as the PMRN midpoint or LP50).   
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RESULTS 

PERFORMANCE ANALYSIS 

Parameter estimation in the deterministic case. When data are simulated 

deterministically, i.e. without environmental noise, the bias in the life history parameter 

estimation is negligible over the observed (estimated) range of values for both, the four-

trait and the three-trait estimation (Figure 4). The errors in the b -estimate are positively 

correlated to errors in the estimates of a  and matt  and negatively correlated to errors in 

the estimate of c  (Table 1), but this might not be very meaningful since the averages of 

biases are about 0. In the three-trait estimation, maintenance b  was assumed to be 

constant to avoid confounding with reproductive investment c  (see below). For the four-

trait estimation, biases might arise if there are too few observations maty  of the mature 

status, if the relative onset of maturation   is early and if the relative reproductive 

investment q  is small (Figure 4). The trends in the three-trait estimation are similar but 

relative biases are lower and the relative influence of q  on the bias is much less 

important (Figure 4).  

Parameter estimation in the stochastic case. The suspected confounding between 

maintenance b  and reproductive investment c  was confirmed by the results on simulated 

data with environmental variability: 1) Although the co-variance structure used to 

simulate data was taken from selected modes in the trait distribution estimated from real 

data, the trait estimates obtained from these simulated data resulted in multimodal 

distributions (Figure 5) very similar to those found in the estimates from real data (see 
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Figure 1 & 2). The estimation errors of b  and c  were negatively correlated ( ),( cbre =-

0.67,  Table 1, Figure 5), whereas the bias in the sum of cb   was much lower than in its 

separate compounds b  and c  (18% vs. -32 and 23% average deviation, Table 1, Figure 

5). Hence, the sum cb   is relatively well estimated but its partitioning between b  and c  

is prone to error since an underestimation of maintenance b  is compensated by an 

overestimation of reproductive investment c  and vice versa. This correlation between 

estimation errors of b  and c  thus results in artifact modes in their trait distributions. If 

cb   is overestimated, acquisition a  has to be overestimated to fit a similar asymptotic 

weight, therefore the high positive correlation between biases in a  and cb   

( ),( cbare  =0.93, Table 1, Figure 5). Overestimation in matt  might compensate for 

overestimation in a  or cb   in the same way (not shown). The confounding could not be 

removed by simply constraining the b -estimates above a certain positive threshold: the 

parameter distribution turned out to be bimodal too, with the first mode around the 

threshold instead of being around 0 (not shown). The unimodal distributions in the 

deterministic case (not shown) indicate that confounding mainly arises due to the 

interannual environmental stochasticity in the parameters along the growth trajectory. 

Effects of environmental variability on parameter estimation. Environmental noise 

increases the overall bias (Eq. 5). For four-trait estimation, bias most dramatically 

increases with variation in the energy acquisition aCV  as shown by the regression against 

potentially explanatory variables (Eq. 8; Table 2). Furthermore, estimations are more 

reliable, if relative reproductive investment q , the number of observations (age t ), and 

the correlation between a  and b , ),( bar  are high but also if relative onset of maturation 
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  and the number of mature observations maty  are low (Table 2). In the three-trait 

estimation, the signs of the effects of age t  and relative onset of maturation   are 

inversed, relative reproductive investment q  and the number of reproductive events do 

not explain variation in bias but additional variation is explained by cCV , the auto-

correlations a  and c  and the correlation ),( car  instead of ),( bar . 

Figure 6 shows the bias in the estimates of the life history parameters against the average 

realized CV ’s. As expected, the variance and bias in the estimates typically increase with 

the overall CV  (Figure 4) and the bias is on average higher in the four-trait estimation 

than in the three-trait estimation. Generally, the variability in parameters results in an 

underestimation of a  and b  and a slight overestimation in matt  relative to their mean 

(Figure 6). Reproductive investment c  is generally overestimated relative to its 

geometric mean in the four-trait estimation but slightly underestimated in the three-trait 

estimation. Recall that the bias is defined relative to the realized geometric mean of the 

parameter time series, and part of it may therefore not really represent estimation 

inaccuracy since no real true value can be defined in this case (what is estimated does not 

necessarily correspond to the geometric mean of the time series). Only the bias in matt  is 

strictly defined here. 

The age at onset of maturation matt  or age at first maturity matA  are generally 

overestimated for the early maturing individuals (Table 4). This overestimation is smaller 

in the three-trait estimation but on the other hand, many individuals are assigned to 

mature at the earliest possible age in this approach. A very early maturation might be the 

best solution in the energy allocation model fitting if no breakpoint can be detected in the 
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growth curve. The confounding of parameters a , b  and c  does not seem to influence the 

accuracy of matt -estimates significantly, since the similarity between confounded 

estimates of matt  or matA  and estimates where the confounding has been removed is very 

high (see below, Table 4).  

Effect of model uncertainty on parameter estimation. Figure 7 shows the true against the 

estimated values of the life history parameters in the deterministic case when the scaling 

exponent   of energy acquisition rate with body weight was assumed to be lower (  = 

2/3) or higher (  = 4/5) in the model fitted to the data than in the one used to simulate 

the data (  = ¾ ). For different scaling exponents, different population level estimates of 

the parameters are obtained so that the value of fixed maintenance in the three-trait 

estimation differs: 3/2b =0.33 yr-1, 4/3b =0.47 yr-1, 5/4b =0.88 yr-1. Asymptotic body 

weight )/(4/1 cbaw   is always estimated accurately (not shown). If   is assumed too 

low (  = 2/3), acquisition a and time at the onset of maturation matt  are generally 

overestimated, whereas maintenance b  and reproductive investment c  are generally 

underestimated and vice versa if   is assumed too high (  = 4/5). The effect of an 

erroneous assumption on the fixed value of maintenance b  in the three-trait estimation 

was also evaluated. It had a negligible effect, resulting in a very small and constant bias 

in parameters estimates for an assumption on b deviating by 10% from the true value (not 

shown).  

