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Abstract 

We study optimal research and extraction policies in an endogenous growth model 
in which both production and research require an exhaustible resource. It is 
shown that optimal growth is not sustainable if the accumulation of knowledge 
depends on the resource as an input, or if the returns to scale in research are 
decreasing. The model is stated as an infinite‐horizon optimal control problem 
with an integral constraint on the control variables. We consider the main 
mathematical aspects of the problem, establish an existence theorem and derive an 
appropriate version of the Pontryagin maximum principle. A complete 
characterization of the optimal transitional dynamics is given. 
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Optimal Endogenous Growth
with Exhaustible Resources

Sergey Aseev, Konstantin Besov and Serguei Kaniovski

1 Introduction

Endogenous growth theory identifies technological progress as a means of sustaining eco-
nomic growth despite the reliance on exhaustible resources as inputs to production. The
supply of an exhaustible resource will limit growth in the long run, unless the economy
can either substitute away from the resource or increase the efficiency of the resource’s
use to offset its scarcity. The question is then: Can an optimal research and extraction
policy compensate for negative effects on production (consumption) which arise due to
scarcity of the exhaustible resource?

Our point of departure is the model by Jones [18, 19]. In this two-sector endogenous
growth model the production sector yields output that is consumed, while the research
sector augments the productivity of the production means. There are constant returns
to scale in production, and either weak or strong scale effects in the research sector. We
assume that both the production of output and the generation of knowledge depend on
an exhaustible resource as an input. For the sake of simplicity we consider a constant
population (total labor supply) that can be shifted between production and research.

We show that optimal growth is sustainable only if the accumulation of knowledge has
constant returns to scale (strong scale effects) and does not depend on the exhaustible
resource. While the requirement of strong scale effects is well-known in the literature1,
the requirement of the research sector being independent of the exhaustible resource is
a new result. We see sustainable (or continuing) growth as a welfare-maximizing output
trajectory having perpetual positive growth, where the welfare is measured by a discounted
logarithmic utility function.

The model is presented as an infinite-horizon optimal control problem whose solution
is a welfare-maximizing dynamic research and extraction policy. Formulating the model as
an optimal control problem allows us to derive model-consistent policy recommendations,
as opposed to describing the economy either in a dynamic equilibrium, or on a balanced
growth path only.

We offer a complete and rigorous inquiry into the existence of an optimal solution
and formulate an appropriate version of Pontryagin’s maximum principle. The problem

1Jones’s critique generated academic interest in endogenous growth models that generate a steady-
state with positive growth without strong scale effects. See, e.g., [10, 18, 22, 27].
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is non-standard in that it involves an integral constraint on control variables. Integral
constraints naturally arise in growth models in which an exhaustible resource is an input,
as the amount of the resource extracted cannot exceed a finite stock of the resource
initially available to an economy.

The paper is organized as follows. In Section 2 we specify the model as an infinite-
horizon optimal control problem with an integral constraint on the control variables. In
Section 3 we discuss some mathematical aspects of the problem. Section 4 is devoted
to reducing the problem to an equivalent problem without any integral constraints. In
Section 5 we establish an existence result for an auxiliary optimal control problem and
derive an appropriate version of the Pontryagin maximum principle for the auxiliary
problem, which automatically implies the existence of an optimal solution and a version
of the Pontryagin maximum principle for the initial problem. In Section 6 we apply this
result in order to determine an optimal research and extraction policy. Section 7 draws
conclusions.

2 The model

At every instant t ∈ [0,∞), the economy produces output Y (t) > 0, which is assumed to
be described by a Cobb–Douglas production function:

Y (t) = A(t)κ[L − LA(t)]αR1(t)
1−α where α ∈ (0, 1) and κ > 0. (1)

Here A(t) > 0 is the current knowledge stock and R1(t) > 0 is the quantity of the
exhaustible resource used in production. The population (total labor supply) is fixed at
L > 0. Part of the labor L − LA(t) is employed in production, while the other part
LA(t) ∈ [0, L) is allocated to research.

The amount of new knowledge produced at time t depends on the hitherto accumulated
knowledge, the number of researchers and the portion of the exhaustible resource used in
research:

Ȧ(t) = A(t)θ[LA(t)]ηR2(t)
1−η where η ∈ (0, 1] and θ ∈ (0, 1]. (2)

Here R2(t) ≥ 0 is the quantity of the exhaustible resource used in research; typically R2(t)
is small compared to R1(t). The initial knowledge stock is given by A(0) = A0 > 0. If
θ ∈ (0, 1), then growth rate of the knowledge stock decreases while the knowledge stock
expands. The case of θ < 0—when the expansion of knowledge is progressively more
difficult—has also been considered in the literature (see, e.g., [19]). Empirical evidence
supports the idea of weak scale effects, i.e. θ < 1, in the production of knowledge. We
retain θ = 1 as a special case of strong scale effects.

The fact that the stock of the exhaustible resource is finite imposes the following
integral constraint on the controls R1(·) and R2(·):∫ ∞

0

[
R1(t) + R2(t)

]
dt ≤ S0, (3)

where S0 > 0 is the initial supply of the exhaustible resource.
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We take a discounted logarithmic utility function of the output as a measure of welfare.
This leads to the following objective functional for the economy (see (1)):

J(A(·), LA(·), R1(·)) =

∫ ∞

0

e−ρt
{
ln[Y (t)]

}
dt

=

∫ ∞

0

e−ρt
{

κ ln A(t) + α ln[L − LA(t)] + (1 − α) lnR1(t)
}

dt,

where ρ > 0 is a subjective discount rate. Maximizing the discounted output is equivalent
to maximizing the discounted output per capita, as the population is constant.

Given the parameters θ ∈ (0, 1], α ∈ (0, 1), κ > 0, η ∈ (0, 1], ρ > 0, L > 0 and S0 > 0,
the optimization problem J(A(·), LA(·), R1(·)) → max, subject to equation (2) and the
resource constraint (3), can be formulated as the following infinite-horizon optimal control
problem (P):

Ȧ(t) = A(t)θ[LA(t)]ηR2(t)
1−η, (4)

LA(t) ∈ [0, L), R1(t) > 0, R2(t) ≥ 0,

∫ ∞

0

[
R1(t) + R2(t)

]
dt ≤ S0, (5)

A(0) = A0 > 0, (6)

J(A(·), LA(·), R1(·)) =

∫ ∞

0

e−ρt
{
κ ln A(t) + α ln[L−LA(t)] + (1−α) lnR1(t)

}
dt → max .

(7)

By an admissible control w(·) : [0,∞) → R
3 in problem (P) we mean a triple w(·) =

(LA(·), R1(·), R2(·)), t ≥ 0, of (locally) bounded measurable functions LA(·), R1(·) and
R2(·) each of which is defined on the infinite half-open time interval [0,∞) and satisfies
the respective constraints in (5).

An admissible trajectory A(·) : [0, τ) → R
1, τ > 0, corresponding to an admissible

control w(·) is a (locally) absolutely continuous function A(·) which is a (Carathéodory)
solution (see [11]) of the differential equation (4) on some (finite or infinite) time interval
[0, τ), subject to the initial condition (6).

Due to (4) and the integral constraint in (5), for any admissible control w(·) =
(LA(·), R1(·), R2(·)) the corresponding admissible trajectory A(·) can be extended to the
whole infinite interval [0,∞). Consequently, in what follows, without loss of generality,
we always assume that any admissible trajectory A(·) is defined on [0,∞).

A pair (A(·), w(·)), where w(·) is an admissible control and A(·) is the corresponding
admissible trajectory, is called an admissible pair (or a process) in problem (P).

For any admissible pair (A(·), w(·)) the improper integral in (7) converges either to −∞
or to a finite real. Moreover, it is uniformly bounded from above; i.e., there is a number
M ≥ 0 such that

sup
(A(·),w(·))

∫ ∞

0

e−ρt
{

κ ln A(t) + α ln[L − LA(t)] + (1 − α) lnR1(t)
}

dt ≤ M, (8)

where the supremum is taken over all admissible pairs (A(·), w(·)).
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Indeed, due to the integral constraint in (5), for any admissible control w(·) we have

∫ ∞

0

e−ρt ln R1(t) dt <

∫ ∞

0

e−ρtR1(t) dt < S0. (9)

Further, for an arbitrary admissible trajectory A(·) we have

A(t)θ ≤ A(t) + 1, t ≥ 0.

Then, due to (4), we obtain

d

dt
ln(A(t) + 1) =

Ȧ(t)

A(t) + 1
≤ LηR2(t)

1−η, t ≥ 0,

and hence

ln(A(t) + 1) ≤ ln(A0 + 1) + Lη

∫ t

0

R2(s)
1−η ds ≤ ln(A0 + 1) + Lη

∫ t

0

(1 + R2(s)) ds

< ln(A0 + 1) + Lη(t + S0), t ≥ 0. (10)

This inequality immediately implies the following inequality for an arbitrary admissible
trajectory A(·):

∫ ∞

0

e−ρt ln A(t) dt <

∫ ∞

0

e−ρt ln(A(t) + 1) dt <
ln(A0 + 1) + LηS0

ρ
+

Lη

ρ2
. (11)

Since LA(t) ∈ [0, L), t ≥ 0 (see (5)), inequalities (9) and (11) provide the following
uniform estimate for all control processes (A(·), w(·)):

∫ ∞

0

e−ρt
{

κ ln A(t) + α ln[L − LA(t)] + (1 − α) lnR1(t)
}

dt

< κ
ln(A0 + 1) + LηS0

ρ
+

κLη

ρ2
+

α lnL

ρ
+ (1 − α)S0.

