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Preface

The Human Resources and Services Theme within the Human
Settlements and Services Area is currently conducting research
on health care systems and on nutrition. As part of a general
exploratory evaluation to determine whether research on man-
power should be accorded Research Task status within this Theme
in the future, the Area held a small and informal task-force
meeting in February, 1978, on which occasion this paper was
presented.

The February task-force meeting led to the conclusion that
the principal objective of manpower research in HSS should be
the development of models and theoretical explanations of as-
pects of manpower supply, manpower demand, and manpower fore-
casting, with a focus on national and sectoral problems in
both the more developed and the less developed countries of
the world today. Expected results could be improved models
and a better understanding of problems related to changing labor
force composition, shortages of manpower in critical service
sectors such as health, the rising cost of pensions, and the
declining confidence of policy makers in the usefulness of
manpower forecasting models.

This paper, the second of a series on manpower analysis,
illustrates how the concepts of dynamic linear programming (DLP)
can be applied to the normative modeling of manpower problems.
In it, Dr. Propoi demonstrates the power and broad generality
of the DLP approach while, at the same time, exposing certain
weaknesses of the linear fixed-coefficient framework that call
for further study.

Andrei Rogers
Chairman

Human Settlements
and Services Area

May 1978
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ABSTRACT

The purpose of this paper is to show that many optimization
problems for educational and manpower planning models can be written
in a standard dynamic linear programming form. A basic model
of educational planning is described and extensions of the model
(investment and vocational training submodels and a three level
educational model) are given.

When describing models, two basic models are singled out
using two different controls: recruitment in the first and pro-
motion in the second. Finally, an integrated model of economy-
manpower interaction is considered.

The possibilities and limitations of DLP as applied to man-
power and educational planning problems are discussed.
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Models for Educational and Manpower Planning:

A Dynamic Linear Programming Approach

1. INTRODUCTION

The most important features in manpower and educational
planning are, first, the large number of variables and conditions
which should be taken into account, and second, the dynamics of
the planning process -- training of specialists needs time. Ab-
solute or relative increases in the total number of manpower does
not necessarily imply an increase in the operational quality of
a system, and therefore, elaborate planning of different categories
of specialists is required. Manpower and educational planning
"has the basic purpose of producing the correct numbers of the
correct types of people inthe correct jobs at the appropriate
times" (Grinold and Marshall, 1977).

The most efficient technique which can handle a large nuhber
of variables and constraints is linear programming (LP) (Dantzig,
1963). 1In order to allow proper phasing of the decision process
over time, this technique can be extended to dynamic linear pro-
gramming (DLP) (Propoi, 1976). Another feature common to manpower
and educational models is their stochastic nature (Bartholomew,
1973). However, in many practical cases, dealing with expecta-
tions, we can stay within the deterministic approach and leave
the stochastic technique for the operational control stage. Thus,
it can be argued, that in order to solve real, large-scale opti-
mization problems in manpower and education, LP and its extension,
DLP, should be used.

There is some justification of the DLP approach to manpower
‘and educational optimal planning problems. The purpose of this
paper, however, is not to go further in this direction, but to
consider different optimization models in manpower and educational

planning using a unified approach.




This paper consists of three parts. In the first two parts,
different types of models are described; first educational models
and second, manpower planning.models. These parts consider first
a basic model and then some modifications and applications to this
model. Finally, the third part discusses briefly an integrated

manpower-—-economy model.

2. EDUCATIONAL PLANNING MODELS

First we consider educational planning models. Though some-
times it is difficult to make explicit differences between educa-
tion and manpower planning models, we shall refer to the education-
al process as a process of training specialists as opposed to the

promotion and recruitment processes in manpower planning models.

2.1 The Basic Model

In formulating DLP models, it is useful to consider sSeparately
{Propoi, 1976):

1. State equations of the system with the distinct

separation of state and control variables;
2. C(onstraints imposed on these variables;

3. Planning period T -- the number of steps during
which the system is considered and the length

of each step t;

4. Performance index (objective function) which

guantifies the quality of a plan (control).

State equations: The general scheme of the basic model con-

sidered is presented in Figure 1.
Let

xi(t) be the number of specialists of type i
(i=1,...,n) (speciality, grade, etc.) at
step t (each step eguals one year, three

years, six years, etc.); and



uk(t) be the number of entrants to the educational
system of type k (k=1,...,r) (schools, insti-

tutes, faculties, etc.).

It is assumed that T, Steps are needed for graduating from

the educational system of type k.

The vector x(t)=={xi(t)} represents the distribution of spe-
cialists at step t (manpower stock) and vector u(t)=={uk(t)}
represents the distribution of new enrollments at step t over
different types of educational systemg. Vector x(t) is the state

of the system and vector u(t) is the control variable.