APPLICATION to North Sea Plaice 

The algorithm converged in 99% of the cases. The average estimates of life history 

parameters, after removing the estimations corresponding to the artifact mode in the 
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distribution of b  estimates, were a =5.31 g1/4.yr-1, b =0.57 yr-1, c =0.32 yr-1 and 

matt =4.45 yr (Table 3). Onset of maturation matt  was negatively correlated with 

acquisition a , ),( mattar =-0.22, and reproductive investment c , ),( mattcr =-0.63, but 

positively correlated with maintenance b , ),( mattbr =0.30 (Table 3). The correlation 

between a  and cb   was highly positive, ),( cbar  =0.93. When using the three-trait 

estimation procedure, i.e. assuming a maintenance fixed at its population level value 

b =0.47, the following average parameter estimates were obtained: a =5.29 yr.g-1-α, 

c =0.41 yr.g-1, matt =3.53 yr (Table 3). In this case, the correlation between a  and matt , 

),( mattar  =–0.68, and between a  and c , ),( car =0.91, were stronger. The correlation 

between a  and c equals by definition the correlation between a  and cb   under the 

four-trait estimation (Table 3).  

The four-trait and the three-trait estimation give roughly the same results for the timing of 

maturation matt  or matA (Table 4). The similarity of the matA  estimate between the two 

approaches increases slightly, when only the observations belonging to the 2nd b -mode 

are considered. The elimination of the confounding between maintenance b  and 

reproductive investment c  by estimating only three traits or by selecting the 2nd b -mode 

in the four-trait procedure does not affect the accuracy of the matt  estimate. 

The probabilistic maturation reaction norms or PMRNs were derived only for cohorts YC  

comprising at least 30 observations and showed a good match with those obtained by 

Grift, et al. (2003) averaged over the same cohorts (Figure 8). For the maturation-relevant 

ages, i.e. age 3 and 4, they are almost identical. The slope of the PMRN estimated here is 

lower than the one in Grift, et al. (2003). 
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DISCUSSION 

Model assumptions. The method developed in this paper is the first to estimate 

simultaneously the different life history parameters related to the energy allocation 

schedule (energy acquisition, maintenance, onset of maturation and reproductive 

investment) from individual growth trajectories. We restricted ourselves to a Von 

Bertalanffy-like model, but, alternatively, structurally different energy allocation models, 

such as net production or net assimilation models (Day and Taylor 1997, Kooijman 

2000), could be used. The performance analysis shows that the method with a Von 

Bertalanffy-like model can be expected to give accurate results as long as the scaling 

exponents of the allometric relationships between the underlying energy allocation 

processes (energy acquisition, maintenance, reproduction) and body weight applied in the 

estimation are correct. Even if they are not, the results are still expected to be 

qualitatively sound, and the resulting biases are predictable. 

For the sake of simplicity, the scaling exponents of maintenance   and reproductive 

investment  , here assumed to be 1, were neither estimated nor tested for their effects on 

estimation error, because a value different from 1 would require solving numerically the 

differential equations describing energy allocation at each iteration. Applying equal 

scaling exponents for energy acquisition and maintenance, i.e.   , as suggested for 

instance by Day and Taylor (1997) and Lester, et al. (2004), resulted in unrealistic 

behavior of the energetic reproductive-somatic index RSI, suggesting that the scaling 

exponent of maintenance needs to be higher than the exponent of energy acquisition. 
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Based on theoretical (West, et al. 1997) and empirical case-specific evidence (Fonds, et 

al. 1992), as well as on realistic asymptotic weight and RSI, we conclude that applying 

scaling exponents following the inequalities    and    are a good starting point 

for the estimation of individual life history parameters. 

Performance analysis. For practical applications, the method should be applied to data 

on individuals for which two or more observations of the mature state are available. In 

this case the estimation error is negligible in a deterministic setting over the range of 

realistic (observed) parameter combinations. Environment variability in life history 

parameters leads to a slight underestimation of the average parameters for energy 

acquisition at and maintenance tb  and an overestimation of reproductive investment tc  

(not in the three-trait estimation) but the onset of maturation matt  is on average correctly 

estimated. With increasing environmental noise the average biases increase (except for 

the maintenance b ) and estimation precision decreases (Figure 4). Variability in ta  has 

the largest impact on bias and the relative reproductive investment q  might have to stay 

above a certain level to minimize the bias (Table 2). The negative effect on the bias of 

age is balanced by a positive effect of relative onset of maturation   and of the number 

of adult observations maty  and the interpretation of the deterministic case, where maty  had 

a negative effect on the bias, therefore not necessarily falsified. However, these biases 

should be interpreted with caution because they were computed relative to the geometric 

mean of the simulated parameter time series, which does not correspond to a ‘true’ value 

as in the deterministic case. In other terms, there is no natural ‘true’ value to be compared 

with estimates in the stochastic case, except for matt . 
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Life-history correlation. (Co-)variation in (between) life history parameters at the 

phenotypic level, i.e. as observed across individuals, results from a genetic and an 

environmental (plastic) source of (co-)variation (Lynch and Walsh 1998). From life 

history theory (Roff 1992, Stearns 1992) we expect that 1i) juvenile growth rate 

tw  /juv  and age at maturation matt  are negatively correlated  0),/( matjuv  ttw  - the 

higher the juvenile growth rate is, the earlier the individual will hit a presumably fixed 

genetically determined PMRN and mature – and 1ii) size-specific reproductive 

investment RSI and age at maturation matt  are negatively correlated 0),RSI( mat t . 