This furnishes the proof of inequality (8).
The uniform bound (8) allows us to define an optimal control w∗(·) : [0,∞) → R

3 in
problem (P) as a welfare-maximizing triple w∗(·) = (LA

∗ (·), R1∗(·), R2∗(·)) of dynamic labor
and extraction policies adopted in the research and production sectors. The corresponding
trajectory A∗(·) is an optimal admissible trajectory.

When the Hamiltonian is concave, some problems of this type can be examined by
means of a well-known set of sufficient conditions [1,23]. However, the success of such an
approach crucially depends on the analytical tractability of the conditions of the maximum
principle.

In our analysis we follow the approach based on necessary conditions and an existence
theorem. This approach is more systematic. It applies to a wider range of problems
for which the existence of a solution can be shown. It should be stressed that without
an existence theorem one cannot be sure that a path satisfying the necessary conditions
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exists, or that one of the paths satisfying the necessary conditions is indeed a solution (see
the discussion in [21]). We follow this general approach by first establishing an existence
result and then deriving appropriate necessary conditions—a version of the Pontryagin
maximum principle—for the problem under study. As a result we obtain a rigorous
characterization of all optimal processes in (P).

To the best of our knowledge, this is the first rigorous study of an endogenous growth
model with integral constraints on control variables which is based on the application
of necessary optimality conditions, although integral constraints on control variables are
typical of a class of models in the resource and growth literature. Examples include models
in the tradition of [17], [9] and [25]. 2

3 Preliminary discussion

The formulated optimal control problem (P) (see (4)–(7)) is nonstandard in the sense that
it is not completely embedded in the framework of the modern optimal control theory.

Problem (P) is formulated on the infinite time interval [0,∞). The infinite time
horizon gives rise to specific mathematical features of the Pontryagin maximum principle.
The most characteristic feature is that the adjoint variables (shadow prices) may exhibit
pathological behavior in the long run (see examples of this phenomenon in [5,13,24]). This
fact prevents us from applying “näıve” infinite-horizon analogs of the classical Pontryagin
maximum principle [20] designed for processes of finite duration.

There exist modifications of the Pontryagin maximum principle for infinite-horizon
optimal control problems that pay attention to the above-mentioned possible pathological
behavior [4–7,23]. Yet problem (P) fails to satisfy the assumptions imposed in them due
to an integral constraint on the controls R1(·) and R2(·). To the best of our knowledge, a
version of the Pontryagin maximum principle for infinite-horizon optimal control problems
with integral constraints on control variables has not yet been established.

Note that we can lift the integral constraint in problem (P) by introducing an addi-
tional state variable subject to a state constraint. Indeed, consider the following optimal
control problem (Q):

Ȧ(t) = A(t)θ[LA(t)]ηR2(t)
1−η, Ṡ(t) = −R1(t) − R2(t),

LA(t) ∈ [0, L), R1(t) > 0, R2(t) ≥ 0,

S(t) ≥ 0 for all t ≥ 0, (12)

A(0) = A0 > 0, S(0) = S0 > 0,

J(A(·), LA(·), R1(·)) =

∫ ∞

0

e−ρt
{
κ ln A(t) + α ln[L−LA(t)] + (1−α) lnR1(t)

}
dt → max .

In the above problem S(·) is an additional state variable representing the current stock of
the exhaustible resource. Obviously problem (Q) is equivalent to the original problem (P).
Problem (Q) involves state constraint (12) instead of an integral constraint. However, this

2For a survey, see [12]. Basic models are discussed in an easily accessible style in [26].
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fact does not make the formal treatment of problem (Q) simpler than that of (P). Even
in the case of a finite horizon, general versions of the Pontryagin maximum principle
for problems with state constraints (see, for example, review [15]) involve measures or
functions of bounded variation as adjoint variables. This general nature of adjoint vari-
ables considerably complicates the application of the maximum principle and may lead
to additional difficulties (see, for example, [2]). As regards infinite-horizon optimal con-
trol problems with state constraints, an appropriate version of the Pontryagin maximum
principle for such problems has not been established.

Thus, regardless of whether it is treated as problem (P) with an integral constraint
on the control variables or as problem (Q) with a state constraint, our model is not
completely embedded in the framework of modern optimal control theory.

Also note that, since the range of the controls R1(·) and R2(·) in the statements of both
problems (P) and (Q) is unbounded, we cannot directly appeal to the standard results on
existence of an optimal control in the class of locally bounded measurable functions (such
results usually rely on pointwise boundedness conditions; see, for example, [8]). When
the admissible control set is unbounded, the integral constraint can, under appropriate
conditions, guarantee the existence of an optimal control, but only in a more general class
of impulse controls. This is the case even if the welfare functional is bounded on the set
of admissible pairs. We illustrate this phenomenon with the following simple example:

Example. Consider the optimal control problem

Ẏ (t) = R(t), Y (0) = Y0 > 0, (13)

R(t) ≥ 0,

∫ ∞

0

R(t) dt ≤ S0, (14)

J(Y (·)) =

∫ ∞

0

e−ρt lnY (t) dt → max . (15)

Here S0 > 0 is the initial supply of a resource. Since the aim is to optimally exhaust a finite
resource S0, we may think of the above problem as an infinite-horizon cake-eating problem
for an increasing and concave utility function of consumption. As intuition would suggest,
costless extraction and a positive discount rate must lead to an instantaneous exhaustion.
Below, we show that the solution is indeed an impulse R∗(t) = S0δt(0), where δt(0) is
the Dirac delta (the Dirac measure concentrated at 0). The character of the solution
precludes the application of Pontryagin’s maximum principle for infinite-horizon optimal
control problems, which requires the solution to be a locally bounded measurable function
(see, for example, [3–5]).

To see why there is no optimal control in the class of locally bounded measurable
functions in problem (13)–(15), note that if R(·) were such a control, then for the cor-
responding admissible trajectory Y (·) we would have Y (t) ≤ Y0 + S0 for all t ≥ 0 and
Y (t) < Y0 + S0 on a set M ⊂ [0,∞) of positive measure. Hence,

∫ ∞

0

e−ρt ln Y (t) dt <
1

ρ
ln(Y0 + S0).

On the other hand, the sequence of admissible controls {Rk(·)}, with Rk(t) = kS0 for
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t ∈ [0, 1/k] and Rk(t) = 0 for t > 1/k, k = 1, 2, . . . , is a maximizing one, as

∫ ∞

0

e−ρt ln Yk(t) dt =

∫ 1/k

0

e−ρt ln
(
Y0 + kS0t

)
dt +

e−ρ/k

ρ
ln(Y0 + S0) →

1

ρ
ln(Y0 + S0)

as k → ∞. Hence, there is no optimal admissible control in the class of locally bounded
measurable functions in problem (13)–(15), while an impulse control R∗(t) = S0δt(0),
where δt(0) is the Dirac delta, is an optimal impulse control in problem (13)–(15).

In the next two sections we overcome the difficulties arising from the presence of an
integral constraint on the control variables and unboundedness of the admissible control
set in problem (P) by reducing problem (P) to an auxiliary problem (P1), and then
to (P1′), without integral (and state) constraints. This allows us to prove an existence
result and apply a version of the Pontryagin maximum principle developed in [4, 5] for
problems with dominating discount.

4 Reduction to a one-dimensional problem without

integral constraints

Let us introduce a new state variable x(·) : [0,∞) → R
1 and new control variables

u(·) : [0,∞) → (0,∞) and v(·) : [0,∞) → [0,∞) as follows:

x(t) =
S(t)1−η

A(t)1−θ
, u(t) =

R1(t)

S(t)
, v(t) =

R2(t)

S(t)
, t > 0. (16)

Here, as in problem (Q) above, the state variable S(·) represents the current supply of the
exhaustible resource. This variable is a (Carathéodory) solution to the following Cauchy
problem (for given admissible controls R1(·) and R2(·)) on [0,∞):

Ṡ(t) = −R1(t) − R2(t), S(0) = S0. (17)

Note that the case η = θ = 1 is not excluded, although in this case the new variable
x(·) degenerates into a constant. This case can easily be analyzed directly, but we include
it in our general scheme to save the space. Below we show that for η = θ = 1 the
problem reduces to a zero-dimensional problem, i.e. to a problem in which the utility
function depends only on the controls and does not depend on the state variables (hence
the control variables take constant values maximizing the utility function at each moment
in time).

