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Preface

The aim of the IIASA Modeling Health Care Systems Task is
to build a National Health Care System model and apply it in
collaboration with national research centers as an aid to Health
Service planners. The modeling work is proceeding along the
lines proposed in earlier papers. It involves the construction
of linked sub-models dealing with population, disease prevalence,
resource need, resource supply, and resource allocation.

In this paper, an earlier version of the resource allocation
sub-model is extended to have wider application in the planning
of health services, and to make direct use of historical allo-
cation data. Both the model and parameter estimation procedures
are available as computer programs, and three illustrative exam-
ples are presented.

Recent related publications of the IIASA Modeling Health
Care Systems Task are listed on the back pages of this Memoran-
dum.

Evgenii N. Shigan
Leader

Health Care Systems
Task

September 1978
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Abstract

The function of the resource allocation sub-model within
the IIASA Health Care System model is to simulate how the HCS
allocates limited supplies of resources between competing
demands. The principal outputs of the sub-model are the numbers
of patients treated, in different categories, and the modes
and quotas of treatment they receive. The Mark 2 version of
the sub-model described in this paper simulates the allocation
of many resources within one mode of treatment. It uses the
same main assumption as used in the Mark 1 version previously
reported; namely that in allocating its resources the HCS
attempts to optimise a utility function whose parameters can be
inferred from data on past allocations. Depending upon the type
of data that is available different procedures for parameter
estimation are required. This paper analyses estimation proce-
dures which use historical allocation data directly. Both these
procedures and the solution algorithm have been realized in a
small computer program which can be readily installed on most
scientific computer installations. The use of the sub-model
is illustrated by three hypothetical applications using hospital
data.
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The IIASA Health Care Resource Allocation Sub-Model:
Mark 2--the Allocation of Many Different Resources

1. INTRODUCTION

At the International Institute for Applied Systems Analysis,
a group of scientists from different countries is developing a
national Health Care System (HCS) model. This model and its sub-
models are designed for application with collaborating national
research centres as an aid to health service planners. As de-
scribed in earlier papers by Venedictov and Shigan [1] and by
Gibbs [2] the research plan includes the construction of linked
sub~-models dealing with population, disease prevalence, resource
need, resource supply and resource allocation. This paper de-
scribes the further development of the resource allocation sub-
model DRAM--disaggregated resource allocation model. This first
section reviews the role of DRAM within the IIASA National HCS
model, and motivates the various developments described in the

rest of this paper.

The IIASA national HCS model has at present four groups of
sub-models, shown in Figure 1 and described more fully in Gibbs
[2]. Within this framework the function of the resource alloca-
tion sub-model is to represent how the HCS allocates limited
supplies of resources between competing demands. Accordingly
it takes input data on demand and supply, uses a hypothesis about
how allocation choices are made, and gives indicators of the

predicted performance of the HCS.
The demand inputs are:

- the total number of individuals who need treatment, by

category (from the morbidity and population sub-models),

- the policies for treatment (i.e. the feasible modes of
treatment for each patient category--in-patient, out-
patient, domiciliary, etc.), and
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Figure 1. The four groups of sub-models in the IIASA
national health care system model.

-~ the ideal quotas of resources needed in each patient

category and mode of treatment.

The supply inputs are the amounts of resources available for
use in the HCS, and their costs (from the resource supply pro-

duction model).

The model's hypothesis about the behaviour of the HCS has
two parts. First it assumes that there is never a sufficient
supply of resources to saturate all the potential demands for
them. This finding has been frequently noted in many areas of
health care [7,8,9] Accordingly the sub-model represents the
HCS as attempting to achieve an equilibrium between supply and
demand. The second assumption is that the HCS allocates its
resources so as to maximise a utility function whose parameters
can be inferred from observations of past allocations. Such a
model is of the behaviour simulation kind [3], and like the models
of McDonald,et al. in the UK [4] and Rousseau in Canada [5], it
represents the actors in the HCS striving to attain some ideal

pattern of behaviour within resource constraints. If these



hypotheses are sound, DRAM can not only describe past equili-
bria, as can classical econometric models, but it can also, un-
like classical econometric models, predict how the equilibrium
is likely to change in the future as a result of changes in fac-
tors such as clinical standards, disease prevalence, and the

preferences and priorities operating in the HCS.

The model outputs represent the levels of satisfied demand

in a HCS with limited resources. They are:

- the numbers of patients of different categories who

receive treatment,
- the modes of treatment offered, and

- the quotas of resources received by each patient in

each mode of treatment.

