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Abstract 
The accumulation of cross-immunity in the host population is an important factor 
driving the antigenic evolution of viruses such as influenza A. Mathematical models 
have shown that the strength of temporary non-specific cross-immunity and the basic 
reproductive number are both key determinants for evolutionary branching of the 
antigenic phenotype. Here we develop deterministic and stochastic versions of one such 
model. We examine how the time of emergence or introduction of a novel strain affects 
co-existence with existing strains and hence the initial establishment of a new 
evolutionary branch. We also clarify the roles of cross-immunity and the basic 
reproductive number in this process. We show that the basic reproductive number is 
important because it affects the frequency of infection, which influences the long term 
immune profile of the host population. The time at which a new strain appears relative 
to the epidemic peak of an existing strain is important because it determines the 
environment the emergent mutant experiences in terms of the short term immune profile 
of the host population. Strains are more likely to coexist, and hence to establish a new 
clade in the viral phylogeny, when there is a significant time overlap between their 
epidemics. It follows that the majority of antigenic drift in influenza is expected to 
occur in the earlier part of each transmission season and this is likely to be a key 
surveillance period for detecting emerging antigenic novelty. 
 
Keywords: partial cross-immunity, antigenic drift, evolution, epidemiology 
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1. Introduction 

 One of the most striking characteristics of the influenza A virus is its 
extraordinarily rapid evolution due to strong selection mediated by the host immune 
response to viral antigens. If a strain of influenza causes a large epidemic, the majority 
of hosts acquire immunity against that strain. In order to be successful, subsequent viral 
strains must therefore escape the residual host immunity and this promotes the fixation 
of mutants with novel epitopes. A key feature of influenza A evolution is that, despite 
the appearance and spread of new strains each year, the vast majority become rapidly 
extinct and the number of persistent branches in the phylogenetic tree remains small 
(Bush et al. 1999; Smith et al. 2004; Holmes et al., 2005). One of the most important 
factors responsible for maintaining this slim phylogenetic tree is likely to be 
cross-immunity (Andreasen et al., 1997; Ferguson et al. 2003; Koelle et al. 2006, 
Andreasen and Sasaki, 2006), whereby infection with one strain suppresses subsequent 
infections with antigenically similar strains. Cross-immunity is a major determinant of 
phylogenetic branching because it can make it difficult for a mutant strain to coexist 
with the parental or sibling strains.  

A key feature of influenza dynamics is the strong seasonality of incidence in 
temperate regions. To understand the ecology and evolution of influenza, it is vital to 
understand the way in which host immunity mediates the epidemiological and antigenic 
interaction of viral strains in the context of seasonal epidemics. An earlier study 
(Andreasen and Sasaki, 2006) considered a simple model in which discrete annual 
epidemics of influenza were assumed to be caused by antigenic variants derived from a 
common ancestor in the previous year. The variants occupied a low-dimensional 
antigenic space and emerged serially to cause sequential, non-overlapping epidemics. 
This analysis indicated that strong temporary broad cross-immunity between all viral 
strains, a high basic reproductive rate and rapid decay in long term strain specific 
cross-immunity are required to prevent evolutionary branching and maintain the slim 
antigenic phylogeny of influenza (Andreasen and Sasaki, 2006). Empirical studies, 
however, show that antigenic variants do not appear in strict sequence each season and 
there may be extensive co-circulation. In New York State two distinct clades of H3N2 
co-circulated in the 2002 – 2003 transmission season and three distinct clades circulated 
in the 2003 – 2004 season (Holmes et al. 2005). In the 2006 – 2007 season multiple 
co-circulating clades causing overlapping epidemics were detected (Nelson et al. 2008). 
In each season each clade is believed to have arisen from a novel introduction (Nelson 
et al. 2006; 2008).  

There are many complex factors governing the epidemiology and evolution of 
influenza. Here we will focus on the roles that seasonal epidemics and the extent of 
co-circulation pf antigenic variants play in antigenic branching. We show that partially 
over-lapping epidemics can enhance co-existence of antigenic variants, making 
branching more likely. This effect is strongly dependent on the time lag between the 
introduction of each variant. It may also be moderated by season to season variation in 
the sequence in which variants appear. Nevertheless maintenance of the characteristic 
unbranched phylogeny of influenza may require a higher basic reproductive number or 
stronger broad cross-immunity than anticipated by previous work.  