Note also that S(t) > 0 for all t > 0, so the quantities u(t) and v(t) are well defined
for all t > 0. Indeed, if S(τ) = 0 for some τ > 0, then S(t) = 0 for all t > τ and hence
R1(t) = R2(t) = 0 for t > τ , which is precluded by (5). Moreover, u(·) and v(·) are locally
bounded measurable functions since Ri(·), i = 1, 2, is locally bounded and measurable
and S(·) is positive and continuous.
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Since x(·) is a (locally) absolutely continuous function, we can calculate its derivative
a.e. on [0,∞):

ẋ(t) = (1 − η)
Ṡ(t)

A(t)1−θS(t)η
− (1 − θ)

Ȧ(t)S(t)1−η

A(t)2−θ

= −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)
A(t)θ[LA(t)]ηR2(t)

1−ηS(t)1−η

A(t)2−θ

= −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)[LA(t)]ηv(t)1−ηx(t)2.

Thus, x(·) is a Carathéodory solution of the differential equation

ẋ(t) = −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)[LA(t)]ηv(t)1−ηx(t)2, t > 0, (18)

satisfying the initial condition

x(0) = x0 =
S1−η

0

A1−θ
0

. (19)

Now we express the functional J(A(·), LA(·), R1(·)) (see (7)) in terms of the new vari-
ables x(·), u(·) and v(·). Consider the first term in the integrand in (7):

∫ ∞

0

e−ρt ln A(t) dt =
ln A0

ρ
+

1

ρ

∫ ∞

0

e−ρt Ȧ(t)

A(t)
dt. (20)

This formula is valid for any admissible trajectory A(·) of problem (P). To show this, it
suffices first to integrate by parts on a finite time interval [0, T ] and then pass to the limit
as T → ∞: ∫ T

0

e−ρt ln A(t) dt =
ln A0 − e−ρT ln A(T )

ρ
+

1

ρ

∫ T

0

e−ρt Ȧ(t)

A(t)
dt. (21)

Due to (10) the integral on the left-hand side and the first term on the right-hand side
tend to the corresponding terms in (20). Further, Ȧ(t) ≥ 0, t > 0; therefore, e−ρtȦ(t)/A(t)
is integrable on [0, +∞) and the last term in (21) tends to the last term in (20).

Substituting Ȧ(t) from (4) into (20), we obtain∫ ∞

0

e−ρt ln A(t) dt =
ln A0

ρ
+

1

ρ

∫ ∞

0

e−ρt A(t)θ[LA(t)]ηv(t)1−ηS(t)1−η

A(t)
dt

=
ln A0

ρ
+

1

ρ

∫ ∞

0

e−ρt[LA(t)]ηv(t)1−ηx(t) dt.

Similarly,∫ T

0

e−ρt ln R1(t) dt =

∫ T

0

e−ρt
[
ln u(t) + ln S(t)

]
dt

=

∫ T

0

e−ρt ln u(t) dt +
ln S0 − e−ρT ln S(T )

ρ
+

1

ρ

∫ T

0

e−ρt Ṡ(t)

S(t)
dt

=
ln S0 − e−ρT ln S(T )

ρ
+

∫ T

0

e−ρt

[
ln u(t) − u(t) + v(t)

ρ

]
dt.
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Passing to the limit as T → ∞, we see that
∫ ∞

0

e−ρt ln R1(t) dt =
ln S0

ρ
+

∫ ∞

0

e−ρt

[
ln u(t) − u(t) + v(t)

ρ

]
dt,

where both sides may be −∞.
Thus, multiplying J(A(·), LA(·), R1(·)) by ρ and neglecting constant terms, we arrive

at the functional

J1(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ ln u(t) − (1 − α)[u(t) + v(t)]
}

dt. (22)

Now consider the following optimal control problem (P1) (see (18), (19) and (22)):

ẋ(t) = −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)[LA(t)]ηv(t)1−ηx(t)2, (23)

v(t) ∈ [0,∞), LA(t) ∈ [0, L), u(t) ∈ (0,∞), (24)

x(0) = x0,

J1(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ lnu(t) − (1 − α)[u(t) + v(t)]
}

dt → max . (25)

We say that a control w̃(·) = (LA(·), u(·), v(·)) : [0,∞) → [0, L) × (0,∞) × [0,∞) (which
is a triple of measurable functions) is admissible in problem (P1) if the functions u(·)
and v(·) are locally bounded. The corresponding trajectory x(·) : [0, τ) → R

1, τ > 0,
can obviously be extended to the whole infinite time interval [0,∞). So, without loss of
generality, we assume that any admissible trajectory x(·) is defined on [0,∞). A pair
(x(·), w(·)) where w(·) is an admissible control and x(·) is the corresponding trajectory is
called an admissible pair or a process in problem (P1).

Note that, structurally, problem (P1) is simpler than both problems (P) and (Q)
because problem (P1) contains neither integral constraints on the control variables, nor
state constraints. Problem (P1) is equivalent to problem (P) in the following sense:

Lemma 1. For fixed A0 and S0, there is a one-to-one correspondence between processes
(A(·), w(·)) in problem (P) and (x(·), w̃(·)) in problem (P1). Moreover, the corresponding
values of the objective functionals J(A(·), LA(·), R1(·)) and J1(x(·), LA(·), u(·), v(·)) are
related by a liner transformation of the form

J1(x(·), LA(·), u(·), v(·)) = ρJ(A(·), LA(·), R1(·)) + C, (26)

where C depends only on ρ, A0 and S0.

Proof. As shown above, any process (A(·), w(·)) = (A(·), LA(·), R1(·), R2(·)) in prob-
lem (P) generates a process (x(·), w̃(·)) = (x(·), LA(·), u(·), v(·)) in problem (P1), and
relation (26) is valid for these processes.
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Now, we show that any control process (x(·), w̃(·)) = (x(·), LA(·), u(·), v(·)) in prob-
lem (P1) corresponds to a control process (A(·), w(·)) = (A(·), LA(·), R1(·), R2(·)) in prob-
lem (P). First, using the controls u(·) and v(·), we determine S(·) as a unique solution to
the Cauchy problem

Ṡ(t) = −[u(t) + v(t)]S(t), S(0) = S0.

Since u(·) + v(·) is positive and locally bounded, we obtain a positive monotonically
decreasing function S(·) defined on [0,∞). Then we define R1(t) = u(t)S(t) and R2(t) =
v(t)S(t), t ≥ 0, which are locally bounded and satisfy the integral constraint in (5).
Finally, we find A(·) as a unique solution to the Cauchy problem

d

dt

[
A(t)1−θ

]
= (1 − θ)[LA(t)]ηv(t)1−ηS(t)1−η, A(0) = A0

if θ < 1, or as a unique solution to the Cauchy problem

d

dt

[
ln A(t)

]
= [LA(t)]ηv(t)1−ηS(t)1−η, A(0) = A0

if θ = 1. This is certainly possible because the right-hand side of each of these equations
is positive and locally bounded.

We thus have a process (A(·), w(·)) = (A(·), LA(·), R1(·), R2(·)) in problem (P). Pass-
ing from this process (A(·), w(·)) in problem (P) back to some process (x1(·), w̃1(·)) in
problem (P1) along the scheme described at the beginning of this section, we see that
w̃1(·) = w̃(·) and x1(·) satisfies the same Cauchy problem (18), (19) as x(·). There-
fore, by the uniqueness theorem for solutions of differential equations, x1(·) = x(·). This
proves the required one-to-one correspondence between the admissible processes in prob-
lems (P) and (P1). Since (26) holds for the processes (A(·), w(·)) and (x1(·), w̃1(·)), and
(x1(·), w̃1(·)) = (x(·), w̃(·)), we conclude that (26) is valid for (A(·), w(·)) and (x(·), w̃(·)).

As a direct consequence of Lemma 1 and estimate (8) we arrive at

Lemma 2. There exists a constant M1 > 0 depending only on ρ, L, A0 and S0 such that

sup
(x(·),w̃(·))

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ ln u(t) − (1 − α)[u(t) + v(t)]
}

dt ≤ M1,

where the supremum is taken over all admissible pairs (x(·), w̃(·)) in problem (P1).

Lemma 2 allows us to define an optimal control w̃∗(·) : [0,∞) → R
3 in problem (P1)

as a welfare-maximizing triple w̃∗(·) = (LA
∗ (·), u∗(·), v∗(·)). The corresponding admissible

trajectory x∗(·) is an optimal one in problem (P1).
To recapitulate, we have established that a process (A(·), w(·)) is optimal in prob-

lem (P) if and only if the corresponding process (x(·), w̃(·)) is optimal in problem (P1).
In the next section we formulate and prove two main theoretical results on which the
subsequent solution of the problem is based.
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5 Existence of an optimal control and Pontryagin’s

maximum principle

Denote

f(x, �, u, v) = −(1 − η)(u + v)x − (1 − θ)�ηv1−ηx2,

g(x, �, u, v) = κ�ηv1−ηx + αρ ln(L − �) + (1 − α)ρ lnu − (1 − α)(u + v),

x > 0, � ∈ [0, L), u > 0, v ≥ 0,

(27)

so that (23) and (25) become

ẋ(t) = f(x(t), LA(t), u(t), v(t)),

J1(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρtg(x(t), LA(t), u(t), v(t)) dt → max .