Inevitably these levels fall short of the ideal demand levels.
DRAM shows how the short-falls are different for different pa-
tients in different parts of the HCS. These results can be used -
by health care planners to explore the consequences of alterna-

tive policies for resource production, treatment, and prevention.

DRAM Mark 1 was described in Gibbs [6]. This first version
of the resource allocation sub-model demonstrates how a single re-
source is allocated between many patient categories in a single
mode of treatment. The present paper describes DRAM Mark 2, in
which the earlier work is developed in two respects. First,

DRAM Mark 2 represents how many resources are allocated between
many pacient categories in a single mode of treatment. Thus

this version approaches more closely the model of McDonald, et al.
[4] in which the HCS can choose not only between resources but
also between modes of treatment. Nevertheless DRAM Mark 2 retains
the advantage of needing only a small computing facility. No ela-
borate software is required and the workings of the model can be

easily explained.

A second feature of DRAM Mark 2 is the method used to esti-
mate the parameters of the model. Information useful for this
task is available from many sources, but in all cases it must

reflect the way in which the HCS has solved its allocation




problem up until now. Below we develop procedures for parameter
estimation which use such historic data directly. The results
can be usefully compared and combined with the results of other
procedures which use data from special surveys and investiga-

tions.

DRAM cannot and does not represent every mechanism of the
real process by which health care resources are allocated. Its
purpose is rather to model a concept: namely that the HCS
achieves an equilibrium by balancing the desirabilities of treat-
ing more patients of one type against treating more of other
types and against treating each type of patient at a higher aver-
age standard. In the examples illustrating the use of DRAM,
we examine how the HCS allocates beds and staff in the treat-
ment of in-patients. But the underlying concept appears to be
valid for many other HCS sectors (e.g. out—-patient treatment)
and for many resources within each sector (e.g. out-patient
physicians, beds, nurses). It is therefore likely that the model

could be applied quite widely.

The next section describes the model in mathematical terms.
When the model parameters are known, the output variables can
be scolved by a simple iterative algorithm. The problem of
parameter estimation is considered in Section 3. Section 4 gives
the resulte of using DRAM on data from the United Kingdom and
Czechoslovakia. We hope to extend such applications to other
countries. Section 5 concludes and describes possible further

developments of DRAM.



2. MODEL FORMULATION AND SOLUTION

This section decribes DRAM Mark 2 in mathematical terms,
defining the variables used and making precise the underlying
hypotheses. This leads to the derivation of an algorithm for

finding the model outputs in terms of the model parameters.

Model Formulation

We begin by defining some variables. DRAM is a model in

which many resources are allocated between many patient cate-

gories. Define, therefore, the subscripts
j = patient category (e.g. diagnosis), i=1,2,...d
k = resource type (e.g. beds, doctors), 'k = 1,2,...K
and the model variables
xj = numbers of individual in the jth patient cate-
gory who receive treatment (per head of popula-
tion, per year)
yjk = amounts or gquotas of resource type k received by

each treated individual in the jth patient cate-

gory.*

It is these variables that the model seeks to predict, within

certain constraints, and according to a certain criterion.

There are three constraints on the choice of x,y. They are

RS ¥k (1)

*In the sequel, we use x,y to denote {xj,j=1,2,...J}, {yjk,j =1,
2,...J3,k=1,2,...K} respectively, with a like notation for simi-

larly subscripted variables.



0 < yjk < ij ¥ j,k (3)

Equation (1) states that the total resources of the kth type

allocated by the model are equal to

Rk = the total resources of the kth type available

to the HCS (per head of population, per year).

In other words, all the available resources must be allocated.

Equations (2) and (3) state that the demands which are input to

the model
Xj = the total number of individuals in the jth patient
category who need treatment (per head of popula-
tion, per year)
ij = the ideal standards or quotas of resource k for
treating an individual in the jth patient category
are never exceeded by the model variables. Equations (1), (2),

(3) together imply that

Rk < § Xijk ¥ k

or that supply is always less than demand--the first hypothesis
of the model.

The criterion used to determine x and y is the second hypo-
thesis of the model. Specifically the model chooses x,y so as to
maximize a utility function
J k73

U=7J g.(x.) + ] ) x.h (¥.5) (4)
J jk



in which
C,.Y -
(x. ) *5 E kok (fl) %3
g.(x.) = - : (9)
o X.
J 3 3 i
_ Sk ik, B3k
Py (Y5 3 1 - () (6)
Jk jk
and where
aj, Bjk are strictly positive constants
Ck = the marginal unit cost of resource type k when all
demands are satisfied. ‘
subject to the constraints of equations (1),(2),(3). This com-

pletes the specification of the model.