From the assumptions of our bioenergetic model it is given that 2i) juvenile growth rate 

tw  /juv  increases with size-specific energy acquisition rate a , resulting in a positive 

correlation 0),/( juv  atw ; 2ii) juvenile growth rate tw  /juv  decreases with size-

specific maintenance rate b , resulting in a negative correlation  0),/( juv  btw ; and 

2iii) size-specific reproductive investment RSI increases with size-specific reproductive 

investment rate c , resulting in a positive correlation 0),RSI( c . Life history theory 

and our model assumptions together thus lead to the following expectations: 3i) size-

specific energy allocation rate a  is negatively correlated with age at maturation matt ,  

0),( mat ta ; 3ii) size-specific maintenance rate b  is positively correlated with age at 

maturation matt , 0),( mat tb ; and 3iii) size-specific reproductive investment rate c  is 

negatively correlated with age at maturation matt , 0),( mat tc . The correlations between 

a , b  and c  cannot be easily interpreted in terms of life history theory but can be in the 

light of our model: since the asymptotic size )/(4/1 cbaw   is roughly constant within 

a species, increases in size-specific energy acquisition a  or in speed of growth )( cb   
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are reciprocally compensated to stabilize w . The construction of the model therefore 

imposes 0),( cb  and 0),(  cba , the only degrees of freedom being ),( ca  and 

),( ba .  

In terms of environmental variation, energy acquisition a  might be externally influenced 

by variable food availability, maintenance b , interpreted here as the resting metabolic 

rate (i.e. the increase in maintenance due to higher consumption is accounted for by a ), 

might be externally influenced by variability in temperature only and reproductive 

investment c  might vary with the annually stored energy resources. From the 

environmental co-variation, the correlations ),( ca  and ),( ba  might be expected 

across individuals and within the lifespan of an individual: the positive effect of 

temperature on both food availability due to increased productivity of the system, and 

hence a , and metabolic rates, hence b , may lead to a positive correlation 0),( ba ; 

the energy resources available for reproductive investment (gonadic tissue, spawning 

migration) is determined by the energy which is physiologically made available and 

hence likely mainly by a , causing a positive correlation 0),( ca  on the phenotypic 

level according to the rule “the more resources are available, the more can be spent”. 

The signs of the correlations between life history parameters obtained for plaice (Table 3) 

matched the previous theoretical expectations. Most importantly, we find 0),( mat tar , 

0),( mat tbr  and 0),( mat tcr . These correlations also might be to some degree due to 

the correlation between estimation errors (Table 1) but not entirely, since the correlations 

between the traits are higher than between the errors (and the absolute traits are larger 

than the errors). The correlations ),( cbr  and ),( cbar   are indeed found to be due to the 
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correlations between estimation errors (Table 1) and thereby contribute, by construction 

of the model, to stabilize the asymptotic weight w  (see above). The  ),( bar  might also 

be partly due to the error correlation. However, ),( car  is not, since the errors in a  and c  

are negatively correlated, whereas the found ),( car  is about 0. This indicates that the 

true ),( car  might in fact be positive. In the three-trait estimation, ),( car =0.91 is indeed 

highly positive, suggesting that the ),( car  found in the four-trait estimation might be due 

to the confounding with maintenance rate b . By assuming a  constant b  in the three-trait 

estimation, the co-variances between the three traits a , c  and matt  are inflated. The  

correlation ),( car  in the three-trait estimation becomes equal to the correlation 

),( cbar   in the four-trait estimation, due to the classical relationship of covariances 

),cov( cba   = ),cov( ba  + ),cov( ca . In the three-trait estimation ),cov( ca  is inflated by 

artificially fixing b  and thereby forcing the covariance ),cov( ba  = 0 to nullity so that 

),cov( cba   = ),cov( ca . 

Application to real data. The method validation was based on the comparison between 

estimates of the timing of the onset of maturation matt  obtained from back-calculated 

growth trajectories and independent estimates obtained from biological samples from the 

spawning population. Both estimation procedures are subject to error but similar patterns 

should nevertheless indicate the likelihood of both. For the ages at which maturation 

mainly occurs (around age 4), the PMRN based on our estimates is very similar to the 

PMRNs based on biological samples from the population (Grift, et al. 2003). The 

relatively higher and lower maturation probability for younger and older ages 

respectively is likely due to extrapolation to ages at which only few fish become mature 
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and the estimation becomes less reliable. If the interval between the start of energy 

allocation to reproduction matt  and the subsequent age at first spawning matA  was 

assumed to be less or more than 4 months, the resulting reaction norm would be lower or 

higher respectively in the age-size plane. However, for plaice 4 months correspond to the 

time interval between the onset of vitellogenesis (August, September) and the midpoint 

of the spawning season (Rijnsdorp 1990, Oskarsson, et al. 2002). The good 

correspondence between the two estimation methods of the PMRN suggests that 

environmental variability is unlikely to have been so high as to result in biases as high as 

in the simulation analysis (see biases of matt  in Figure 4). 