Let M(x, u, v, p) and M(x, p) be the current value Hamilton–Pontryagin function and
the current value Hamiltonian for problem (P1) in the normal form:

M(x, �, u, v, p) = f(x, �, u, v)p + g(x, �, u, v)

= −(1 − η)(u + v)xp − (1 − θ)�ηv1−ηx2p + κ�ηv1−ηx

+ αρ ln(L − �) + (1 − α)ρ lnu − (1 − α)(u + v), (28)

M(x, p) = sup
�∈[0,L), u>0, v≥0

M(x, �, u, v, p).

Here x > 0, � ∈ [0, L), u > 0, v ≥ 0 and p ∈ R
1.

Next, we formulate two important theorems (an existence theorem and a version of the
Pontryagin maximum principle for problem (P1)) that allow us to perform a qualitative
analysis of the solution to problem (P) (in Section 6). The proofs of these theorems
(together with all necessary auxiliary statements) constitute the rest of this section.

Theorem 1 (existence). There exists an optimal process (x∗(·), w̃∗(·)) in problem (P1).
The process (A∗(·), w∗(·)) corresponding to (x∗(·), w̃∗(·)) (in the sense of Lemma 1) is
optimal in problem (P).

Theorem 2 (maximum principle). Let (x∗(·), w̃∗(·)) = (x∗(·), LA
∗ (·), u∗(·), v∗(·)) be an

optimal process in problem (P1) and (A∗(·), w∗(·)) be the corresponding (in the sense
of Lemma 1) optimal process in problem (P). Then there exists a current value adjoint
variable p(·) such that the following conditions hold :

(i) The process (x∗(·), w̃∗(·)), together with the current value adjoint variable p(·),
satisfies the core relations of the Pontryagin maximum principle in the normal form on
the infinite time interval [0,∞):

ṗ(t) = ρp(t) − ∂M(x∗(t), L
A
∗ (t), u∗(t), v∗(t), p(t))

∂x
for a.e. t > 0, (29)

M(x∗(t), L
A
∗ (t), u∗(t), v∗(t), p(t)) = M(x∗(t), p(t)) for a.e. t > 0. (30)
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(ii) The process (x∗(·), w̃∗(·)), together with the current value adjoint variable p(·),
satisfies the normal-form stationarity condition

M(x∗(t), p(t)) = ρeρt

∫ ∞

t

e−ρsg(x∗(s), L
A
∗ (s), u∗(s), v∗(s)) ds for all t ≥ 0.

(iii) For any t ≥ 0

p(t) = eρte−y(t)

∫ ∞

t

e−ρsey(s) ∂g(x∗(s), L
A
∗ (s), u∗(s), v∗(s))

∂x
ds, (31)

where y(t) =
∫ t

0
∂f(x∗(s),LA

∗ (s),u∗(s),v∗(s))
∂x

ds ≤ 0.

Let us outline the scheme of proofs of these two theorems. First, we show that it suffices
to consider only bounded controls in problem (P1). Then we introduce the problem with
a slightly modified objective functional, which is defined for controls that take values in
the compact closure of the admissible control set. We show that the optimal processes in
these two problems coincide. Finally, using standard results of optimal control theory, we
prove analogs of Theorems 1 and 2 for the modified problem, which automatically implies
the assertions of Theorems 1 and 2.

This scheme is implemented below as a series of auxiliary lemmas. The rigorous
derivation of the theorems from the lemmas is presented at the end of this section.

Denote

V0 =

(
(1 − η)κLηx0

1 − α

)1/η

(32)

and consider the following optimal control problem (P1′) with bounded controls:

ẋ(t) = −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)[LA(t)]ηv(t)1−ηx(t)2, (33)

LA(t) ∈ [0, L), u(t) ∈ (0, ρ], v(t) ∈ [0, V0], (34)

x(0) = x0, (35)

J1(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ lnu(t) − (1 − α)[u(t) + v(t)]
}

dt → max . (36)

Lemma 3. If w̃∗(·) = (LA
∗ (·), u∗(·), v∗(·)) is an optimal admissible control in prob-

lem (P1), then

u∗(t) ≤ ρ and v∗(t) ≤ V0 =

(
(1 − η)κLηx0

1 − α

)1/η

for a.e. t > 0,

and so w̃∗(·) is also an optimal admissible control in problem (P1′). Conversely, if ˆ̃w∗(·)
is an optimal admissible control in problem (P1′), then it is also an optimal admissible
control in problem (P1).

Before proving the lemma, we point out a corollary to this lemma and formula (31).
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Corollary 1. The current value adjoint variable p(·) satisfying the conditions of Theo-
rem 2 is bounded:

0 ≤ p(t) ≤ κLηV 1−η
0

ρ
for all t > 0

(if η = 1, then V0 = 0 and we consider V 1−η
0 to be 1). In particular, the transversality

condition
lim
t→∞

e−ρtx∗(t)p(t) = 0

holds for any optimal process (x∗(·), w̃∗(·)) in problem (P1).

Proof. Indeed, since ∂f
∂x

(x, �, u, v) ≤ 0 for all x > 0, � ∈ [0, L), u > 0 and v ≥ 0, it follows
that y(·) is a monotonically decreasing function, and so

0 ≤ p(t) ≤ eρt

∫ ∞

t

e−ρs
κLA

∗ (s)ηv∗(s)
1−η ds ≤ κLηV 1−η

0

ρ
for all t > 0.

This implies the transversality condition, as 0 < x∗(t) ≤ x0 for t > 0.

Proof of Lemma 3. Let w̃(·) = (LA(·), u(·), v(·)) be an admissible control in problem (P1)
such that ess supt>0 u(t) > ρ or ess supt>0 v(t) > V0. Define a new admissible bounded
control w(·) = (LA(·), ū(·), v̄(·)) with ū(t) = min{u(t), ρ} and v̄(t) = min{v(t), V0}, t ≥ 0.
Note that w(·) is also an admissible control in problem (P1′).

Let x(·) and x̄(·) be the trajectories of problem (P1) (with the same initial condition x0)
that correspond to w̃(·) and w(·), respectively (x̄(·) is also a trajectory of problem (P1′)).
Then we have

ū(t) ≤ u(t), v̄(t) ≤ v(t) and x0 ≥ x̄(t) ≥ x(t) > 0 for all t > 0

by virtue of equation (23). Therefore,

J1(x(·), LA(·), u(·), v(·)) ≤
∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx̄(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ lnu(t) − (1 − α)[u(t) + v(t)]
}

dt

<

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv̄(t)1−ηx̄(t) + αρ ln[L − LA(t)]

+ (1 − α)ρ ln ū(t) − (1 − α)[ū(t) + v̄(t)]
}

dt

= J1(x̄(·), LA(·), ū(·), v̄(·)),

where we applied the fact that

d

du

(
(1 − α)ρ lnu − (1 − α)u

)
< 0,

d

dv

(
κ[LA(t)]ηv1−ηx̄(t) − (1 − α)v

)
< 0

for all t > 0 and u > ρ, v > V0.
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Thus, we see that if ess supt>0 u(t) > ρ or ess supt>0 v(t) > V0, then the control w̃(·)
cannot be optimal. This proves the first part of the lemma.

Conversely, if (x∗(·), w̃∗(·)) = (x∗(·), LA
∗ (·), u∗(·), v∗(·)) is an optimal process in prob-

lem (P1′) and (x(·), w̃(·)) = (x(·), LA(·), u(·), v(·)) is any process in problem (P1), then,
again, introducing a new bounded control w(·) = (LA(·), ū(·), v̄(·)) with ū(t) = min{u(t), ρ}
and v̄(t) = min{v(t), V0}, t ≥ 0, we see that

J1(x(·), LA(·), u(·), v(·)) ≤ J1(x̄(·), LA(·), ū(·), v̄(·)) ≤ J1(x∗(·), LA
∗ (·), u∗(·), v∗(·)),

where x̄(·) is the trajectory of problem (P1) (as well as of (P1′)) corresponding to the
control w(·).

Our next goal is to establish the existence of an optimal admissible control w̃∗(·) in
problem (P1′). To apply a standard existence theorem of optimal control theory, we need
to compactify the range of values of the control variables. For this purpose, we introduce
the function

Lε(ξ) =

⎧⎨
⎩

ln ε +
1

ε
(ξ − ε) for 0 ≤ ξ ≤ ε,

ln ξ for ξ > ε,
(37)

where ε < 1 is a small positive constant, to the utility functional J1(x(·), LA(·), u(·), v(·)).
Obviously, Lε(·) is a continuously differentiable concave function on [0,∞) and Lε(ξ) ≥
ln ξ for ξ ∈ (0,∞).