The utility function of equations (4),(5),(6) is very simi-
lar to that used in [6]1, and it can be derived solely from the

following assumptions.

a) The utilities of treating more patients and of treat-
ing each patient with more resources, are independent,
monotonically increasing, and additive across patients,

patient categories, and resource types.

b) When all demands are met (x = X, y = Y), the marginal
utilities of increasing the numbers treated or their
resource quotas equal the corresponding marginal re-
source costs. In this situation, extra resources are

useful only as assets and not for treating patients.

c) Percentage increases in x and y give rise to propor-
tional percentage decreases in marginal utility at all
levels of x and y. The function g and h are there-
fore concave, implying diminishing utility increases
for large x and y. An alternative way of expressing

this assumption is to suppose that marginal utility



is an independent variable and to write

d hlxj
> = E. <0 ¥ 3
d Ing.. (x.
95 (%5) ]
d Iny.
K _p. <o ¥ ]
=7 = . < i,k
d hlhjk\ jk) jk

This shows that the elasticities of numbers treated
and resource quotas with respect to marginal utility

are assumed to be constant and negative.

It is important to understand that the utility function U
does not represent a quantity which anyone in the HCS is con-
sciously, or even subconsciously trying to maximize. Instead
it represents a hypothesis about the aggregated behaviour of
the HCS, in which the parameters a,B represent the priorities
implicit in the choices which are made. The utility function
may appear to include both inputs (numbers of individuals) and
outputs (resource quotas) of the HCS. In fact, both these vari-
ables are regarded here as outputs, with the inputs to the sys-

tem being the ideal values of these variables.

Model Solution

The remaining task for this chapter is to find expressions
for the model variabies x and y in terms of the model parameters
o, B, X, ¥, C and R. The constrained maximisation problem in
DRAM Mark 2 is similar to that which arose in DRAM Mark 1, and
it can be similarly solved using the technique of Lagrange multi-
pliers. The solution given below follows very closely that used
in [6] including the use of a simple numerical technique to find

the values of the multipliers.

In the normal way we adjoin the K constraint equations (1)
to the utility function which is to be maximized (4) by means of
K arbitrary multipliers Ak. It is convenient for subsequent anal-
ysis to scale these multipliers by the cost of each resource

type Ck



H = Z gj(xj) +

J

y .h. )
% % xJ ]k(yjk) L

+ ) C hy (R

- § X3vsy) o (T)

In order to find the values of x and y which maximize H, we must

solve the J(K + 1) + K equations

3H _
OX. 0 ¥ ]
j
oL =0 ¥ 3,k
Y3k
5%1-= 0 ¥ k
k

for the J(X + 1) + K unknowns: x, y, and X.

9B - x.n’ (y.,) C, A 0
= XLl . - X, =
0 4x J 3k 73k k“k%;
v.. = hi (coa)
jk jk Tk "k

(8)

(10)

Equation (9) gives

g , . . . .
and using the expression for hjk(ujk) given in (6), we obtain

_ B., +1
. Y.
Similarly, equation (8) gives
S o gix) ¢ ] hy(yy) = ) G ALYy =0
x5 7373 T3k Tk g TRTkTIk

»
l
{
Q
AN
—
NN
A ~1
a
-
-
~
o
.
o~
jny
.
o~
-
.
~
S




where g5—1 is the inverse of the partial derivative with respect

to xj of the function gj(xj). Using the expression for gj(xj)

given in (5), and the solution for yjk’ we obtain

-1

o.+1
x. = X. . 2
3 3(“3) j (12)

where “j is a weighted sum
My = E Cijijk/ g Cie¥ 5k (13)

of the terms
B.

jk
_ B..+1 _
ij = ((Bjk + 1))\k jk 1)/Bjk . (14)

It remains to solve equation (10) for the Lagrange multipliers

A. Substituting the results of equations (11), (12) we obtain

fk(k A AL) = £.(A) =0 ad (15)

17727 °7K k

where

-1 -1
- _ Rik+1 a.+1
£,.()) R, + % ijjk(Ak) (uj) J (16)

which must be solved by a numerical technique such as the multi-
dimensional extension of the Newton-Raphson method. In this method,
an approximate solution A yields an improved solution A according
to

) 3f, (A))-1

where {al}’{akﬁ} denote the vector, matrix with typical element



agray - Equation (17) can be used to derive successively improved
solutions until some convergence criterion is satisfied.