The state equations describing the development of the man-

power system can be written as follows:

b., (t - Tk)uk(t— Tk)

| 13
Il ~K

xi(t-+1) = 54 aij(t)xj(t) + iy ik
(i=1,...,n; t=0,1,...,T=-1) (1)
or in matrix form
x(t+1) = A(t)x(t) + B(t~-T1)u(t-1) , (2)

where the notation T=={Tk} is used.

In the state equations (1):

aij(t) is the coefficient which shows how many specialists
of type j progress to group i between steps t and

t+1 (i,3=1,...,n; £t=0,1,...,T-1). In many cases

where (t) is called the manpower stock attrition

1-a,,
1
rate, a(t) becomes a diagonal matrix.




bik(t—Tk) is the coefficient which shows how many entrants

of type k at step t - 1, will obtain the speciality

k
i at step t (k=1,...,r; i=1,...,n; £t=0,1,...,T-1,
Tk<<T). These coefficients denote the ratio of

graduates of type i to the total number of students

enrolled in the type k educational system.

It is assumed that for the state equations (1) the initial

conditions are

0
%, (0) = x;
* 5 (3)

where xg (i=1,...,n), ug(t-Tk) (k=1,...,r; 0<t<7 - 1) are

given numbers.

If the length of each step t is equal to the maximum duration
of training in the educational system, then the state equations
(1) with time delay 1 will be transformed into state eguations

without time delays:
x(t+1) = A(t)x(t) + B(t)u(t) , (4)
where the length of each step is equal to the duration of train-

ing (for example, five vears). Matrices A(t) and B(t) should be

recalculated in this case.

For many practical cases, the matrices A(t) and B(t) are

constant:
x(t+1) = Ax(t) + Bu(t- 1)
and frequently in (4) B(t) is an identity matrix:
x(t+1) = Ax(t) + u(t) . (5).

In this case, the vector u(t) may be interpreted as the in-

crease in the manpower stock during time period t.



Insome cases it is necessary to take into account the flows
of specialists into and out of the system. Then the state equa-

tions (2) are transformed into the following:
+
x(t+1) = A(t)x(t) + B(t-T)u(t-1) + s (t) - s (t) ,

where the vectors s+(t) and s (t) can be considered either as

given exogenous variables or as additional control variables.

Definitions: The sequence of vectors u={u(0),...,u(T-1-1)}
denotes the control of the system (2) (or the enroliment plan
for a given planning horizon T). The sequence of vectors
x={x(0),...,x(T)} is the trajectory of the system (or the man-

power plan).

Choosing different enrollment controls u, we can define with
the state equations (1)-(3) the corresponding manpower trajectory
X. The problem is to find such enrollments over time as will
satisfy all the constraints of the system and be optimal in some
sense. Thus the second stage of the DLP model building is to

delineate the constraints on the variables.

Constraints: Basically constraints on the variables may be

broken down into three types: physical, resource and goal.

Physical Constraints It is evident that the number of people

cannot be negative:

\
o
'_l.
Il
—_
~

Xi (t) 'In) 4

(6)
(7)

\
o

u, () (k=1,...,r)

In the physical sense, the variables xi(t) and xk(T) are
integers. As the number of people in the system is usually large,
for practical reasons this restriction may not be taken into
account. (The running of the model in an integer programming form

is rather costly).




Resource Constraints These constraints can be written as

| >~
Q

where f(t) = {f1(t),...,fm(t)} is the vector of given resources
(educational faecilities) for training (teachers, buildings, equip-
ment, etc.); the coefficients dsk(t) (s=1,...,m; k=1,...,r)

show the amcunt of resources of tyve s needed per unit for

education of type k at step t. In matrix form
D(t)u(t) < f(t) . (9)

At times, it is more convenient to evaluate the required re-
sources by the total number of students of each type k(k=1,...,r)
at current time period t. In this case, the constraints (8)

are replaced by
(t-1) < fs(t) . (10)

In many cases 1t is necessary to single out the constraint on
the availability of teachers or instructors of different types.

Let:theyj(t) (j=1,...,J) be the number of available teachers
of type j at step t and gjk(t) be the ratio of required teachers
of type j to students enrolled in the educational system of type k.
Then the constraints on the teachers' availability can be written

in a similar (8) form:

r
) gjk(t)uk(t) < y.(t) (3=1,...,03) . (11)
k=1

Usually, the teachers (or some group of the teachers) constitutes
the part of the manpower stock. In this case

ys; (£) =} . (€)%, ()
1

J J



where hji(t)= 1, if the i-th type specialists are full-time
teachers and Ofihji(t)f.1 are part—-time teachers. Then the con-

straints (11) should be rewritten as

k§1 gjk(t)uk(t) < j§1 hij(t)xi(t) (12)
or in matrix form
G(t)u(t) < H(t)x(t) . (13)
In the simple models, the numbers fs(t) (s=1,...,m) and
yj(t) (3 =1,...,J) are the given exogenous variables. In more

detailed models these variables are considered as state variables
which are governed by some controllable activities in training
teachers and building other educational facilities (see Sections
2.2 and 2.4).