Reproductive investment. Reproductive investment was modeled including a size-

dependent gonadic investment and a size-dependent cost of migration. The modeled 

energetic reproductive-somatic index RSI (energy-based reproductive investment relative 

to somatic weight) is increasing with somatic weight as is the modeled gonado-

reproductive index GRI (gonadic relative to reproductive investment) and consequently 

the resulting gonado-somatic index GSI (gonadic weight relative to somatic weight). This 

is in line with the expectation since data show that GSI increases with size (Rijnsdorp 

1991). In contrast, the modeled migration cost relative to reproductive investment (1-

GSI) decreases with size. Since migration distance increases with fish size (Rijnsdorp and 

Pastoors 1995, Bolle, et al. 2005), the advantage of feeding offshore must be relatively 

more important than the migration cost. 

Possible extensions. The method proposed here can be applied to a variety of organisms 

in which the annual pattern in somatic growth is reflected in hard structures: scales or 

otoliths in fish (Rijnsdorp, et al. 1990, Panfili and Tomas 2001, Colloca, et al. 2003), 
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shells in bivalves (Witbaard, et al. 1997, Witbaard, et al. 1999), endoskeleton in 

echinoderms (Pearse and Pearse 1975, Ebert 1986, Gage 1992), teeth in mammals (Laws 

1952, Godfrey, et al. 2001, Smith 2004) or skeleton in amphibians (Misawa and Matsui 

1999, Kumbar and Pancharatna 2001) and reptiles (Zug, et al. 2002, Snover and Hohn 

2004). If a back-calculation method from the hard structures can be validated, the 

analysis of individual growth trajectories with the method developed in this paper offers 

the opportunity to study a variety of life history trade-offs without the need to follow 

individuals throughout their lifetime using experiments in controlled conditions or 

methods such as mark-recapture. The method holds for any other frequency of age and 

size observations and for any other frequency of spawning than the here illustrated annual 

observations and annual spawning intervals. Under the assumption that energy is 

allocated to reproduction continuously between spawning events by storing energy 

reserves which are then made available later for spawning, the method even applies if 

spawning intervals are irregular.  

Adaptation. Our method could be particularly useful to study changes in life history 

parameters over time or differences among populations. Concerns had been raised that 

life history traits of exploited species, may evolve in response to harvesting (Rijnsdorp 

1993, Stokes, et al. 1993, Heino 1998, Law 2000). Studies on life history evolution in the 

wild have largely focused on changes in the onset of maturation, although evolutionary 

changes were also suggested in growth rate and reproductive investment (see review in 

Jørgensen, et al. 2007). The analysis of harvesting-induced evolution in the wild has 

proved to be difficult (Rijnsdorp 1993, Law 2000, Sinclair, et al. 2002, Conover, et al. 

2005). One reason is that growth, maturation and reproductive investment are intricately 
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linked in the energy allocation schedule, another that disentangling phenotypic plasticity 

from genetic effects in the observed phenotypic response is not evident 

Disentangling plasticity. By estimating the co-variance structure between the life history 

parameters, our method may prove useful to disentangle phenotypic plasticity from 

genetic change. Assuming that environmental variability mostly affects the primary 

energy flow of energy acquisition and that the subsequent energy allocations 

(maintenance, reproductive investment) are partly determined by this primary energy 

flow, plastic variation in the other traits due to this process could be accounted for by 

expressing them conditional on energy acquisition. It is for instance likely that 

reproductive investment may be affected by feeding conditions during the previous 

growing season (Rijnsdorp 1990, Stearns 1992, Kjesbu, et al. 1998, Marshall, et al. 

1999). Studies in other taxa than fish (e.g. Ernande, et al. 2004) have shown that the 

energy allocation strategy between maintenance, growth, and reproductive investment 

may vary according to food availability. Expressing reproductive investment conditional 

on energy acquisition would therefore represent a reaction norm for reproductive 

investment (Rijnsdorp, et al. 2005). Changes in this reaction norm would then reveal 

genetic change under the assumption that most environmental influence on reproductive 

investment is accounted for via variation in energy acquisition. It has also been shown 

here that the PMRN can be estimated directly from the back-calculated ages and sizes 

and the obtained estimate for the age at first maturity, whereas in other data sources the 

individual first maturity is typically not known (see Barot, et al. 2004). By disentangling 

the plasticity in maturation caused by variation in growth and removing the effect of 

survival on observed maturation events, the PMRN can also be used to assess genetic 
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changes under the assumption that most environmental influence on maturation is 

accounted for via growth variation. 

Different approaches. In an earlier study, Rijnsdorp and Storbeck (1995) estimated the 

timing of the onset of maturation in plaice by piecewise linear regression of growth 

increments on body weight to locate the discontinuity in growth rates expected at 

maturation. This method might be accurate only for particular combinations of the energy 

allocation scaling exponents that lead to a linear relationship between growth increments 

and body weight (not shown). Baulier and Heino (2008) applied an improved version of 

this method to Norwegian spring spawning herring and obtained relatively accurate 

estimates (± 1 year) of the timing of the onset of maturation. However, this method does 

not provide estimates of the other life history parameters and it is unlikely that the 

particular combination of energy allocation scaling exponents leading to the 

discontinuous linear relationship between growth increments and body weight can be 

expected to apply in the general case. 