To show that equation (15) can be solved by the Newton-Raphson
method, we note first that we are seeking solutions within the

range,

because only such solutions for A will give solutions for x and y

satisfying

0 < x. < X. , 0 < y., < Y. ¥ j,k
j j Y3k ik J

Within this range of possible Ak’ the function fk(A) is analytic

and so also i1s its first derivative

BAQ 3 J ik "k J 8 K + 1 3
A Ve
k J
+ (18)
qj + 1 BAQ}
where
A A
k k
- =1 , =— =0 for k # %
axk BAR
and

e
¥

oU . C Y.
] 2734 .
BJR . (19)

(Ay)

A
9 % CQYjQ

Next we note that




A =1 ¥k o=D £ () =—Rk+]ZXijk
which is always positive for R, < 5 Xijk’ and that
xk > o ¥k ==4>fk(x) 5 —Rk
ka(x)
which is always negative. Finally we find that YV is always
2
negative between these points. From these facts it follows that

equation (15) has only one real solution for A in the range
Xk > 1, ¥ k, and that this solution can be found by the multi-
dimensional Newton-Raphson method.

This completes the solution of the model. When the Xk have
been found by numerical solution of (15), equations (11) and (12)
can be used to calculate x and y. A small computer program has
been written to perform this calculation, and the Newton-Raphson
procedure is found to converge rapidly. However, before this
program can be used, values are needed for the model parameters
o, B, X, ¥, C and R. In the next section, we consider how to

estimate these parameters.

3. ESTIMATION OF PARAMETERS

When all the model parameters o, B, X, Y, C and R are known,
the equations given in Section 2 can be used to solve for the model
variables x and y. First, however, values for these parameters

must be found.

The present treatment assumes that the costs Ck and avail-
abilities Rk of different resources are given exogenously. If
the model is being used to simulate historic situations, values
for these variables will be found in routine statistics. For
runs designed to simulate future situations, values may be given
by price or production models external to DRAM, or if such models

are not available, values may be chosen without difficulty by



the decision-maker. In the latter case, DRAM can be used to pre-
dict how resources will be used if they are available at pre-
scribed levels and prices. The costs C must be estimated by the
average or marginal costs at some arbitrary level of production.
In our illustrative examples we have assumed that this is satis-
factory on a national or regional planning level. Fortunately the
model uses only the relative costs of different resources, and

the price base of C is immaterial.

On the other hand, it is not easy for the decision-maker to
choose values for the elasticities o,8. Nor is this desirable
since the decision-maker will be tempted to choose values which
he would like to see realised. But in DRAM, the elasticities in-
dicate, not the decision-maker's preferences, but the actual be-
haviour of the HCS in allocating scarce resources. We assume
here, therefore, that o,f change little over some period of time
or in some region, and that they can be estimated from historic

data about the model variables x and y.

The same assumptions are made about the demand levels X,Y.
This is in spite of the fact that the potential numbers of patients
X might well be given by a morbidity model such as those of
Klementiev [10] and Kaihara et al, [11] and ideal guotas Y could
be defined by professional consensus. There are three reasons
for this. First, if morbidity models or professionals are not at
hand, it is not immediately obvious how to choose X,¥Y. Secondly,
it is not difficult to by-pass the estimation of X,Y if exoge-
nous values are actually available. Thirdly, the guantities X,
- Y and o,B are rather closely related in DRAM and it is important
that they be consistent. 1If exogenous estimates of X,Y are to
be used which are very different from the values estimated from
historic data, it may suggest that the values of a,8 estimated
from historic data are inappropriate, and that some different
estimates should be used.

The most easily obtained data with which to calibrate the
model are the model outputs: the actual numbers of patients
treated x, and the guotas of resources which they receive y.

Sometimes, however, other useful data is available. Feldstein



used 1968 data from the 14 regional hospital areas of England to
estimate how admission rates, length of stay in hospital, etc.
vary with changing resource supply [9]1. These empirical elas-
treities are closely related to the model elasticities o,8, and
were successfully used to calibrate DRAM Mark 1 [6]. Similar
methods are suggested below. Often, however, empirical elas-
ticities are not available without carrying out a major study.
For this reason, we show how to calibrate DRAM using only -some
observed data points X,y. When in addition empirical elasticity
data are available, they may be used either in calibration or for

comparison with the values implied by calibration on other data.