Models based on linear antigenic spaces are often used to analyze the coupled 



 3 

dynamics of the host population immune profile and the antigenic properties of the 
influenza virus (Sasaki, 1994; Andreasen et al., 1996; Haraguchi and Sasaki, 1997; Gog 
and Grenfell, 2002; Andreasen, 2003; Lin et al., 2003; Boni et al., 2004; Adams and 
Sasaki, 2007;) because the antigenic drift of influenza A shows approximately linear 
evolution along a single phylogenetic trunk. However, antigen characteristics are 
thought to be high dimensional (Smith et al. 2004) and other approaches define 
antigenic types based on abstractions of the epitope sequence (Sasaki and Haraguchi, 
2000; Ferguson et al, 2003; Tria et al, 2005; Adams and Sasaki, 2009). Therefore, we 
also use an individual-based simulation of the epidemic model to consider the effect of 
modeling the antigenic evolution through a high dimensional antigenic space. We find 
that the key characteristics of the evolutionary dynamics in this framework are similar 
to those of the simpler model, indicating that reducing the antigenic space to 
one-dimension is indeed a reasonable approximation that produces robust insights.  
  

2. Deterministic Model 

We consider an extension of the model proposed by Andreasen and Sasaki (2006), 
hereafter denoted the AS-model. This framework focuses on the seasonal dynamics of 
influenza to separate the epidemiological and evolutionary timescales. The 
epidemiological dynamics are expressed in a continuous time structure within a single 
transmission season. The evolutionary dynamics are expressed through a discrete time 
structure. Time is divided into a sequence of consecutive seasons and the host 
population is classified according to the most recent season in which infection occurred. 
Within any given season the antigenic distance between viral genotypes in the same 
clade is assumed to be small relative to the distance between clades or the distance 
between genotypes in different seasons. The system is then simplified by representing 
the whole collection of genotypes making up a clade as a single ‘strain’. In temperate 
regions multiple introductions seed epidemics of antigenically distinct clades in each 
transmission season. Diversity is replenished each season from an extensive global gene 
pool but there is little positive selection over the course of the epidemic (Holmes et al. 
2005; Nelson et al. 2006, 2008). Therefore the antigenic type of each clade is assumed 
to evolve at a constant rate between seasons but remain static within any given season.  

At the beginning of each season a mutant strain with a fixed antigenic divergence 
from the ancestral strain in the previous season founds an epidemic in the host 
population. The epidemiology of the strain follows the standard SIR model, but the 
infectivity of the virus depends on host cross-immunity due to past infections. 
Cross-immunity is modeled as an exponentially decaying function of the time since last 
infection. At some point within the same season a second strain with fixed divergences 
from the ancestral and sibling strains is introduced. In the AS-model, the second strain 
is only introduced when the epidemic of the founder strain has finished. Here we also 
consider the impact of introducing the second strain during the founder epidemic. 
Persistence of both strains is a necessary condition for the establishment of a new 
antigenic branch. We are mainly interested in the conditions that prevent such 
co-existence and may thus lead to a slim phylogenetic tree.  

As in the AS-model, let 

� 

Sk  denote the fraction of hosts whose most recent 
infection occurred k season ago, and have not yet been infected in the current season. 
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Let 

� 

Ik  denote the fraction of hosts that are currently infected, and whose last previous 
infection occurred k seasons ago. Similarly, let 

� 

Rk  denote the fraction of hosts that 
have recovered from infection in the current season and whose last previous infection 
occurred k seasons ago. For simplicity, the total number of hosts is assumed to be 
constant (   (S j + I j + Rj ) = 1

j∑ ) and there is no birth, death, or immigration during the 
epidemic period. The infectivity of the strain in an infected host is assumed to depend 
on the number of years since the host was last infected, k, according to   cτk . Here c is a 
constant contact rate and   τk  (    0 = τ0 < τ1 <<1) is an increasing function 
describing the strength of cross-immunity. With these assumptions, the differential 
equations that describe changes in 

� 

Sk  and 

� 

Ik  in a season are: 

 

     

Sk′ =−
ΛSk ,

Ik′ =
ΛSk −γ Ik ,

Rk′ = γ Ik ,
Λ= c τk Ik

k
∑ ,

 (1) 

where the prime ' denotes the time derivative   d / dt ,  Λ  denotes the force of infection 

and 

� 

γ  is the recovery rate. As in the AS-model, we assume the following functional 

form for the cross-immunity: 

 

� 

τ k = 1−α k .  (2) 

Here, 

� 

α  describes how the strength of cross-immunity decays after one season. The 
cross-immunity decays exponentially with the number  k  of seasons since the last 
infection, as shown in Figure 1 for different values of 

� 

α . We assume that among the 
past infection events, the most recent infection determines the strength of 
cross-immunity against the currently circulating strain.  Rescaling time in units of the 
average duration of infection 

� 

1/γ , yields 

 

    

Sk′ =−ΛSk ,

Ik′ =ΛSk − Ik ,

Rk′ = Ik ,

Λ= ρ τ j I jj∑ ,

 (3) 

where     ρ= c / γ  is the basic reproductive rate, the expected number of secondary 
infections from a single host infected with a particular strain when the rest of the host 
population has no immunity to any strain.  
 Let   Sk

p (∞) be the density of the hosts still uninfected at the end of season p 
whose most recent infection occurred k seasons ago, and   Rk

p (∞) be the corresponding 
quantity for the hosts infected and recovered in season p. Then the initial condition of 
the host population at the start of season p+1 is expressed in terms of the state at the end 
of season p by:  
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S1
p+1(0) = Rk

p (∞)
k=1
∑

Sk+1
p+1(0) = Sk

p (∞)     (k ≥ 1)
   (4) 

The epidemic dynamics in the year   p +1 are then described by (3) where the 

superscripts to designate the year are dropped for notational simplicity.  