The three-trait estimation procedure in the method presented in this paper removes the 

confounding between parameters by fixing maintenance to its population level average. 

However, in reality maintenance may be variable since it is affected for instance by 

temperature and, in addition, assuming a fixed value inflates co-variances between other 

parameters. A more elegant way to circumvent this problem may be to use generalized 

linear mixed modeling to estimate the four parameters. Under this approach, the 

parameters, shown here to be approximately normally distributed after removal of the 

confounded estimates (Fig.1), follow a multivariate normal distribution and estimation 
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can thus only lead to unimodal distributions, therefore potentially reducing the 

confounding between parameters (Brunel, et al. submitted). 

The four-trait method presented in this paper is not practical, since the first mode in the 

distribution of b  estimates would always have to be removed a posteriori. The three-trait 

estimation gives more stable results (Figures 4, 5 and 6) but a correction for changing 

temperatures would be needed (see below) and due to the inflation of co-variances, 

results should be considered on a relative scale. If the main interest is on the onset of 

maturation matt , then both four-trait and three-trait estimation work similarly well, since 

the bias in matt  is unlikely due to confounding in the parameters a , b  and c  (Table 4, 

Figure 4).  

Maintenance-Temperature. The estimated energy allocation parameters here represent 

average values for the study period. However, assuming a constant maintenance (three-

trait estimation) may be incorrect as yearly averaged surface temperatures in the North 

Sea (Van Aken 2008) suggest that temperature increased from 9.91˚C in 1950 to 11.01˚C 

in 2005 (p<0.001). In the interpretation used here, the size-specific maintenance is 

influenced only by temperature. The Arrhenius description based on the Van’t Hoff 

equation used in dynamic energy budget modeling (Van der Veer, et al. 2001) to describe 

the effect of temperature on physiological rates would predict that an increase from 10°C 

to 11°C would correspond to an increase in the maintenance rate of about 9% (not 

shown). If a similar trend occurred in the bottom temperatures, we might expect a change 

in the average maintenance cost over the study period of about 9%. In the three-trait 

estimation, the trend in temperature could therefore be accounted for by estimating a 

separate average b  for each cohort. As this paper explores average general patterns, we 
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ignored here the effect of temperature on maintenance by assuming homogeneous 

temperatures in the demersal zone. 

Conclusion. This paper is the first one to present a method to estimate the energy 

allocation parameters for energy acquisition, maintenance, reproductive investment and 

onset of maturation of organisms from individual growth trajectories. Performance 

analysis and the application to real data showed that the method can be successfully 

applied, at least on a qualitative level, to estimate the relative differences in energy 

allocation parameters between individuals and to estimate their co-variance structure. 

Future studies will apply the concept to back-calculated growth curves from otoliths of 

North Sea sole and plaice and scales of Norwegian spring spawning herring, focusing on 

the comparison between species and life-history adaptation over the last century. 
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APPENDIX 

Switch. To switch from juvenile to adult growth at matt  in (1), a logistic function is used: 

)( mat1

1
)(

ttke
tS 
          [A1] 

where k  is any number large enough so that S(t) switches almost immediately from 0 to 

1 as soon as mattt  , thus approximating a Heaviside step function.  

Reproductive investment. The reproductive investment )( ttR   is given by the rate of 

energy conversion to reproduction )(tcw  integrated over the period from t  to tt  , 

expressed as a function of the somatic weights at the start )(tw  and at the end )( ttw   

of the time interval t , over which the reproductive events repeatedly occur. Assuming 
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Code. A code example follows to illustrate the applied estimation method for one single 

fish (object grodat). The weight scaling exponent   of energy acquisition rate, weight at 
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age 0 0w , the expected population averages (used to define the staring values), the 

boundaries for age at maturation matt  and the asymptotic weight w are species-specific. 

The function indest runs the optimization (optimfun) over a grid of staring values, 

removes aberrant estimates, returns the best fit and plots the fitted curve. 

#define weight scaling, weight at age 0 and the switch parameter 
alpha<-3/4 
w0<-0.0025 
swi<-1e12 
 
#individual growth data with at least 4 observations, age and weight in columns 
grodat<-data.frame(age=0:10, 
                  weight=c(w0,4.0,33.5,143.5,301.7,443.3,546.3,614.3,706.8,766.5,829.5)) 
 
#define biological parameter boundaries boundaries 
lo.a<-1e-10;up.a<-Inf 
lo.b<-1e-10;up.b<-Inf 
lo.c<-1e-10;up.c<-Inf 
lo.tmat<-2/3;up.tmat<-26/3 
lo.Winf<-400;up.Winf<-4000 
 
limit<-
matrix(c(lo.a,lo.b,lo.c,lo.tmat,lo.Winf,up.a,up.b,up.c,up.tmat,up.Winf),nrow=2,byrow=T, 
            dimnames=list(c("lower","upper"),c("a","b","c","tmat","Winf"))) 
 
#estimated or expected population averages 
a_pop<-4.84 
b_pop<-0.475 
c_pop<-0.398 
tmat_pop<-4.00 
 
#growth function 
grofun<-function(a,b,c,t,tmat,alpha) 
{ 
  j = 1-alpha 
  S = 1/(1+exp(-swi*(t-tmat))) 
  wmat = (a/b - (a/b - w0^j)*exp(-b*tmat*j))^(1/j) 
  W = ((1 - S)*(a/b - (a/b - w0^j)*exp(-t*b*j)) + S*(a/(b+c)-(a/(b+c) - wmat^j)*exp(-
(b+c)*(t-tmat)*j)))^(1/j) 
  return(W) 
} 
 