Now consider an auxiliary problem (Pε):

ẋ(t) = −(1 − η)[u(t) + v(t)]x(t) − (1 − θ)[LA(t)]ηv(t)1−ηx(t)2, (38)

LA(t) ∈ [0, L], u(t) ∈ [0, ρ], v(t) ∈ [0, V0], (39)

x(0) = x0,

Jε(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρt
{

κ[LA(t)]ηv(t)1−ηx(t) + αρLε

(
L − LA(t)

)

+ (1 − α)ρLε(u(t)) − (1 − α)[u(t) + v(t)]
}

dt → max, (40)

where x0 is the same as in (35). Clearly, any process (x(·), w̃(·)) = (x(·), LA(·), u(·), v(·))
in problem (P1′) is also an admissible process in problem (Pε).

Lemma 4. If there is an optimal process (x∗(·), w̃∗(·)) = (x∗(·), LA
∗ (·), u∗(·), v∗(·)) in

problem (Pε) such that LA
∗ (t) ≤ L − ε and u∗(t) ≥ ε for a.e. t ∈ (0,∞), then

(i) this process is also optimal in problem (P1′);

(ii) any other optimal process (x̂∗(·), ˆ̃w∗(·)) = (x̂∗(·), L̂A
∗ (·), û∗(·), v̂∗(·)) (if it exists) in

problem (P1′) is such that L̂A
∗ (t) ≤ L− ε and û∗(t) ≥ ε for a.e. t ∈ (0,∞) and so it

is also optimal in problem (Pε).
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Proof. Assertion (i) is valid because Jε(x(·), LA(·), u(·), v(·)) ≥ J1(x(·), LA(·), u(·), v(·))
for any admissible process (x(·), w̃(·)) = (x(·), LA(·), u(·), v(·)) in problem (P1′), while
Jε(x∗(·), LA

∗ (·), u∗(·), v∗(·)) = J1(x∗(·), LA
∗ (·), u∗(·), v∗(·)).

If (x̂(·), ˆ̃w(·)) = (x̂(·), L̂A(·), û(·), v̂(·)) is a process in problem (P1′) such that L̂A(t) >
L − ε or û(t) < ε on a positive measure set of values of t, then

J1(x̂(·), L̂A(·), û(·), v̂(·)) < Jε(x̂(·), L̂A(·), û(·), v̂(·)) ≤ Jε(x∗(·), LA
∗ (·), u∗(·), v∗(·))

= J1(x∗(·), LA
∗ (·), u∗(·), v∗(·))

and hence this process cannot be optimal in problem (P1′). This implies (ii).

Denote
W = [0, L] × [0, ρ] × [0, V0]

and

gε(x, �, u, v) = κ�ηv1−ηx + αρLε(L − �) + (1 − α)ρLε(u) − (1 − α)(u + v),

x > 0, (�, u, v) ∈ W,
(41)

so that (38) and (40) become

ẋ(t) = f(x(t), LA(t), u(t), v(t)),

Jε(x(·), LA(·), u(·), v(·)) =

∫ ∞

0

e−ρtgε(x(t), LA(t), u(t), v(t)) dt → max

(see (27)).
For every x > 0, consider the following set, which is standard in optimal control

theory:

Q(x) =
{
(z0, z) ∈ R

2 : z0 ≤ gε(x, �, u, v), z = f(x, �, u, v), (�, u, v) ∈ W
}
.

Lemma 5. For every x > 0, the set Q(x) is convex.

Proof. It suffices to show that for any two points (z0
1 , z1), (z

0
2, z2) ∈ Q(x) the midpoint

of the segment joining (z0
1 , z1) to (z0

2 , z2) also lies in Q(x). Let zi = f(x, �i, ui, vi) and
z0

i ≤ gε(x, �i, ui, vi) for some (�i, ui, vi) ∈ W (i = 1, 2). We need to show that there exists
(�̄, ū, v̄) ∈ W such that

f(x, �̄, ū, v̄) = z̄ =
z1 + z2

2
and gε(x, �̄, ū, v̄) ≥ z̄0 =

z0
1 + z0

2

2
.

We will seek (�̄, ū, v̄) in the form

�̄ = �̄(ε) =
�1 + �2

2
− ε, ū =

u1 + u2

2
, v̄ =

v1 + v2

2

with 0 ≤ ε ≤ �1+�2
2

. It is obvious that such a triple belongs to W .

15



Note that (
�1 + �2

2

)η(
v1 + v2

2

)1−η

≥ �η
1v

1−η
1 + �η

2v
1−η
2

2
, 0 ≤ η ≤ 1

(see, e.g., [14, Theorem 38]). Therefore,

f(x, 0, ū, v̄) ≥ z̄ and f(x, �̄(0), ū, v̄) ≤ z̄.

Since f(x, �̄(·), ū, v̄) is a continuous function of ε, there indeed exists an ε, 0 ≤ ε ≤ �1+�2
2

,
such that

f(x, �̄(ε), ū, v̄) = z̄. (42)

We fix such an ε and write simply �̄ instead of �̄(ε) in what follows.
Now let us show that gε(x, �̄, ū, v̄) ≥ z̄0. Note that due to (42), for θ < 1,

�̄ηv̄1−ηx =
−(1 − η)(ū + v̄)x − z̄

(1 − θ)x
=

−(1 − η)(u1 + u2 + v1 + v2)x − (z1 + z2)

2(1 − θ)x

=
�η
1v

1−η
1 x + �η

2v
1−η
2 x

2
. (43)

If θ = 1, then f(·) does not depend on � and so (42) holds for all ε. Therefore, choosing an
appropriate ε, we can achieve the equality of the first and last expressions in the chain (43)
in this case as well.

Since Lε(·) is a concave increasing function, we have Lε(L− �̄) ≥ Lε(L− �̄(0)) and in
view of (43) find that

gε(x, �̄, ū, v̄) ≥ gε(x, �1, u1, v1) + gε(x, �2, u2, v2)

2
≥ z̄0.

This completes the proof of Lemma 5.

Lemma 6. For any ε, 0 < ε < 1, there exists an optimal control in problem (Pε).
Moreover, if ε is small enough, then any optimal control w̃(·) = (LA

∗ (·), u∗(·), v∗(·)) in
problem (Pε) is such that LA

∗ (t) ≤ L − ε and u∗(t) ≥ ε for a.e. t ∈ (0,∞).

Proof. The existence follows from Theorem 2.1 in [5] and Lemma 5.
Note that problem (Pε) falls within the case of dominating discount (see [5, Sec-

tion 12]), so we can apply the version of Pontryagin’s maximum principle formulated
in [5, Theorem 12.1] to this problem. To this end, define the current value Hamilton–
Pontryagin function Mε(x, u, v, p) and the current value Hamiltonian Mε(x, p) in prob-
lem (Pε) in the normal form:

Mε(x, �, u, v, p) = f(x, �, u, v)p + gε(x, �, u, v)

= −(1 − η)(u + v)xp − (1 − θ)�ηv1−ηx2p + κ�ηv1−ηx

+ αρLε(L − �) + (1 − α)ρLε(u) − (1 − α)(u + v), (44)

Mε(x, p) = sup
(�,u,v)∈W

Mε(x, �, u, v, p). (45)
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Here x > 0, (�, u, v) ∈ W and p ∈ R
1.

Let (x∗(·), w̃∗(·)) = (x∗(·), LA
∗ (·), u∗(·), v∗(·)) be an optimal process in problem (Pε).

Then, by Theorem 12.1 from [5], we have

Mε(x∗(t), L
A
∗ (t), u∗(t), v∗(t), p(t)) = Mε(x∗(t), p(t)) for a.e. t > 0, (46)

where

p(t) = eρte−y(t)

∫ ∞

t

e−ρsey(s) ∂gε(x∗(s), L
A
∗ (s), u∗(s), v∗(s))

∂x
ds (47)

with the same y(·) as in Theorem 2. As shown in the proof of Corollary 1, y(·) is a
monotonically decreasing function, and so

0 ≤ p(t) ≤ 1

ρ
sup

x>0, (�,u,v)∈W

∂gε(x, �, u, v)

∂x
=

κLηV 1−η
0

ρ
for all t > 0.

We also have 0 < x∗(·) ≤ x0. However, it is easy to show that if ε is sufficiently small,3

then the maximum of the function Mε(x, ·, ·, ·, p) with respect to (�, u, v) ∈ W for fixed
x ∈ (0, x0] and p ∈ [0, κLηV 1−η

0 /ρ] cannot be attained at a point (�, u, v) such that
� > L − ε or u < ε. Indeed, it suffices to calculate the partial derivatives of Mε with
respect to � and u.

This fact, together with the maximum condition (46), completes the proof of the
lemma.

Proof of Theorem 1. Above we have shown that the auxiliary problem (Pε) has a solution,
i.e. an optimal process (x∗(·), w̃∗(·)) = (x∗(·), LA

∗ (·), u∗(·), v∗(·)), and proved certain esti-
mates for the corresponding optimal control (Lemma 6). These estimates show (Lemma 4)
that any such solution is also an optimal process in problem (P1′), and so is an optimal
process in problem (P1) (Lemma 3), which is equivalent to the original problem (P)
(Lemma 1). Thus, we obtain the existence of an optimal control in problem (P).