We now expand the AS-model to evaluate how the extent to which two strains 
co-circulate within the same epidemic season affects the evolutionary dynamics in terms 
of the establishment of novel antigenic branches. The immune profile of the host 
population becomes more complex. To incorporate the immune interaction between 
co-circulating strains we label the strain present at the start of the season A, the strain 
emerging at some later point B, fix the strength of partial cross-immunity 

� 

α  and 
constant contact rate  c  to be the same for both strains and assume that strain A has 
been circulating for many seasons but strain B first reaches detectable prevalence in 
season T . Following the AS-model, we assume that both strains A and B are first 
present at very low prevalence at the end of season T – 1. Therefore, when they reach 
detectable prevalence, in season T, the antigenic distance between strains A and B is 
equal to the antigenic distance associated with two seasons in the one strain model. If 
there are multiple previous infections only the strongest partial cross-immunity is 
assumed to be effective.  
 Inter-pandemic influenza subtypes generally circulate for several decades, 
undergoing antigenic drift throughout this period. The H3N2 subtype currently 
responsible for the majority of seasonal influenza infections has circulated since 1968 
(Kilbourne, 2006) and it is reasonable to assume that the epidemiological dynamics 
have settled to a stable pattern. The initial immune profile of the population at the start 
of season T, in terms of the length of time since the most recent infection, is found from 
this steady state. The population is then challenged with a new strain, A, at the start of 
the T th season. Later in the same season the population is challenged with another new 
strain, B. Thereafter, the density of hosts infected with these strains is recorded. The 
population is now categorized into 9k states, susceptible (S), infected (I) and recovered 
(R) for each strain A and B with the most recent previous infection experienced k 
seasons ago. For example, the proportion of hosts currently infected with strain A, 
recovered from infection in the current season with strain B and, asides from the current 
season, last infected k season ago is given by 

� 

IRk . The rate of change of each host state 
is described by the differential equation system: 
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� 

SSk′ = −(ΛA + ΛB )SSk,

ISk′ = ΛASSk − ISk −νΛBISk,

RSk′ = ISk −νΛBISk,

SIk′ = ΛBSSk − SIk −νΛASIk,

IIk′ = ν (ΛASIk + ΛBISk ) − 2IIk,

RIk′ = νΛBRSk + IIk − RIk,

SRk
′ = SIk −νΛASRk,

IRk′ = νΛASRk + IIk − IRk,

RRk′ = RIk + IRk,

 (5) 

where the parameter  v  represents the proportional susceptibility reduction due to 
temporary non-specific cross-immunity. Ferguson et al. (2003), Tria et al. (2005) and 
Andreason and Sasaki (2006) all note that it is hard to produce a phylogenetic tree with 
the shape characteristic of influenza without this factor, unless the basic reproductive 
ratio is close to 1. Here, 0 ≤ v ≤ 1  and the effect of temporary non-specific immunity 
becomes smaller as 

� 

ν  becomes larger. This immunity is only thought to persist for 3-4 
months so is not carried over to the next season. Note that co-infection with both strains 
can occur. However, the II compartment is expected to be very small, and unlikely to 
play a significant part in the dynamics, because the duration of infection is short and 
hosts infected with one strain immediately gain non-specific partial immunity to all 
other strains for the remainder of the season.  
 The forces of infection of strains A and B, 

� 

ΛA  and 

� 

ΛB , are given by 

 
ΛA = ρ( τ k (ISk + IIk + IRk ) + τ 0 (IS0 + II0 ) + τ 2IR0 )

k=1
∑ ,

ΛB = ρ( τ k (SIk + IIk + RIk )
k=1
∑ + τ 0 (SI0 + II0 ) + τ 2RI0 ),

 (6) 

Here   ρ = c / γ  is the basic reproductive rate, the expected number of secondary 
infections from a single host infected with a particular strain when the rest of the host 
population has no immunity to any strain. The suffix 

� 

k = 0 indicates hosts that have 
never been infected prior to the current season. The proportional reduction in infectivity 
due to partial cross-immunity of hosts who are currently infected with strain A, have 
recovered from an infection with strain B in the current season, but have never been 
infected prior to the current season (