#fitting function 
indest<-function(grodat,limit,stlen,alpha) 
{ 
  PARS<-
as.data.frame(matrix(NA,nrow=1,ncol=7,dimnames=list(1,c("a","b","c","tmat","Winf","wmat",
"goodness")))) 
  j = 1 - alpha 
 
  tmat.uplim<-min(c(max(grodat$age)-1/3,limit[2,4])) 
 
  optimfun<-function(pars) 
  { 
    a<-pars[1];b<-pars[2];c<-pars[3];tmat<-pars[4] 
    tage<-grodat$age 
    S = 1/(1+exp(-swi*(tage-tmat))) 
    wmat = (a/b - (a/b - w0^j)*exp(-b*tmat*j))^(1/j) 
    W = ((1 - S)*(a/b - (a/b - w0^j)*exp(-tage*b*j)) + S*(a/(b+c) -(a/(b+c) - 
wmat^j)*exp(-(b+c)*(tage-tmat)*j)))^(1/j) 
    ssr<-sum((grodat$weight-W)^2) 
    return(ssr) 



 49

  } 
 
  st.a<-seq((a_pop-0.25*a_pop),(a_pop+0.25*a_pop),len=stlen) 
  st.b<-seq((b_pop-0.25*b_pop),(b_pop+0.25*b_pop),len=stlen) 
  st.c<-seq((c_pop-0.25*c_pop),(c_pop+0.25*c_pop),len=stlen) 
  st.tmat<-seq((tmat_pop-
0.5*tmat_pop),min(c(tmat.uplim,(tmat_pop+0.5*tmat_pop))),len=stlen) 
 
  stval<-
expand.grid(st.a=st.a,st.b=st.b,st.c=st.c,st.tmat=st.tmat,a=NA,b=NA,c=NA,tmat=NA,RSE=NA) 
  stval$st.Winf<-(stval$st.a/(stval$st.b+stval$st.c))^(1/j) 
  stval<-stval[(stval$st.Winf>=limit[1,5])&(stval$st.Winf<=limit[2,5]),] 
 
  for(x in 1:nrow(stval)) 
  { 
    pars<-c(stval$st.a[x],stval$st.b[x],stval$st.c[x],stval$st.tmat[x]) 
    if(class(try(Eamod<-optim(par=pars,fn=optimfun,method="L-BFGS-B",lower=c(limit[1,-
5]),upper=c(limit[2,c(1:3)],tmat.uplim)),silent=TRUE))!="try-error") 
    { 
      stval$a[x]<-Eamod$par[1] 
      stval$b[x]<-Eamod$par[2] 
      stval$c[x]<-Eamod$par[3] 
      stval$tmat[x]<-Eamod$par[4] 
      stval$RSE[x]<-Eamod$value 
    } 
  } 
 
  stval$Winf<-(stval$a/(stval$b+stval$c))^(1/j) 
  stval$wmat<-(stval$a/stval$b - (stval$a/stval$b - w0^j)*exp(-
stval$b*stval$tmat*j))^(1/j) 
  v.use<-
na.omit(stval[(stval$Winf>=stval$wmat)&(stval$Winf>limit[1,5])&(stval$Winf<limit[2,5])&(s
tval$a>limit[1,1])&(stval$b>limit[1,2])&(stval$c>limit[1,3]),]) 
 
  if(nrow(v.use)>0) 
  { 
    maxfit<-v.use[v.use$RSE==min(v.use$RSE,na.rm=T),] 
    PARS$a<-unique(maxfit$a) 
    PARS$b<-unique(maxfit$b) 
    PARS$c<-unique(maxfit$c) 
    PARS$tmat<-unique(maxfit$tmat) 
    PARS$wmat<-unique(maxfit$wmat) 
    PARS$goodness<-unique(maxfit$RSE) 
    PARS$Winf<-unique(maxfit$Winf) 
  } 
  
plot(grodat$age,grodat$weight,xlim=c(0,max(grodat$age)+2),ylim=c(0,max(grodat$weight)+100
),xlab="age",ylab="weight") 
  if(nrow(na.omit(PARS))>0) 
  { 
   
lines(seq(0,30,by=0.1),grofun(a=PARS$a,b=PARS$b,c=PARS$c,t=seq(0,30,by=0.1),tmat=PARS$tma
t,alpha=alpha),col=4) 
   abline(v=PARS$tmat,lty=3,col=3) 
  } 
  return(PARS) 
} 
 
indest(grodat=grodat,limit=limit,stlen=5,alpha=alpha)  
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Table 1: Average of percentage bias % , coefficient of variation CV  and correlations 

)',( xxre  between biases )(xe  and )'(xe  in the estimates of the life history parameters a , 

b , c  and matt  resulting from the four-trait estimation procedure applied to simulated data 

with (stochastic) and without (deterministic) environmental noise. 