Proof of Theorem 2. Fix a sufficiently small ε. By Lemmas 6 and 4(ii), LA
∗ (t) ≤ L − ε

and u∗(t) ≥ ε for a.e. t ∈ (0,∞), and (x∗(·), w̃∗(·)) is an optimal process in problem (Pε).
By Theorem 12.1 in [5], such an adjoint variable p(·) satisfying properties (i)–(iii) of

Theorem 2 (with gε(·), Mε(·) and Mε(·) instead of g(·), M(·) and M(·), respectively)
exists for the optimal process (x∗(·), w̃∗(·)) in problem (Pε). Since LA

∗ (t) ≤ L − ε and
u∗(t) ≥ ε for a.e. t > 0, we have g(x∗(t), L

A
∗ (t), u∗(t), v∗(t)) = gε(x∗(t), L

A
∗ (t), u∗(t), v∗(t))

and M(x∗(t), L
A
∗ (t), u∗(t), v∗(t), p(t)) = Mε(x∗(t), L

A
∗ (t), u∗(t), v∗(t), p(t)) for a.e. t > 0.

Moreover, since M(x, �, u, v, p) ≤ Mε(x, �, u, v, p) for all x > 0, p > 0 and (�, u, v) ∈ W ,
we also have M(x∗(t), p(t)) = Mε(x∗(t), p(t)).

Thus, properties (i)–(iii) of Theorem 2 with g(·), M(·) and M(·) follow from the
same properties with gε(·), Mε(·) and Mε(·). In particular, (46) and (47) become (30)
and (31).

Theorem 2 allows us to explicitly write the Hamiltonian system of the Pontryagin
maximum principle for problem (P1). In the next section, we will analyze the qualitative
behavior of solutions to this system and single out all optimal regimes.

3Of course, the upper bound for ε that guarantees the validity of this statement depends on x0, but
x0 is fixed from the onset.
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6 Analysis of the Hamiltonian system

We know from Theorem 1 that an optimal process (x∗(·), w̃∗(·)) in problem (P1) exists and
satisfies the relations of Theorem 2. Using Theorem 2, we can construct the Hamiltonian
system of the Pontryagin maximum principle for problem (P1) in the variables x(·) and
p(·) directly. However, to simplify the further analysis, we pass from the variable p(·) to a
new variable φ(·) defined as φ(t) = x(t)p(t), t > 0. Then we write and analyze the relations
of the Hamiltonian system of the Pontryagin maximum principle for problem (P1) in the
variables x(·) and φ(·).

In terms of the variable φ(·), the adjoint system (see (29)) and the maximum condition
(see (30)) take the forms

φ̇(t) = ẋ(t)p(t) + x(t)ṗ(t) = ρφ(t) + LA(t)ηv(t)1−ηx(t)
[
(1 − θ)φ(t) − κ

]
(48)

and
M̃(x, �, u, v, φ) → max

�∈[0,L),u>0,v≥0
, (49)

respectively. Here the function M̃(·) is defined by the equality (see (28))

M̃(x, �, u, v, φ) = −
[
1 − α + (1 − η)φ

]
(u + v)

+
[
κ − (1 − θ)φ

]
�ηv1−ηx + αρ ln(L − �) + (1 − α)ρ ln u, (50)

for all x > 0, φ ≥ 0, u > 0, v ≥ 0 and 0 ≤ � < L.
Our first aim is to write the Hamiltonian system of the maximum principle for prob-

lem (P1) in terms of the variables x(·) and φ(·) by combining equations (23) and (48)
(and using maximum condition (49)). To this end, we first express the quantities LA(x, φ),
u(x, φ) and v(x, φ) as functions of x and φ that are (unique) maximizers of M̃(·) with
respect to �, u and v, respectively (see maximum condition (49)), for all x > 0 and φ ≥ 0.
Then, substituting these maximizers into equations (23) and (48), we get the Hamiltonian
system of the maximum principle for problem (P1) in the form

ẋ(t) = −(1 − η)[u(x(t), φ(t)) + v(x(t), φ(t))]x(t)

− (1 − θ)LA(x(t), φ(t))ηv(x(t), φ(t))1−ηx(t)2,

φ̇(t) = ρφ(t) + LA(x(t), φ(t))ηv(x(t), φ(t))1−ηx(t)
[
(1 − θ)φ(t) − κ

]
.

(51)

The value u(x, φ) at which the maximum of M̃(·) with respect to u is attained can
easily be found by means of differentiation (see (50)):

u(x, φ) =
(1 − α)ρ

1 − α + (1 − η)φ
. (52)

If κ ≤ (1 − θ)φ, then the maximum of M̃(·) with respect to � and v is attained for
v(x, φ) = LA(x, φ) = 0.
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Suppose that κ > (1−θ)φ. If η = 1, then v(x, φ) = 0 simply because of the constraint
0 ≤ v ≤ V0 = 0 (see (39) and (32)), and u(x, φ) = ρ (see (52)). In this case it is obvious
that the maximum point of M̃(·) as a function of � is given by

LA(x, φ) = L − αρ

(κ − (1 − θ)φ)x
. (53)

Finally, consider the case when κ > (1 − θ)φ and η < 1. Note that M̃(x, �, u, v, φ) →
−∞ as v → ∞ or � → L − 0. On the other hand, if one of the variables, v or �, is
zero, then the maximum with respect to the other variable is attained at zero. Therefore,
the maximum of M̃(·) with respect to � and v is attained either at the point v(x, φ) =
LA(x, φ) = 0 or at an interior point, in which case this point can be found by equating
the partial derivatives of M̃(·) with respect to � and v to zero:

η
[
κ − (1 − θ)φ

](v

�

)1−η

x =
αρ

L − �
, (54)

(1 − η)
[
κ − (1 − θ)φ

]( �

v

)η

x = 1 − α + (1 − η)φ. (55)

Denoting

h(x, φ) =
1 − α + (1 − η)φ

(1 − η)x[κ − (1 − θ)φ]
, x > 0, 0 ≤ φ <

κ

1 − θ
,

we find
�

v
= h(x, φ)

1
η (56)

and

� = L − αρh(x, φ)
1−η

η

η[κ − (1 − θ)φ]x
= L − αρ(1 − α + (1 − η)φ)

1−η
η

η(1 − η)
1−η

η (x[κ − (1 − θ)φ])
1
η

, (57)

v =
L

h(x, φ)
1
η

− αρh(x, φ)−1

η[κ − (1 − θ)φ]x
=

L((1 − η)x[κ − (1 − θ)φ])
1
η

(1 − α + (1 − η)φ)
1
η

− αρ(1 − η)

η(1 − α + (1 − η)φ)
.

(58)

If these formulas yield positive values v(x, φ) and LA(x, φ) of v and �, then this is the
maximum point of M̃(·) with respect to v and �. Otherwise, the maximum point is
v(x, φ) = LA(x, φ) = 0.

Note that (57) and (58) for η = 1 turn into (53) and v(x, φ) = 0, respectively, if we
consider (1 − η)1−η to be 1 for η = 1.

Set

h1(φ) =
αηρη(1 − α + (1 − η)φ)1−η

Lηηη(1 − η)1−η[κ − (1 − θ)φ]
, 0 ≤ (1 − θ)φ < κ,

and introduce the following sets (see Fig. 1):

Γ = {(x, φ) ∈ R
2 : x > 0, φ ≥ 0},

Γ0 =
{
(x, φ) ∈ Γ: (1 − θ)φ ≥ κ or {(1 − θ)φ < κ, x < h1(φ)}

}
, Γ1 = Γ \ Γ0.
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x

x̄

φ

Γ0

Γ0
Γ1

0

κ

1 − θ

Figure 1: The sets Γ0 and Γ1 and the optimal trajectory (thick line). All trajectories
lying above the optimal one tend to infinity along the φ-axis. All trajectories lying below
the optimal one transversally intersect the x-axis.

According to the above analysis, in Γ0 both LA(x, φ) and v(x, φ) vanish, and so our
Hamiltonian system (51) in Γ0 has the form

ẋ(t) = − (1 − η)(1 − α)ρ

1 − α + (1 − η)φ(t)
x(t),

φ̇(t) = ρφ(t).

Note that h1(·) is a monotonically increasing function of φ (except for the case η = θ = 1,
in which h1(·) ≡ const). Therefore, any trajectory of our system that reaches the set Γ0

cannot leave this set afterwards. (Indeed, at every point of Γ0 we have ẋ(·) ≤ 0 and
φ̇(·) ≥ 0.) However, we know that φ(·) is bounded along an optimal trajectory (e.g., by
Corollary 1); hence the only candidate for an optimal trajectory in Γ0 lies on the x-axis
and looks like

x(t) = x̄e−(1−η)ρ(t−τ), φ(t) = 0 for t ≥ τ, (59)

where

x̄ = h1(0) =
ρηαη(1 − α)1−η

Lηηη(1 − η)1−ηκ
. (60)

On the other hand, since ẋ(t) ≤ 0, any bounded trajectory must tend to a fixed point. If
η < 1, then ẋ(·) < 0 in the interior of Γ1 and consequently any trajectory of our system
starting in Γ1 eventually enters the set Γ0. This shows that there is a unique bounded
trajectory of our system, and hence the optimal process in problem (P1) is also unique.
The tail of this trajectory is described by (59).