� 

IR0 ) is 

� 

τ 2.  
Following Andreasen and Sasaki (2006), we assume that the host population 

has experienced annual outbreaks of a single constantly evolving virus line (A) for a 
long time, and hence the fractions  sk  of hosts last infected  k  seasons ago are at 
steady state. The equilibrium values of  sk  at the onset of season are thus given by 
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    ŝk = (1−φ)φ k−1, (k = 1,2,) , (7) 

where φ  is the fraction of hosts that remain susceptible in each year determined from 

   0 = ρq(1−φ) + logφ , (8) 

where 
  
q = τ kskk∑ = τ k (1−φ)φ k−1

k∑ . This follows by considering the equilibrium of 

(4) noting that  Sk
p (0)= Sk

p+1 = sk  and   Rk
p (∞)= Sk

p (0)φ= skφ . With the partial 
cross-immunity function (2) assumed in this paper,   q = (1−α k )(1−φ)φ k−1

k=1

∞∑  
 = 1−αφ(1−φ) / {φ(1−αφ)} and hence (8) can be rewritten as 
  0 = ρ(1−φ)[1−αφ(1−φ) / {φ(1−αφ)}]+ logφ . (9) 

In order to investigate overlapping epidemics of strains A and B, we introduce strain A 
at the beginning (  t = 0 ) of a season. The initial condition is then 

 
  

SSk (0) = (1− ε A )ŝk ,
ISk (0) = ε Aŝk

 (10) 

(   k = 1,2, ) where  ε A  is a small positive constant representing the initial fraction of 
strain A infected hosts, and   ŝk  is the initial fraction of hosts whose last infection was 
 k  seasons ago as given by (7) and (9). All other classes are zero at   t = 0 . Some time 

 t = Td  after the epidemic of strain A starts, strain B is introduced and the initial 
condition for the integration of (2) for  t ≥ Td  is: 

 
SIk (Td ) = εBSSk (Td − 0), SSk (Td ) = (1− εB )SSk (Td − 0)
IIk (Td ) = εBISk (Td − 0), ISk (Td ) = (1− εB )ISk (Td − 0)
RIk (Td ) = εBRSk (Td − 0), RSk (Td ) = (1− εB )RSk (Td − 0)

 (11) 

(   k = 1,2, ) where  εB  is a small positive constant and the fraction   SSk (Td − 0) , for 
example, represents the value of   SSk (t)  in the limit  t → Td . The other three classes 
for each  k , SRk (t) , IRk (t)  and RRk (t)  are zero at  t = Td . 

The invasibility of strain B in any given year is determined by the sign of the 
rate of change of the strain B infected population at time  t = Td , that is   IB

′ (Td )  where 

� 

IB (t) ≡ (SIk (t) + IIk (t) + RIk (t))
k
∑

 
is the total fraction of strain B infected hosts. Strain 

B will invade the population and cause an outbreak in that year if  ′IB (Td ) > 0 . We 
examine how this invasibility is related to the degree of overlap between the epidemics, 
which is measured by   (Tea − Td ) / Tea , where 

� 

Tea  is the time from the beginning of the 
season to the moment when the fraction of hosts infected with strain A falls below a 
fixed extinction threshold. 
 The coexistence of two strains in the same season is a necessary condition for 
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branching. Influenza phylogenies, however, show distinct branches coexisting for 
several years until one forms the trunk of the phylogeny and the others become extinct 
(Bush et al. 1999). Therefore, we now consider the longer term persistence of branches. 
We assume that strain B successfully increases in the first season it emerges (T) and ask 
if the progeny of both strains A and B still persist  n  seasons after season T. To 
determine the invasibility of the progeny of strains A and B in season  T + n, we must 
know the degree of partial cross-immunity they experience i.e., the shortest path 
connecting the current strain and the strains responsible for any previous infections 
along the phylogenetic tree as shown in Figure 2. More specifically, we need to know 
not only the number of seasons  k  before T that the host has last infected, but also the 
infection history after season T in terms of the progeny of strains A and B. Let  a  ( b ) 
be the number of seasons since the host was last infected by the progeny of strain A (B). 
Let  fa  ( fb ) be the number of seasons after T since the host was first infected by the 
progeny of strain A (B) (see Figure 2(a)). The infectivity 

  
cτ k ,a,b, fa , fb

 of strain A infected 

hosts depends on  k ,  a ,  b ,  fa , and  fb . The entries 
  
τ k ,a,b, fa , fb

 of Table 1 show the 
infectivity to the progeny strains of A and B in the year  T + n  for the hosts with state 
{k,a,b, fa , fb} = {+,0,+,0,+} i.e. those who were last infected  k  years ago at the onset 
of the season T, have not been infected by any progeny of strain A since then 

  (a = fa = 0) , and have been infected at least once by progeny of strain B   (b, fb > 0) . 
The infectivity 

  
τ A,n

k ,a,b, fa , fb
of the progeny of strain A is determined by the most 

antigenically similar strain i.e. the smaller of  and  as shown in 
Figure 2(b). 