 Deterministic 

 )(ae  )(be  )(ce  )( cbe   )( matte  

%  0.00 0.01 -0.02 0.00 0.00 

CV  11.91 8.91 5.52 16.84 21.33 

)',( xare  1     

)',( xbre  0.47 1    

)',( xcre  -0.19 -0.40 1   

)',( xcbre 
 

0.36 0.18 0.53 1  

)',( xtr mate  -0.09 0.60 -0.07 0.17 1 

 Stochastic 

 )(ae  )(be  )(ce  )( cbe   )( matte  

%  -0.15 -0.32 0.23 -0.18 0.30 

CV  1.34 2.03 3.85 1.45 2.57 

)',( xare  1     

)',( xbre  0.83 1    

)',( xcre  -0.38 -0.67 1   

)',( xcbre 
 

0.94 0.76 -0.21 1  

)',( xtr mate  -0.07 0.17 -0.27 0.00 1 
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Table 2: Results of the regression analysis of the overall bias in life history parameters 

(Eq. 5) as a function of the potentially explanatory variables (Eq. 8) from a backward 

selection. Explanatory variables tested comprised of the coefficients of variation aCV , 

bCV , cCV , the degree of autocorrelation a , b , c , and the correlations ),(sim bar , 

),(sim car , ),(sim cbr  of the simulated time series ta , tb , tc , the age t  (i.e. the number of 

simulated data points) the number of experienced spawning events maty , the relative 

reproductive investment q , relative timing of onset of maturation  , and relative initial 

weight 0 . 

 

 four-trait estimation three-trait estimation 

Selected variables coefficient p-value coefficient p-value 

Intercept 0  1.031 < 10-3 0.475 < 10-3 

aCV  0.418 < 10-3 2.092 < 10-3 

cCV  - - -0.245 < 10-3 

a  - - 0.032 0.087 

c  - - -0.026 0.066 

),(sim bar  -0.066 0.002 - - 

),(sim car  - - -0.085 0.001 

age t  -0.033 < 10-3 0.014 < 10-3 

maty  0.044 < 10-3 - - 

q  -0.754 < 10-3 - - 

  0.047 < 10-3 -0.119 < 10-3 

0  - - -30540 0.017 



 52

Table 3: Energy allocation parameters estimated for the1779 individual North Sea plaice 

growth trajectories using the four-trait and the three-trait model. The table gives the 

average   and coefficient of variation CV , as well as the correlation coefficient )',( xxr  

between the four life history parameters: energy acquisition a , maintenance b , 

reproductive investment c  and onset of maturation matt . For the four-trait estimation the 

results are displayed for only those estimations that belong to the second mode in the 

distribution of b ’s. 

 four-trait estimation: 2nd b -mode 

 a  b  c  )( cb   
matt  

  5.31  0.57 0.32 0.90 4.45 

CV  0.23 0.62 0.74 0.28 0.37 

)',( xar  1     

)',( xbr  0.69 1    

)',( xcr  -0.06 -0.71 1   

)',( xcbr   0.93 0.74 -0.06 1  

)',( xtr mat  -0.22 0.30 -0.63 -0.18 1 

 three-trait estimation: fixed b   

 a  b  c  )( cb   
matt  

  5.29 0.47 0.41 0.89 3.53 

CV  0.20 - 0.52 0.24 0.49 

)',( xar  1     

)',( xbr  - -    

)',( xcr  0.91 - 1   

)',( xcbr 
 

0.91 - 1 1  

)',( xtr mat  -0.68 - -0.64 -0.64 1 
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Table 4: Estimated against true age at first maturity matA  in the 4- and three-trait 

estimation. The number of estimations falling in a true matA  class is given as a percentage 

of the total number of estimations in that true matA  class. The upper panel presents 

performances for age at maturation estimation by showing true against estimated matA  in 

the four-trait (simulated data set in which a , b  and c  vary stochastically), and the three-

trait estimation (simulated data set in which a  and c  vary stochastically). Performance is 

slightly better for the three-trait estimation. Notice that the biases might not be 

representative for the real situation, since the simulated CV ’s might be higher than those 

applying in nature. The lower panel presents results of the application to real data by 

comparing the estimation of matA  between the four-trait and the three-trait estimation for 

both the entire data set and only the observations belonging to the 2nd b -mode. 

Agreement between the matt  estimates in the four- and three-trait estimation is very high 

and does not significantly change between the entire data set and the selected 

observations belonging to the 2nd b -mode. This indicates that the estimation of  matt  or 

matA  is not affected by confounding. 

 

 

 

 

 

 



 54

 

1) Performance analysis 

 

2) Application to real data 

four-trait 
simulated 

True matA  

 2 3 4 5 6 7 

2 4 3 2 1 1 0 

3 15 16 8 7 2 1 

4 17 19 31 19 7 1 

5 17 19 21 32 22 5 

6 19 15 12 16 37 14 E
st

im
at

ed
  A

m
at
 

7 13 12 11 11 15 22 

three-trait 
simulated 

True matA  

 2 3 4 5 6 7 

2 30 28 15 10 8 5 

3 18 23 3 1 1 0 

4 21 29 55 9 2 1 

5 15 10 17 59 19 4 

6 8 4 4 13 54 15 

E
st

im
at

ed
 A

m
at
 

7 5 2 3 4 14 59 

2nd b -mode 
observations 

three-trait matA  

 2 3 4 5 6 7 

2 30 6 0 0 0 0 

3 21 68 7 0 0 1 

4 8 13 63 8 0 0 

5 0 1 22 64 13 1 

6 24 3 4 23 67 12 

fo
ur

-t
ra

it
  A

m
at
 

7 8 1 1 3 17 71 

All real data 
observations 

three-trait matA  

 2 3 4 5 6 7 

2 39 8 0 0 0 0 

3 19 76 13 0 0 1 

4 7 8 67 12 0 0 

5 0 0 15 65 16 2 

6 21 2 3 19 65 14 

fo
ur

-t
ra

it
  A

m
at
 

7 7 0 1 3 16 69 
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Figure 1: Density distributions of the four estimated parameters on real data. The first 

mode in the density distribution of maintenance b  (solid line) is likely an artifact due to 

confounding and corresponds to the second mode in the distribution of reproductive 

investment c . By selecting only observations belonging to the second mode fitted by a 

Gaussian mixture over parameter b , the first mode in the distribution of b ’s and the 

bump to the right in the distribution of c ’s are removed (dotted thick line). 