Our task is to estimate the parameters a, B, X, Y in order
to deduce what future values of x,y will follow from alternative
choices of C and R. It is convenient to solve the estimation
problem in three stages; first assuming that one or the other of the
pairs a,f and X,Y is known and need not be estimated, and then

combining the results for the case when both pairs are unknown:

Stage 1: «o,B are known. X,Y are to be estimated. Rearranging
equations (11), (12) gives ’

X. =x-(uj) J (20)

y (h, ) Bkt (21)

ik = Yik Me

If a single set of values for x and y are known, for example the
present distribution of resources in a particular region, these
equations can be used to find X and Y in terms of A. Unfortunately,
however, a single data point x,y does not give sufficient informa-
tion to solve for A. Figure 2 illustfates the problem for a single
disease category and resource. The curved lines define the possible
solutions for x and y, for two pairs X(i),Y¥(i), i = 1,2, when a

and B are known. By suitable choice of X(i) and Y(i), both lines

may pass through the known data point. Without knowing whether




X(1) X(2)

Figure 2. When o,B3 are known, a single data point

does not uniquely identify X and Y.

the data point is near to (X small) or far from (X large) the

maximum values X,Y, there is no unique solution for X,Y.

In order to constrain these K degrees of freedom in the

estimation problem, we assume that we can define the resources

needed to satisfy the ideal levels Xj'ij as some multiple 0

the resources used at the data point

X.Y.. =0 X ¥ k

) ik k ¥4k
] ]

Substituting equations (11), (12) in (22) gives
fk(X) =0 ¥ k

where

3 RB., +1 o.+1
Oy Z X:¥a, + % xjyjk(Xk) ik (uj) j

Hh

>

~
[

K of

(22)

(23)




~

and where (23) must be solved for A. The equations in f are very simi-

lar to equations (15) in f, and provided that 6, > 1 ¥k, and that

all the terms except A are known, they may be zolved in the same
way to give A. Unfortunately not all the terms are known. 1In
particular, uj is a weighted average involving the terms ij,
which as yet are unknown. An appropriate iterative solution

scheme which overcomes this problem is outlined in Stage 3.

Stage 2: X,Y are known. «a,B are to be estimated. Rearranging

equations (11), (12) gives
X.
a. = 1n(u;)/ln|=L] - 1 (24)
J J X.
J
Y3k
Bjk = 1n(xk)/ln yjk -1 . (25)

If a single set of values for x and y are known, these equations
can be used to find o and B in terms of A. Again, however, A
remains undetermined. Figure 3 illustrates that the difficulty
is in knowing the shape of possible solution lines OA in the xy
space. We do know, however, that a and B are always positive,

and equations (24), (25) then imply that

’

X, Y.
A, > A, = max{|—L ~Jk (26)
3 \*3) Y3k

A priori, large elasticities are unlikely, and Ak might be defined

as some (small) multiple ¢k > 1 of the minimum value Ak

Ak = ¢kxk ¥ k . (27)

Another way of estimating «,B is to use empirical elasticity

data such as

ij = the elasticity of the admission rate xj to changes in

the resource level Rk;



—p

X

Figure 3. When X,Y are known, a single point does
not uniquely identify o and B.

njlk = the elasticity of the standard yjz to changes in the
resource level Rk.

These empirical elasticities, which sometimes come from other

studies, may be expressed in terms of the model elasticities a,RB.
For example, ij is

2 1n x. o 1n xj IV

J _ i
Yay = = = 2 . c R
Jk 3 1n Rk H Sui BRk k

and using equation (11) to give an expression for along/aui
gives

Y. = . . (28)
k C + 1) u. R
J (aJ )u] 0



Similarly
9 1n y. 3 1ln vy. A,
b L R ol L R
jilk 9 1n R oM. dR ¥
k i i k
gives
SN ) . (29)
jak Tng + 1))\2 aRk

In these expressions, the partial derivatives auj/aRk may be ex-

pressed in terms of the partial derivatives BAR/BRk by writing

B Bu. 9\
Fil Ay vl — (30)
k&% R,

in which equation (19) may be used to substitute for auj/axﬂ. It

remains to find BAR/BRk. Writing equations (16) in the form

we may differentiate to obtain

BRk _ Bfk(K)

axg BAR

at the value of X for which fk(A) in zero. But regarding fk(A)

simply as a function of A we have

Bfk(A) _ Bfk(A) .

BXQ BAR



It follows therefore that

Ny {aRk ol gafk(x) -1
IR, |3%, oA,

These are the same derivatives that arise in the solutions of equa-
tion (15) by the Newton-Raphson technique, and they are easily

calculated.