   
τ A,n

k ,a,b, fa , fb
is the corresponding quantity when the host has already been 

infected by the other co-circulating strain in the same year. 
 Each of the nine host states in the current season is now additionally classified 
according to infection history k, a, b,  fa ,  fb  (e.g.   IS(k ,a,b, fa , fb ) represents the density 
of hosts that are currently infected by strain A, have not yet been infected by strain B in 
the current season and whose infection history with respect to the ancestral strains of A 
and B is as shown in Fig 2a). The system is described by differential equations extended 
from (5) in the obvious way, with the forces of infection of strain A and B, ΛA  and 

� 

ΛB , given by 

 

   

ΛA = ρ τ k ,a,b, fa , fb

A,n (IS(k ,a,b, fa , fb ) + II(k ,a,b, fa , fb ) ) + τ k ,a,b, fa , fb

A,n IR(k ,a,b, fa , fb ){ }
fb

∑
fa

∑
b
∑

a
∑

k
∑

ΛB = ρ τ k ,a,b, fa , fb

B,n (SI(k ,a,b, fa , fb ) + II(k ,a,b, fa , fb ) ) + τ k ,a,b, fa , fb

B,n RI(k ,a,b, fa , fb ){ }
fb

∑
fa

∑
b
∑

a
∑

k
∑

 (12) 

Coexistence is determined by the sign of the initial growth rate of the second strain to 
be introduced. For example, if strain A is initially present and strain B is introduced at 

 Td > 0, then the two strains coexist if   ′IB (Td ) > 0 . 

3. Results 

In order to understand the coexistence of two strains we the first consider the 
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model in which only one strain circulates in each season (equation (3)). When the 
dynamics have stabilized, the distribution of the Sk  at the beginning of each season 
corresponds to the time interval between infections of the same host. As shown in 
Figure 3, when the basic reproductive number 

� 

ρ  becomes larger, the time interval 
between infections becomes longer. 

With this observation regarding the immune profile in mind, we now analyze 
the model in which two strains may co-circulate in the same season. Figure 4(a) shows 
how coexistence in the season that strain B first emerges (T ) depends on the basic 
reproductive rate 

� 

ρ , the strength of temporary non-specific immunityν, and the 
degree of overlap between the epidemics of the two strains. The results can be 
summarized as follows: (i) If two epidemic does not overlap (  Td = Tea ) coexistence 
occurs if ν and  ρ  are large. (ii) If the epidemics overlap a little (   Td > (3 / 4)Tea ) the 
result remains the same. (iii) If the epidemics overlap a lot, the two strains always 
coexist except when  v  is very small and  ρ  is very large. The observation that 
epidemics with different influenza strains often do overlap therefore indicates that, in 
order to prevent branching, the reproductive number  ρ  must be larger than previously 
suggested, or broad cross-immunity  v  must be stronger. Since it is known that the 
basic reproductive number of influenza is relatively small, this suggests that broad 
temporary cross-immunity is very effective or there are additional factors involved. If 
the order of emergence is same in seasons T  and T +1 the condition for continued 
coexistence in season T+1 is exactly same. If the order of emergence is reversed 
between seasons T  and T +1 the way in which coexistence depends on ρ  and ν  
remains qualitatively similar but is restricted to a smaller region of parameter space 
(Figure 4 (b)). In particular, if Td  is high and  ρ  is small coexistence always occurs 
for any value of ν. Furthermore, the range of values of 

� 

Td  that result in large changes 
in the coexistence condition is narrower than when the order of epidemics is the same 
and the difference between the coexistence regions associated with Tea / 2  and 

� 

Tea  is 
almost undetectable.  

Figure 5 summarizes the relationship between the sequence of epidemics and 
the fate of strains when the A and B epidemics in each season overlap (   Td = (1 / 4)Tea ) 
and do not overlap. The solid line shows the boundary for coexistence when the two 
strains appear in the same order   ( AB) in both seasons. The broken line shows the 
corresponding boundary when the two strains appear in the reverse order ( BA ) in the 
second season. If there is no overlap between the two epidemics the result agrees with 
the analysis of Andreasen and Sasaki (2006). If the two epidemics overlap, the region of 
the ρ −ν  parameter space in which strain B excludes strain A is wider when the order 
of epidemics is reversed between seasons. The effect of overlap between the two strains 
can thus be summarized as follows: (i) Coexistence occurs over a more extensive region 
of the ρ−ν parameter space. (ii) If coexistence does not occur strain B is more likely to 
exclude strain A if the order of appearance is reversed between seasons. 