 



 56

Figure 2: Population fit of life-history on somatic size at age (solid lines) and estimated 

reproductive investment (dashed lines, see text). Error bars show 5% and 95% confidence 

intervals for the observations. For the gonads the averages of only mature fish are given 

whereas the fitted curve represents average population gonadic growth. The estimated life 

history parameters are a  = 4.84 g1/4yr-1, b  = 0.47 yr-1, c  = 0.40 yr-1, matt = 4.00 yr. 
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Figure 3: Relationships of reproductive investment relative to size (RSI) and gonadic and 

migratory investment relative to total reproductive investment (GRI and MRI) as a 

function of size in the estimation of size-dependent reproductive investment. Because the 

probability of being mature depends also on age, the RSI slightly changes with age (see 

gray scale, the darker the older). The GRI has minimal contribution of 86% at a length of 

about 30cm and increases thereafter. The cost of migration or MRI is accordingly 

maximal (14%) at this size. 
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Figure 4: Overall relative bias (Eq. 5) as a function of the true relative reproductive 

investment q , the true relative onset of maturation  , the true relative initial size 0  and 

the number of years after the first spawning event maty  (rounded up ( matmat tA  )) in the 

deterministic case of the four-trait and the three-trait estimation. The simulation was 

based on all possible combinations for the observed ranges of the parameters: a  {4,7} 

g1/4yr-1, b  {0.4,0.9} yr-1, c  {0.05,0.55} yr-1 and matt  {1.25,5.25} yr. Contours were 

obtained by fitting a non-parametric loess regression to the bias with span = 0.25 for the 

two explanatory variables to be displayed. Bias becomes considerable if there are few 

observations maty  of the mature status, if the relative onset of maturation   is very early 

and if the relative reproductive investment q  is small. Similar trends are found in the 

three-trait estimation but with lower relative biases and q  seems to have no more 

influence on the bias. 
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Four-trait estimation 
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Three-trait estimation 
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Figure 5: Density distributions of the four estimated life history parameters and 

relationships between parameter biases estimated on simulated data with environmental 

noise. Very similar parameter distributions as from real data (see Figure 1) are obtained 

in the simulation (first row), in which the covariance structure from the selected 

distribution modes from real data was used. The regressions between parameter biases 

(dashed lines) show that the biases of b  and c  are negatively correlated, whereas the bias 

of )( cb   is on average smaller than bias of each of its components. The strong positive 

correlation between a  and )( cb   is a consequence of fitting to an asymptotic size: the 

higher a  is, the higher )( cb   has to be to reach the same asymptotic size. The same 

effect translates to b  but not to c . 
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Figure 6: Relative biases in a , b , c  and matt  in the four-trait estimation and a , c  and 

matt  in the three-trait estimation, resulting from environmental variation, shown as a 

function of the CV  in the simulated time series of a , b , and c  (four-trait estimation) or 

a  and c  (three-trait estimation). The estimated parameters are given relative to the 

geometric mean of the time series of a , b , and c . The CV  is given by the geometric 

mean of the realized CV ’s in series of a , b  and c . Black lines show a quantile 

regression through these biases for the 50% (dashed line) and the 5% and 95% quantiles 

(dotted lines). Notice that the biases are strictly evaluated only for matt , since the true 

reference values of the varying a , b  and c  is not really known. Furthermore the 

simulated CV ’s might be higher than those applying in nature.  

 



 64

 



 65

 Figure 7: Sensitivity of the parameters estimates a , b , c  and matt  to an incorrect 

assumption about the allometric scaling exponent   ( 4/3sim   whereas 3/2fit   or 

5/4fit  ) in the four- and the three-trait estimation. It was accounted for that different 

allometric scaling exponents would result in different assumptions about the constant 

maintenance by fitting the energy allocation model to the population growth curve 

( 3/2b =0.175 year-1, 4/3b =0..459 year-1, 5/4b =0.864 year-1, leading to different 

solutions of Eq. 4). The estimated against the true parameters are shown, black dots 

representing the estimates assuming the correct allometric scaling exponent ( 4/3 ), 

typically on the 45º-line, light gray “-” and dark gray “+“ represent the estimates by 

assuming falsely a too low ( 3/2 ) or too high ( 5/4 ) scaling exponent 

respectively, whereas the light grey and dark gray dotted lines represent the regression 

through these estimated and true data points assuming wrong scaling. 
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Figure 8: Comparison of reaction norms derived from the 3 trait estimation of individual 

life history in this study (gray lines) with reaction norm estimated by from Grift, et al. 

(2003) averaged over the past 5 decades by only using cohorts for which more than 30 

observations were available. Dotted lines represent the 25%- and 75% probabilities of 

maturation, the dashed line represents the average length at age. The reaction norm from 

individual life history estimation is shown for an interpretation of the first spawning 

event matA  given by matt  plus a minimal period of preparation for spawning of 4 months, 

rounded up to the next year. 

 

  