Although it is easy to express Y,n in terms of a,B, it is im-
possible to express a,8 in terms of Y,n. This is because the
various partial derivatives in these formulae depend upon «,B in
such a way that they cannot be inverted. This problem arose in
DRAM Mark 1 and was successfully overcome by writing equations for

aj’Bjk in the form

] M50k™ g k
-1
- T +1 £ \-
" €Yy Byt 250\
s AT ) ) C.Y.) (Ag) AR, (32)
S IS S T
and by using an iterative method of solution. In the present case,
of , \-1
values of <§§&) may be derived from initial estimates of o and 8.
k

Equations (31), (32) may then be used to improve these estimates.
Note, however that the estimates of a,B derived from y,n are like those
derived from a single data point in that they still depend upon

an unknown A, We cannot dispense with a condition such as equa-

tion (22).

There are three technical problems associated with the use
of the empirical elasticities Y,n to estimate the model elastici-

ties a,B. The first problem is that equation (31) gives not just



one value for Bj but K valueg Which correspond to the K elasti-

k!
ij27 Migke
mation of aj. However, it is likely that reliable cross-elasticity
will be better

cities nij1,n A similar problem arises in the esti-

data nj%k’g # k, will be unavailable, and that ij
known for some resource type k = £ than for the others. Then

aj’Bjk may be estimated from njkk and Y., alone.

32
The second problem is that the empirical elasticities must
be consistent with the ideal levels X,Y. To see why this must

be so, differentiate equation (1)

L ®5¥g, T Ry (1)
J
with respect to Rk to give
oy .. X
_~Jk s
M EE + Y., wer | =1 ¥ k
3 8Rk jk BRk
and use the definitions of ij and njzk to give
, _ Rk ) dX. ; _ Rk . ay.g
- - ’ . = J
jk xj BRk ik ng BRk

Combining these results gives

) = R ¥ k,%

Loxg¥yp (Vg + mygy K

J

and substituting the equations for xj)ng (11), (12) gives

-1 -1
a.+1 Bj2+1

(Yix * Nyex) T By

7k, . (33)



If X,Y are given excgenocusly, this equation will generally not
be satisfied during the iterative estimation of a,8, and the
procedure may not converge. A natural solution is to scale the

elasticities at each iteration so that equation (33) 1is satisfied.

The third problem is that of finding suitable initial values
of a,B with which to start the iterative estimation. Again fol-

lowing the previous approach [6] we expect(aj-+ 1) to be of the same

order of magnitude as (ij)"1, and (Bjk + 1) to be of the same

order of magnitude as (njﬁk) . This suggests that suitable
initial values will be
a. = 5max Y. -1 1 , B., = {max n. -1 -1 .
J K Jk jk . itk
Stage 3: a, B, X, Y are all to be estimated. It is now clear

that to estimate both pairs of model parameters o,8 and X,Y, either
two different data points, or one data point plus the empirical
elasticities are needed. In either case the estimation problem
has two degrees of freedom for each of the K resource types, which
represent uncertainty about the scale and shape of solutions in
the x,y space. Because empirical elasticity data is not always
available, we henceforth consider only how to estimate the model
parameters given two different data points. The appropriate pro=-
cedure when empirical elasticity data is available is similar

to that described previously [6]. We assume for simplicity that
the resource costs C are the same at both data points, although

this condition can easily be relaxed.

Two data points x(1),y (1) and x(2),y(2) are related by four

equations, for each of all possible values of j and k

(34)
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(36)

+1

= B.
Y (2) = vy Oy (2)) Pik (37)

It is natural to choose the Lagrange multipliers at each point,
A(1) and A (2), as the 2K degrees of freedom which we must con-
strain. Once these multipliers are known, equations (34)-(37) may
be readily solved for the known parameters. Appropriate additional
constraints may be applied as in earlier stages. Suppose that

(2). Then equation (15) ensures that X (1)

k k
> Ak(2), and equations (24),(25) will give positive values for

for some k, Rk(1) < R

Bjk only if
A (1) Y., (2)
k _ k
T @ Tk T (38)

where ¢k > 1 is some small multiplier. With this result, Bjk can
be found directly from equations (35),(37). If also it is possible
to define the resources needed to satisfy the ideal levels Xj'ij
as some multiple Ok of the resources used at one of the data

points

X.Y., = 0, ) x.(1)y., (1 ¥ k

)} ¥ 5% kl. 3()ij()
J ]

then equations (23) define values for Ak(1), but only, as noted

earlier, if all the parameters are known. This suggests the fol-

lowing iterative scheme for estimating a, R, X, Y.

a) Use equation (38) to define the ratios Ak(1)/Ak(2) ¥ k.
Divide equation (35) by (37) and solve for B.

b) With some arbitrary value for A(1), use equation (35)
to find Y. Equation (13) can then be used to find
p(1) and p(2), and equations (34) and (36) then give

a and X.



c) Use these parameters to solve equation (23) for im-
proved values of X (1) and repeat from b) until con-

vergence.