If η = 1 and θ < 1, then for similar reasons any bounded trajectory starting in Γ1

tends to the point (x̄, 0) on the boundary of Γ1. Let us show that there is only one such
trajectory (x̃(·), φ̃(·)) in Γ1. Indeed, if there were two trajectories lying in Γ1 and tending
to (x̄, 0), then any trajectory lying between these two would also tend to (x̄, 0) (because
ẋ(·) ≤ 0). However, this is impossible, as we can show, for example, by considering the
linearization of the Hamiltonian system of the maximum principle in Γ1 at the point (x̄, 0)
and applying the Grobman–Hartman theorem (see [16]).
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Finally, if η = θ = 1, then x(t) ≡ 1 (see (16)) and φ̇(t) = ρφ(t) − �κ, where � =
max{0, L − αρ

κ
}. Thus, the only bounded trajectory is the fixed point x = 1, φ =

max{0, Lκ

ρ
− α}. Recall that in this case the optimal controls are u(t) ≡ ρ, v(t) ≡ 0 and

LA(t) ≡ max{0, L − αρ
κ
}.

Let us now examine the initial part of the optimal trajectory lying in Γ1, for η < 1.
Using formulas (56) and (58), we find

�ηv1−η = h(x, φ)v =
L

h(x, φ)
1−η

η

− αρ

ηx[κ − (1 − θ)φ]
.

Similarly, due to (52) and (58), we obtain

u + v =
(η − α)ρ

η(1 − α + (1 − η)φ)
+

L

h(x, φ)
1
η

.

Thus, our system (51) in Γ1 has the form

ẋ(t) = −(1 − η)

[
(η − α)ρ

η(1 − α + (1 − η)φ(t))
+

L

h(x(t), φ(t))
1
η

]
x(t)

− (1 − θ)

[
L

h(x(t), φ(t))
1−η

η

− αρ

ηx(t)[κ − (1 − θ)φ(t)]

]
x(t)2,

φ̇(t) = ρφ(t) − L(1 − α + (1 − η)φ(t))

(1 − η)h(x(t), φ(t))
1
η

+
αρ

η
,

(61)

and we are interested in the trajectory (x̃(·), φ̃(·)) that passes through the point (x̄, 0). It
would be difficult to solve this system analytically, but for numerical simulations it suffices
to know that the sought trajectory (x̃(·), φ̃(·)) is a solution to the Cauchy problem for
system (61) in reverse time (i.e., with the right-hand side taken with the opposite sign)
under the initial condition x̃(0) = x̄, φ̃(0) = 0.

Moreover, since ˙̃x(t) < 0 for all t > 0, we can express φ̃(·) as a function of x̃(·) along
this trajectory, φ̃ = φ∗(x).

If η = 1 and θ < 1, we can also express φ̃(·) as a (continuous) function of x̃(·) along
this trajectory, φ̃ = φ∗(x) (with φ∗(x) = 0 for x ≤ x̄). However, this trajectory cannot be
found as a solution of the Cauchy problem, as described above, because (x̄, 0) is a fixed
point of the Hamiltonian system for η = 1.

Thus, for ηθ < 1 we obtain a unique optimal feedback control u∗(x) = u(x, φ∗(x)),
v∗(x) = v(x, φ∗(x)), LA

∗ (x) = LA(x, φ∗(x)) according to formulas (52), (58) and (53), (57).
Let us summarize the above analysis of the Hamiltonian system as follows:

Theorem 3. (a) If η = 1 and θ = 1, then there is a unique optimal control w̃(·) =
(LA

∗ (·), u∗(·), v∗(·)) in problem (P1), with

LA
∗ (t) ≡ max

{
0, L − αρ

κ

}
, u∗(t) ≡ ρ, v∗(t) ≡ 0 for all t ∈ [0,∞).

In this case x(t) ≡ x0 = 1, t ≥ 0 is a unique admissible trajectory (see (16)).
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(b) If ηθ < 1, then there is a unique optimal feedback control (optimal synthesis)
w̃∗(x) = (LA

∗ (x), u∗(x), v∗(x)) in problem (P1), with LA
∗ (x) = LA(x, φ∗(x)), u∗(x) =

u(x, φ∗(x)) and v∗(x) = v(x, φ∗(x)) determined by formulas (53), (57), (52) and (58).
Here the feedback φ∗(x) is generated by a unique solution (x̃(·), φ̃(·)) of the Hamiltonian
system (61) that reaches (or tends to) the point (x̄, 0) from the right, where (see (60))

x̄ =
ρηαη(1 − α)1−η

Lηηη(1 − η)1−ηκ
.

Namely,

(b.1) If ηθ < 1 and x ≤ x̄, then

LA
∗ (x) = 0, u∗(x) = ρ, v∗(x) = 0.

(b.2) If η = 1, θ < 1 and x > x̄, then (see (53), (52) and (58))

LA
∗ (x) = L − αρ

(κ − (1 − θ)φ∗(x))x
, u∗(x) = ρ, v∗(x) = 0.

In the case of η = 1 and θ < 1, for any initial state x0 ≤ x̄ the corresponding
optimal trajectory x∗(·) is x∗(t) ≡ x0, t ≥ 0, while for any initial state x0 > x̄ the
corresponding optimal trajectory x∗(·) monotonically tends to the point x̄ from the
right as t → ∞.

(b.3) If η < 1, θ ≤ 1 and x > x̄, then (see (57), (52) and (58))

LA
∗ (x) = L − αρ(1 − α + (1 − η)φ∗(x))

1−η
η

η(1 − η)
1−η

η (x[κ − (1 − θ)φ∗(x)])
1
η

,

u∗(x) =
(1 − α)ρ

1 − α + (1 − η)φ∗(x)
,

v∗(x) =
L((1 − η)x[κ − (1 − θ)φ∗(x)])

1
η

(1 − α + (1 − η)φ∗(x))
1
η

− αρ(1 − η)

η(1 − α + (1 − η)φ∗(x))
.

In the case of η < 1 and θ ≤ 1, for any initial state x0 > 0, the corresponding
optimal trajectory x∗(·) monotonically decreases to 0 as t → ∞.

Finally let us analyze the dynamics of the output Y (·) and the knowledge stock A(·)
along the optimal trajectory.

If η = θ = 1, then (Theorem 3(a)) the optimal controls are u(t) ≡ ρ, v(t) ≡ 0
and LA(t) ≡ max{0, L − αρ

κ
}. In the case of Lκ ≤ αρ, we have stagnation of the

knowledge stock (Ȧ(t) ≡ 0) and depletion of the output (Y (t) → 0 as t → ∞). For
Lκ > αρ, the knowledge stock grows exponentially, while the output still depletes to zero
for Lκ < ρ(α+ κ(1−α)), is constant for Lκ = ρ(α+ κ(1−α)), and grows exponentially
for Lκ > ρ(α + κ(1 − α)).
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Let us consider the case ηθ < 1 in more detail. If x0 ≤ x̄, then we again have stagnation
of the knowledge stock and depletion of the output. If x0 > x̄, then the knowledge stock
grows in the beginning, but the growth either terminates at a certain instant (η < 1) or
decelerates (η = 1), so that the knowledge stock never exceeds a certain level determined
by the parameters of the system. The output falls to zero in the long run. However, the
following proposition shows that it may grow on some initial time interval.

Proposition 1. Let ηθ < 1. Then, for sufficiently large initial values x0 (i.e., for a
relatively large initial stock of the exhaustible resource S0 and/or for a relatively small
initial knowledge stock A0; see (19)), the output Y (·) as a function of t increases on some
initial time interval 0 < t < τ, τ > 0.

Proof. For large x0 the initial part of the optimal trajectory lies in Γ1 and hence Y (·) is
continuously differentiable for the corresponding values of t. Let us show that Ẏ (t) > 0
on the initial time interval 0 < t < τ , τ > 0, of the optimal trajectory. We have

Ẏ (t) = Y (t)

[
κ

Ȧ(t)

A(t)
− α

L̇A(t)

L − LA(t)
+ (1 − α)

u̇(t)

u(t)
+ (1 − α)

Ṡ(t)

S(t)

]

= Y (t)

[
κLA(t)ηv(t)1−ηx(t) − α

L̇A(t)

L − LA(t)
+ (1 − α)

u̇(t)

u(t)
− (1 − α)(u(t) + v(t))

]
(62)

(see (1), (2), (17) and (16)), where u(t) = u∗(x(t)), v(t) = v∗(x(t)) and LA(t) = LA
∗ (x(t)).