We now consider conditions for coexistence in the season in which strains A 
and B appear together for the first time (T) and the following two seasons. There are 
four possible combinations for the order of epidemics   ( AB → AB → AB) , 

  ( AB → AB → BA) ,   ( AB → BA→ AB)  and   ( AB → BA→ BA) . In season   T + 2 , 
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two progeny strains are more likely to coexist than their ancestors due to the increased 
antigenic distance between them. So if two strains coexist in   T +1 and the order of 
epidemics in season T + 2  is the same as   T +1, ( (AB→ AB→ AB)  or 

  ( AB → BA→ BA) ), coexistence will always continue. If, however, the order of 
appearance is reversed between seasons   T +1 and   T + 2 , coexistence becomes more 
limited (Figure 6). Thus, reversal of the order of epidemics between seasons reduces 
coexistence in the same way as was observed when only seasons T  and T +1 were 
considered. Phylogenetic analysis of data from New York State did not find any clear 
pattern in the order that strains appear from one season to the next (Nelson et al. 2006) 
suggesting that variation is extensive. Therefore, variation in the order that strains 
appear is expected to moderate some of the effects of overlapping epidemics and is 
likely to be a factor in the prevention of branching. 

4. Individual-based simulation 

 In the differential equation based model discussed so far the time scale of the 
epidemic is separated from that of the drift process. The main conclusion of our analysis 
was that two strains are more likely to coexist if there is a shorter time lag between their 
appearance and hence a greater overlap between their epidemics. Branching may be 
initiated if two strains appear at a similar point of the season. However, it may be 
subsequently terminated if the order in which these strains appear varies in later 
seasons. We now re-examine these conclusions using an individual-based model that 
simulates the epidemic and drift processes on the same time scale. Whereas the 
differential equation model is based on the approximation of constant antigenic change 
in each season, we now model mutation explicitly and only assume that the antigenic 
distance associated with each mutation is constant.  

We consider a host population of N = 105 individuals and record the immune 
state of each host with respect to each virus strain. The probability that a host 
susceptible to strain A becomes infected is 

 ΛA = ρ τ x,A
x  infected with A
∑ / N ,  (13) 

where the summation is over all hosts, x, infected with strain A and 

� 

τ x,A  is the reduced 
infectivity of strain A in host x due to partial cross-immunity, ρ = c / γ  is the basic 
reproductive rate, N = 105  is total host population size, c is a constant contact rate and 

� 

γ  is the recovery rate. In order to determine the strength of partial cross-immunity, we 
need to determine the antigenic distance between two strains. Here we assume this is 
equal to the Hamming distance. We consider an epitope consisting of ten amino acid 
residues (loci) and assume each locus has two variants, 0 or 1. The antigenic distance 
between two strains is then given by the number of loci with different values. For each 
infected host, one locus of the infecting strain switches value due to mutation with 
probability µ. Denoting the infectivity reduction rate associated with one mutation by 

� 

α , the Hamming distance between strains A and B by 

� 

d(A,B)  and assuming only the 
strongest partial cross-immunity from all past infections is relevant, 

 τ x,A = min
B x recoverd from B 

(1−α d (A,B) )  . (14) 
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Infected hosts recover with probability 

� 

γ  and gain complete temporary immunity to all 
strains, which lasts an average of 1/5 of a year. The probabilities of birth and death are 
equal, and newborn hosts are susceptible to all strains. Initially ten hosts are infected 
with the same strain and susceptible to all other strains while the remainder of the 
population is susceptible to all strains. The system was iterated using a continuous time 
Markov process. 

Figure 7 shows a phylogenetic tree produced by this model. With temporary 
non-specific immunity the phylogenetic tree shows an approximately linear shape 
despite rapid turnover of antigenic strains, justifying our assumption that the viral 
population is nearly monomorphic in each year and escape mutations constantly 
accumulate .  As with the differential equation model, we now focus on the 
coexistence of a mutant strain M  and its immediate progenitor P . We define M  
and P  to be coexistent if they are both present in the population when another 
mutation occurs in M . This definition rules out situations in which small outbreaks of 
P  occur by chance even though sustained coexistence is not possible. 
 Using this model, we tested whether the lag between the appearance of strains 
P  and M  is correlated with their coexistence. Figure 8 shows the distribution of the 
number of mutant strains that coexist with their progenitor P  when the lag between 
their appearance is  Td . This sampling distribution is compared with a theoretical 
distribution for the expected number of coexisting strains when the probability of 
coexistence is independent of  Td  and given by 

	
 F0 =
Mg (Td )

Td =0

∞

∑

M (Td )
Td =0

∞

∑
	
 (15) 

Here M (Td )  denotes the number of strains M  for which the appearance lag relative 
to P  is  Td  and Mg (Td )  denotes the number of strains that have an appearance lag 
relative to P  of  Td and coexist with P . The Kolmogorov-Smirnov test at the critical 
level 0.01 rejects the null hypothesis that the sampling distribution corresponds to the 
theoretical distribution. Hence appearance times are correlated with coexistence. Figure 
9 shows the relationship between the lag in the appearance time of  and  ( ) 
and the probability of coexistence. Spearman’s rank-correlation coefficient between the 
length of the lag and the coexistence probability is -0.4180821 (p-value < 0.01). We 
conclude that the key dynamics of the deterministic model based on assumption of 
continuous, linear antigenic divergence are in good agreement with the stochastic model 
based on a high dimensional antigenic space. If the lag between the appearance of two 
strains is shorter then they are more likely to coexist. Overlapping epidemics facilitate 
branching. 