This completes the anlysis of parameter estimation in DRAM.
An important feature of the analysis is that the estimates of
«,B,X,Y depend strongly upon the additional constraint variables
0,9, both of which are somewhat arbitrary. Fortunately, this is
not a problem. Although different values of 0,¢ lead to different
values for «,B8,X,Y, each set of parameter values will reproduce
the data points used for estimation. Provided that predictive
runs of the model do not involve resource levels very different
from those used in estimation, the results are relatively insen-
sitive to 0,4. Our illustrative examples show that the precision
of model predictions is much better than the likely accuracy of

the data used for parameter estimation.

A second small computer program has been written to imple-
ment the iterative estimation procedure proposed above, and when
it converges, it generally does so rapidly. However, convergence
cannot be guaranteed, because the structure of the model neces-
sarily limits the set of possible data points. When the estima-
tion procedure does not converge, it implies that the data are
inconsistent with the model and that either the data or the model
hypothesis is suspect. The next section gives the results of

using real data in the estimation procedures described above.




4., ILLUSTRATIVE EXAMPLES

To illustrate how the model can be used, we shall present

three hypothetical examples of HCS resource allocation problems.

Example 1

The first example is designed to compare the parameter esti-
mation procedures derived in Section 3, with those developed
previously for DRAM Mark 1. Consider the allocation of acute
hospital bed-days in the South Western Region of England between
patients suffering from six diseases: varicose veins, haemor-
rhoids, ischaemic heart disease (excluding acute myocardial in-
farction), pneumonia, bronchitis and appendicitis. In this prob-
lem there is a single resource (beds), and six patient categories
corresponding to the six diseases. Table 1 gives the numbers
of patients admitted to hospital in 1968 with these diseases,
and their average lengths of stay [12]. Gibbs used these data,
together with the empirical elasticities of Feldstein [9] and
exogenous estimates of the ideal levels X and U, to calibrate a
predictive resource allocation model for the South Western

Region [2].

Here we repeat this exercise. However, we estimate the
model parameters, not using Feldstein's results, but with the
other data given in Table 1: the actual admissions and lengths
of stay in 1973 [13]. The assumption underlying this alternative
approach to parameter estimation is that the model parameters,
and especially the numbers per head of population who need treat-
ment X, do not change with time. The admission figures in Table
1 have therefore been corrected for population age-structure
changes between 1968 and 1973 which could invalidate this assump-

tion.

Table 1 gives a set of model parameters estimated from this
data. Table 2 tabulates the corresponding model outputs for the
resource levels in Table 1 and for a resource level of just 800
bed-days. We find that it is impossible to calibrate a model
which exactly reproduces the 1973 data. We have had to assume
therefore that the increasing average length of stay for vari-

cose velins is caused by a data anomaly. (The medZan length of
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stay decreases.) We have also assumed that the increasing num-
bers of patients with heart disease reflects a true increase in

morbidity which we have excluded from the model.

The allocation when just 800 bed-days are available may
be usefully compared with similar predictions in [2: Table 6].
The average difference is about 17%, which is reasonable in an
illustrative run. In a real application, one could use both
methods of parameter estimation together with other years' data
in order to calibrate a more precise model. In particular one
would want to investigate the differences between the two sets
of elasticities to see which are likely to be most appropriate:
those estimated from historical cross-sectional surveys or those

estimated from the recent dynamic behaviour of the HCS.

Example 2

The second example is designed to illustrate as simply as
possible the concept modelled by Mark 2. of DRAM. Table 3 shows
the numbers of patients admitted to hospitals in Czechoslovakia
in 1975 in three specialties: interni” (general medicine),
chirurgicky (general surgery), and Zensky (obstetrics and gynaeco-
logy). Also shown is their average length of stay and the average
number of doctor-days (all grades) per patient. The two sets of

figures are for two neighbouring areas of Czechoslovakia.