Let us show that φ̇(t) < 0 along the optimal trajectory in Γ1. To see this, note that
the curve on which φ̇(t) = 0 in Γ1 is described by the equation

ρφ +
αρ

η
=

L(1 − α + (1 − η)φ)

(1 − η)h(x, φ)
1
η

=
L(1 − η)

1−η
η (x[κ − (1 − θ)φ])

1
η

(1 − α + (1 − η)φ)
1−η

η

. (63)

This equation defines x as a monotonically increasing function of φ. So any trajectory of
our system that intersects this curve at some instant τ (at a point different from (x̄, 0))
acquires a positive derivative of the φ-coordinate and later enters the set Γ0 (at a point
different from (x̄, φ)). Such a trajectory tends to infinity and so it is not optimal. Hence
our optimal trajectory lies in Γ1 completely below the above curve, and φ̇(t) < 0 on it.
This immediately implies that u̇(t) ≥ 0 in (62) (see (52)).

To estimate the second term in the square brackets in (62), we first denote ζ(t) =
x(t)[κ − (1 − θ)φ(t)], ζ∗(x) = x[κ − (1 − θ)φ∗(x)], and calculate (along the optimal
trajectory in Γ1)

ζ̇(t) =
d

dt

(
x(t)

[
κ − (1 − θ)φ(t)

])
= ẋ(t)

[
κ − (1 − θ)φ(t)

]
− (1 − θ)x(t)φ̇(t)

= −(1 − η)
[
u∗(x(t)) + v∗(x(t))

]
ζ(t) − (1 − θ)ρx(t)φ(t) < 0, (64)

because ζ(t) > 0 for (x(t), φ(t)) ∈ Γ1. Then, after some calculations, we find from (53)
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for η = 1, from (57) for η < 1, and from (48), (64) that

− L̇A(t)

L − LA(t)
=

(1 − η)2φ̇(t)

η
(
1 − α + (1 − η)φ(t)

) − 1

η

ζ̇(t)

ζ(t)

> −(1 − η)2LA(t)ηv(t)1−ηζ(t)

η
(
1 − α + (1 − η)φ(t)

) +
(1 − θ)ρx(t)φ(t)

ζ(t)
. (65)

If η = 1 and θ < 1, then the right-hand side of (65) is positive; hence dLA
∗ (x)
dx

> 0 and

LA
∗ (x)ηv∗(x)1−ηx → +∞ as x → +∞. (66)

This obviously implies that Ẏ (t) > 0 for large x(t) along the optimal trajectory, as the
second and third terms in the square brackets in (62) are nonnegative, while the last term
is bounded due to the restrictions u(t) ≤ ρ and v(t) = 0.

If η < 1 and θ ≤ 1, then φ∗(x) < κ/(1− θ) in Γ1. Let us show that φ∗(x) → κ/(1− θ)
as x → ∞. Indeed, suppose the contrary. Then it follows from (57) that LA

∗ (x) → L as
x → ∞, and due to (56) v∗(x) ∼ x1/η as x → ∞. Therefore,

dφ∗(x)

dx
=

φ̇(t)

ẋ(t)
=

LA
∗ (x)ηv∗(x)1−ηx[κ − (1 − θ)φ∗(x)] − ρφ∗(x)

(1 − η)[u∗(x) + v∗(x)]x + (1 − θ)LA
∗ (x)ηv∗(x)1−ηx2

∼ 1

x
, (67)

which contradicts the boundedness of φ∗(·). Thus, φ∗(x) → κ/(1 − θ) as x → ∞.
If ζ∗(·) is unbounded, then by (57) LA

∗ (x) → L as x → ∞, and by (56) v∗(x) ∼
ζ∗(x)1/η = o(x1/η) and v∗(x) → ∞ as x → ∞. This shows that the first term in the
square brackets in (65) dominates all the negative terms there, and so Ẏ (t) > 0 for large
x(t) along the optimal trajectory.

If ζ∗(·) is bounded, then v∗(·) is bounded by (55). Hence the right-hand side of (65) is

positive for large x(t) and, in particular, dLA
∗ (x)
dx

> 0 for large x. Therefore, again by (55),
v∗(x) is bounded away from zero for large x. We see that (66) holds in this case as well,
which again implies that Ẏ (t) > 0 for large x(t) along the optimal trajectory.

Finally, consider the case of η < 1 and θ = 1. In this case ζ(t) = κx(t). Multiplying
equation (54) raised to the power η by equation (55) raised to the power 1 − η, we find
that

ηη(1 − η)1−η
κx =

αηρη
(
1 − α + (1 − η)φ∗(x)

)1−η

(L − LA
∗ (x))η

Recall that φ∗(·) is a monotonically increasing function of x. If it were bounded, then we
would have LA

∗ (x) → L as x → ∞, v∗(x)η ∼ x by (55), and hence (67) would be valid,
which is impossible for a bounded φ∗(·). Thus, φ∗(x) → ∞ as x → ∞.

On the other hand, φ∗(x) = O(x) because the optimal trajectory lies below the curve
described by (63). Therefore, LA

∗ (x) → L as x → ∞ by (57) and v∗(x) ≥ v0 for some
v0 > 0 and for all sufficiently large x by (58). At the same time, v∗(x)η = o(x) by (58).
This shows that the first term in the square brackets in (65) dominates all the negative
terms there, and so Ẏ (t) > 0 for large x(t) along the optimal trajectory.

We showed that for ηθ < 1 the output Y (t) increases on some initial time interval
provided that the initial supply of exhaustible resource S0 is large and/or the initial
knowledge stock A0 is small.
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7 Summary

The above analysis of the Hamiltonian system yields a complete characterization of the
optimal transitional dynamics of the model. The results of this analysis are summarized
in Theorem 3.

The dynamics of the output Y (·) is illustrated in Fig. 2. Optimal growth is only
sustainable if the following three conditions hold simultaneously:

(i) the accumulation of knowledge has strong scale effects;

(ii) the exhaustible resource is not an input to the production of knowledge;

(iii) the population is not too small.

In this scenario the growth of output is exponential. The resulting dynamics correspond
to the optimal balanced growth path. While the requirement of a strong scale effect in
the accumulation of knowledge is well-known in the economics literature, the requirement
of the independence of the research sector from the exhaustible resource is a new result.
Fortunately, the research sector does not depend excessively on narrow-sense exhaustible
resources, such as minerals.

Condition (iii) says that a sufficiently small economy will not grow, even under strong
scale effects and even if the accumulation of knowledge does not depend on the exhaustible
resource. This minimum size condition is the least restrictive of all conditions and can
be assumed to hold a priori. In the typical case κ = 1, we have L > ρ. This inequality
can be maintained in all cases of interest since L is the size of the labor force and ρ is the
discount rate. The opposite case L ≤ ρ is included for completeness.

In the sustainable growth scenario η = θ = 1, for a sufficiently large population size L,
a constant fraction of labor is allocated to research. The lower the discount rate ρ, the
higher this fraction. The fraction also depends on the elasticity of substitution in the
production function. The optimal extraction policy implies an exponential depletion of
the stock of the exhaustible resource, with the rate equal to the discount rate. This is
the well-known Hotelling rule for the optimal depletion of exhaustible resources. In sum
this implies an exponential growth of the knowledge stock A(·). The dynamics of the
knowledge stock A(·) are illustrated in Fig. 3.

Given Jones’ critique, we hold Scenario 3 in Fig. 2 to be the most realistic of the four
scenarios. In this case (ηθ < 1) we may have two qualitatively different optimal policies
depending on whether the accumulation of knowledge requires the resource:

(i) When the accumulation of knowledge is independent of the resource (η = 1), the
fraction of labor employed in research tends from an initially positive value to zero.
This means that the research effort becomes successively smaller. The extraction
policy is identical to that in the case of optimal sustainable growth described above.
The stock of the exhaustible resource depletes exponentially with the rate equal
to the discount rate. The policy described above is optimal provided the initial
knowledge stock is not too large (x0 > x̄). Otherwise it is optimal to allocate the
entire labor to production from the onset.
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Figure 2: Dynamics of the output Y (·) under optimal resource allocation: (1) η = θ = 1,
Lκ > ρ(α + κ(1 − α)); (2) η = θ = 1, Lκ = ρ(α + κ(1 − α)); (3) ηθ < 1; (4) η = θ = 1,
Lκ < ρ(α + κ(1 − α)).
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Figure 3: Dynamics of the knowledge stock A(·) under optimal resource allocation:
(1) η = 1, θ < 1; (2) η < 1; (3) η = θ = 1, Lκ > αρ; (4) η = θ = 1, Lκ ≤ αρ.
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(ii) When the accumulation of knowledge requires the resource (η < 1), it is optimal
to conduct research until a certain ratio (given by (60)) between the knowledge
stock and the current supply of the resource is reached. In this case the labor
and resource allocated to research gradually decrease and ultimately vanish at the
moment of reaching the above-mentioned ratio. Afterwards the research effort stops
and the stock of knowledge remains at its maximum level. This policy is optimal
when x0 > x̄. For x0 < x̄ it is optimal not to invest in research as the initial
knowledge stock is sufficiently large.

On a final note we would like to emphasize that in the most realistic scenario, in
which technological progress is subject to weak scale effects or does depend on an ex-
haustible resource, growth will eventually cease. This suggests that sustainable growth
along one technological trajectory is impossible and there is a need for a transition to a
new technological trajectory based on an alternative resource in production.
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