5. Discussion 

We have developed a model for influenza evolution over discrete transmission 
seasons to examine the impact of emergence time and epidemic overlap on the 
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coexistence of antigenically divergent strains and assess the implications for 
evolutionary branching. Previous work based on non-overlapping epidemics has shown 
that maintaining the slim antigenic phylogeny of seasonal influenza is likely to require a 
relatively high basic reproductive number and strong temporary broad immunity. We 
have shown that if epidemics overlap an even higher basic reproductive number or 
stronger temporary immunity are required to prevent branching although variation in the 
order in which strain appear over several seasons may moderate these constraints. We 
have also shown that these results arise in both a deterministic model with a basic 
antigenic space and a stochastic model with a high dimensional antigenic space.  

A new branch is established when two distinct strains emerge and coexist. 
When two strains appear in the same season coexistence is determined by the survival 
of the second strain and cross-immunity means that hosts infected with, or recovered 
from, the first strain are difficult for the second strain to re-infect. The key parameters 
that determine coexistence, therefore, are the decay rate in the strength of partial 
cross-immunity after one season

� 

α , the basic reproductive rate

� 

ρ , the proportional 
reduction in the force of infection due to temporary non-specific immunityν, and the 
appearance time of the second strain 

� 

Td . The role of 

� 

α  and νis easy to understand as 
these parameters determine partial cross-immunity and temporary non-specific 
immunity directly. The role of 

� 

Td  and 

� 

ρ , however, is indirect as these parameters 
determine the immune profile of the host population. A larger value of the basic 
reproductive rate 

� 

ρ  reduces the time between infections (Figure 3). Given that partial 
cross-immunity decays with each passing season, and is almost absent after about five 
seasons, the fraction of hosts who benefit from partial cross-immunity is larger when 

� 

ρ  
is larger. In addition to reducing the time between infections, larger values of the basic 
reproductive rate increase the magnitude of epidemics as shown by  in Table 2. So 

� 

ρ  
affects both the fraction of hosts infected and the time between infections. Increasing 
the time lag between the appearance of each strain (

� 

Td ) means that larger values of 

� 

ρ , 
or smaller values of ν, are required for coexistence, as Figures 4 and 6 show. This 
happens because, if the second strain emerges later, a larger fraction of the host 
population have immunity due to infection with the first strain. 

The sequence in which strains appear is also important for coexistence over 
two seasons. If the sequence of appearance is the same in seasons T and T+1, continued 
coexistence is more likely than if the sequence is reversed between seasons (Figure 4). 
In order to understand this phenomenon, we focus on the case in which the sequence is 
reversed. In season T, strain A emerges first and strain B is suppressed due to host 
immunity. Hence the number of hosts infected with strain B is small, and so the number 
of hosts acquiring complete immunity to strain B is also small. This small epidemic 
may, however, be a herald wave (Glezen et al.,1982), because if strain B appears first in 
season T+1, host immunity is weak and a large strain B epidemic follows. The host 
immunity arising from this epidemic then suppresses the prevalence of strain A, 
possibly driving it to extinction. When two epidemics overlap, the exclusion of the 
preexisting strain by a strain newly established in a herald wave is much more likely to 
occur (Figure 5). Once two strains succeed in coexisting it becomes more likely in 
subsequent seasons, although the extent of potential coexistence is always reduced by a 
reversal in the order of appearance between seasons. 

The key result of both the differential equation based model and the 
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individual based model is that strains are more likely to coexist if the difference 
between their appearance times is smaller. This conclusion offers important insight into 
the timing of the emergence of novel influenza strains. For the individual based model, 
the sampling distribution shown in Figure 8 corresponds to non-neutral evolution 
whereas the theoretical distribution corresponds to neutral evolution. Here, the degree of 
overlap between epidemics can also be interpreted as the time at which a mutant 
emerges from a circulating strain. The peak of the sampling distribution is earlier than 
that of the theoretical distribution indicating, in agreement with the analysis of Boni et 
al. (2006),  that host immune selection causes excess antigenic drift and most of this 
drift occurs in the earlier part of each influenza season. 
 Genetic analysis of H3N2 and H1N1 isolates collected in the United States 
over the last decade show that there are multiple introduction events each season and 
several antigenically distinct clades may co-circulate (Nelson et al. 2006, 2007, 2008). 
Here we have shown that the extent of overlap between the epidemics associated with 
these clades is an important factor in determining whether or not a new antigenic branch 
is established, and persists. Clades that appear, by mutation or introduction, at a similar 
time are more likely to coexist and so result in a new antigenic branch. However, 
variation in the order in which these clades appear in subsequent seasons limits 
co-existence and may be an important factor preventing the persistence of new antigenic 
branches. Analysis of H1N1 epidemiological data has shown that the mutant or clade 
that emerged earliest in the influenza season caused a major epidemic whilst clades 
emerging later caused much smaller outbreaks (Nelson et al. 2008). Correspondingly, in 
our model, strains that emerge when an epidemic of another strain is already well 
underway are unlikely to lead to significant co-circulation or the establishment of new 
antigenic branches. This insight suggests that tracking and predicting the antigenic 
evolution of influenza virus may be improved by focusing attention on the early stages 
of epidemics. 
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Figure legends 
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Figure 1: Decay in partial cross-immunity with time. The horizontal axis is the number  
of seasons k that have elapsed since the most recent infection. The vertical axis is the 
reduction in the force of infection due partial cross-immunity, τ = 1−α k . The 
parameter 