We immediately observe that area A has high average lengths
of stay and low doctor ratios, while area B has the opposite.
It is interesting to consider for example how the HCS in area A
would make usé of doctors if they were available at the levels
in area B. Making the assumption that elasticities and demands
are the same in the neighbouring areas, we estimate the model
parameters given in Table 4, which give the typical results of
Table 5. For simplicity we assume that the costs of the two

resources are the same.

Again, it is not possible to reproduce exactly the input
data of Table 3, but the agreement is very close. The elastic-

ities of lengths of stay to changing bed numbers are all higher
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than the corresponding staff parameters, and the model results
are much more sensitive to the supply of beds than to doctors.
Therefore, when we simulate an increase of doctors in area A4,
we observe relatively small changes. After a more careful
estimation of the model parameters, a health planner might be
able to use such a model to compare alternative policies for

expanding care in area A.

Example 3

The last example also considers the allocation of beds and
doctors, but using data from the South Western Region of England.
Table 6 presents historic allocation data from 1968 and 1973 [14,
15] for the seven largest acute hospital specialties: general
surgery, general medicine, obstetrics and gynaecology, trauma
and orthopaedic surgery, ENT, paediatrics, and ophthalmology. For
this example, we have tried to estimate more accurately the rela-
tive costs of beds and doctors. First, we assume that at a
national or regional planning level, marginal costs will be well
approximated by average costs. In other words, we assume that
the aggregate of the production functions of the many different
production units in the HCS will be approximately linear. Most
of the average cost of a doctor is incurred by salaries and wages,
which were approximately £5900 per doctor per year (all grades)
in 1973/74 [15]. We associate all of the remaining current ex-
penditure on acute care with acute beds at a rate 6f about £3780
per available bed per year. It is this apportionment of costs
which actually defines the two resources for the model. For example,
the figures given above define a "bed" as including all associated
costs except doctoring, and any model results should be inter-

preted in this light.

Unfortunately, however, the data given in Table 6 are insuf-
ficient to derive a useful model. Although parameters can be
estimated that will reproduce the input data, the ay for some
specialties must be negative. The implication is either that two
years' data are unrepresentative, or that morbidity, ideal levels

of care, or elasticities are changing with time. The structure



Table 6. Example 3--Historic resource allocations,

——

| R = 940.7 bed-days, R = 782.2 bed-days (3)
Specialty (1968) 104.1 doctor-days (1973) 125.9 doctor~days
Admission Stay Doctors Admissions Stay Doctors
General Surgery 19.6 9.5 1.14 17.3 8.3 1,27
General Medicine 12.3 14.2 1.55 12.4 11.4 1.79
Obstet./Gynae. 1) 33.1 7.5 0.59 35.0 6.2 0.67
T&0 Surgery 7.1 17.9 1.28 7.4 15.0 1.48
ENT 5.8 5.2 0.74 4,1 4.3 1.22
Paediatrics (2) 15.4 9.7 1.67 19.0 7.1 1.92
Ophthalmology 2.4 10.1 1.68 1.8 8.6 3.18

(1) Population divisors exclude males.
(2) Population divisors exclude adults.

(3) Relative costs of doctors: beds assumed to be 1.57:1 (see text) 1973.

of the model sufficiently general that this could be tested by
using other sub-regional data or other categorizations; for
example, diagnostic categories or age categories. Alternatively,
perhaps the in-patient treatment modelled by DRAM Mark 2 is
affected by changes in out-patient treatment. This could be

shown by the full version of DRAM proposed in Section 1.

5. CONCLUSION

The user of DRAM Mark 2 is able to explore a wider range of
planning issues than with DRAM Mark 1. 1In particular, he may
study the consequences of changing the mix of several different
resources within a single mode of health care. The examples given
in Section 4 illustrate possible applications in acute in-patient
treatment, but the model should be equally applicable in other

care sectors where a single patient needs many resources.



HCS,

In the future we hope

to develop more general versions of DRAM, and in particular
a Mark 3 version, to include substitution between alterna-

tive treatment modes,

to develop more general methods of parameter estimation
using both cross-sectional (or sub-regional) and longitu-

dinal (or time series) data.

Such work would give a more accurate representation of the

and would be more useful to health care planners. It is

also likely to involve more complicated mathematics for model

solution and parameter estimation. We hope, however, to be able

to retain a solution procedure which uses Lagrange multipliers

rather than other optimization methods. In this way, DRAM will

continue to be easily transferable and useful to scientific

groups outside IIASA.
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