� 

α  determines the decay in partial cross-immunity after one season has 
elapsed. 
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Figure 2: (a) Relationship between the season in which strains circulate relative to the 
first potential branch point in season T and the antigenic distance between them, 
indicating the definition of , , , , and . (b) Cross-immunity is determined 
by the strain most antigenically similar to the one circulating in the current season 

 i.e. the smaller of  and . 
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Figure 3: The relationship between the basic reproductive rate  and the mean time 
interval between of infections of same host when there is only one strain and it has 
reached equilibrium. Error bars denote standard deviation.
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Figure 4: Conditions for coexistence of strains A and B in terms of parameters  and ν 
for different lags between the appearance time of the strains, expressed as a proportion 
of the total epidemic duration Tea (a) The sequence of epidemics is the same in seasons 
T and T+1. (b) The sequence of epidemics is reversed between seasons T and T+1. The 
two strains coexist in the regions above the solid lines, one strain is excluded in the 
regions below the lines, The initial number of infections when each strain appears is 

. The extinction threshold for each strain is .  

 



 20 

 
Figure 5: Relationship between the sequence of epidemics and the fate of the progeny of 
strains A and B when epidemics overlap ( ) and do not overlap. The solid 
line is the boundary condition for coexistence if the sequence of epidemics is same in 
seasons T and T+1. The broken line is the boundary if the sequence of epidemics is 
reversed between seasons. The diagrams show which strains persist. ● indicates 
persistence, × extinction. In region (i) the two strains coexist. In region (iii) one strain 
is excluded. In the region between the solid and broken lines , the outcome depends 
on the order of appearance. If strain A appears first in season T+1 there is coexistence 
but if strain B appears first in season T+1 strain A will be driven to extinction. 
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Figure 6: Conditions for coexistence of strains A and B in terms of parameters  and ν 
for different lags between the appearance time of the strains. The two strains coexist in 
the region above the solid line. One strain is excluded in the region below the line, (a) 
The sequence of epidemics in season T+1 and T+2 is . (b) The 
sequence of epidemics in season T+1 and T+2 is . 

 



 22 

0 20 40 60 80 100
year  

Figure 7: Phylogenetic tree resulting from a 100 year simulation using the individual 
based model. Strains that caused less than 2000 infections and did not produce mutants 
have been excluded. Each branch shows a strain created by one site mutation. Basic 
reproductive ratio  is 3.9968, host population size is 105, mutation rate , 
mean duration of protection due to temporary non-specific immunity is  year. 
During temporary immunity hosts cannot be infected by any strain. Initially all of the 
host population is susceptible to all strains except for 10 hosts infected with the same 
strain. 
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Figure 8: The number of progeny strains that emerged the relative lag Td after the 
appearance of their ancestors, and coexisted with the ancestors until they leave the next 
progeny strain, where the lags are scaled in units of the duration of the ancestral strain 
epidemic. Black bars: the observed distribution from the individual based model; gray 
bars: the theoretical distribution when there is no correlation between the probability of 
coexistence and the appearance time. Earlier emerging progeny strains are more likely 
to coexist with their ancestral strains than random expectation. See text for the 
definition of the coexistence between ancestral and progeny strains. 
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Figure 9: Probability that a mutant strain coexists with its progenitor as a function of the 
lag between the appearance of the two strains, Td . Error bars denote standard error. As 
in Figure 8, this shows that earlier emerging progeny strains are more likely to coexist 
with their ancestral strains. 
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Table 1: Relationship between infection history and strength of partial cross-immunity (
τ) in season . “(not) infected by A(B)” indicates whether or not the host is 
infected with strain A(B) in the current season. Suffix k indicates how many seasons 
before T the most recent infection occurred. Suffix a indicates how many seasons before 
the present, but after season T, the most recent infection with strain A occurred. Suffix 
fa denotes how many seasons before the present, but after T, the first infection with 
strain A occurred. Suffixes b and fb are similarly defined for strain B. 
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