Goal Constraints Usually goals for the control of a system

are associated with the value of an objective function. However,
at times only some of them are introduced into the objective func-
tion. The others are considered as additional constraints on the
system. For example, the numbers of specialists of some tyves

i EI1 Cu=1{1,...,n} must be kept at given levels:

I
L
=

x, (t) ier,cI1 , (14)

i 1
or
x, (£) > x; () ier,crI . (15).
In some cases, one of the goals may be to bring the system
to the desired distribution of specialists at the end of planning

period

where X is a given vector (terminal conditions).




To satisfy constraints (14) in explicit form is rather costly,
if not infeasible. Therefore, instead of (14), it is more reason-

able to consider this ‘'type of constraint in the form

. , - n. - X, i € C

Xl(t) + £4(t) nl(t) xl(t) i I, =1 (17)
where the variables Ei(t)z_o, ni(t)z_O denote respectively the
shortage and surplus of specialists of type i in time period t and
&i(t) and ni(t) are additional control variables which are in-
troduced to the objective function. The approach is usual in

goal programming technique (Charnes and Cooper, 1961).

The general form of constraints on the system's variables can

be given in the form (Propoi, 1976):

G(t)x(t) + D(t)ult) < f(t)

x(t) > 0, u(t) >0
where f(t) is the given m-vector, and G(t) and D{(t) are the given

matrices with dimension (mxn) and (mXr) respectively.

Objective Function: The ultimate goal of a manpower supply
model is to meet the projected demand in manpower, thus increasing
the quality of the system. In the models considered, the projected
figures of required specialists of all types i are supposed to be
known for each step t of the planning period T, that is, the
numbers §i(t) are given for each i=1,...,n and t=1,...,T. The
goal of control of the system is to bring the manpower stock tra-
jectory {xi(t)} as close as possible, under given dynamic (1),

(3) and static (6)-(18) constraints, to the desired distribution
of specialists {;ft)}. This closeness can be evaluated by the

objective functions

T n
£=1 121
The a, (t) are the given weight coefficients, |x| is the absolute

value of x. In more general form,



T n " _
J(u) = )} ] o5 (x5 () =%, (£)) (20)
t=1 i=1
where
ol (t)x., , if x. > 0
1 1 1 -
t _
q)i(xl) -
2
o, (t)x. , if x. < 0
1 1 1 —

If a;(t)==-ai(t) for all i and t, then the objective function
(20) reduces to (19).

Problems with the objective functions (19) and (20) can
easily be reduced to a linear case {(Charnes and Cooper, 1961).

For this, the objective function is introduced

T-1 n 1 9
J= ] I lajBrg;(e) +aj(t)n ()] (21)
t=0 i=1

with additional constraints (17).

It is evident that both Ei(t) and ni(t) cannot be positive

at the same time. 1If the shortage of specialists is not desirable:

x; (£) > %y () (i=1,...,n; t=0,1,...,T) ,
then the objective function (19) can be directly written in

linear form:

n

J{(u) =

fl ~113

t

with additional constraints x, (t) -x, (t) > 0.

The other group of objective functions is associated with
the minimization of expenditures for education. If Bk(t) is the
cost of training per student of speciality k at year t, then the

total expenditure for education will be the following:
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T-1
J(u) = )
t:

=T

il ~1H

: Bk k(t) . (23)

0. k=1

Finally, if it is necessary to develop a special program for
training the greatest feasible number of specialists of the given
group I1 C I by the end of this program, then the problem can be
a maximization of the objective function

J(u) = ) a,(T)x,(T) , (24)

i€I

1

where ai(T), i€ I1 are weight coefficients for the eligible

specialities.

Summarizing, we can state the problem for the considered
model as follows.

Problem_2.1: Given the initial conditions
x; (0) = x| (i=1 n)
i i g ooy
= uwd(t - - ] _
U-k(t-"rk) —uk(t Tk) (k=1,...,1r; Oiti"fk 1)

and the state equations

n
xi(t-+1) ) a..(t)xj(t) + (t=-1.)

1 1) k

i~

b., (t - Tk)u

ik k k

1

(i=1,...,n; t=0,1,...,T-1)

with constraints

i~H
o
«
=
G
A

£_(t)
(s=1,...,m; t=0,1,...,T—1—Tk)
x,(£) >0 (i=1,...,n; t=1,...,T)

uk(t) > 0 |, (k==1,...,r;t==0,1,...,T-Tk-1)
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find a control

u = {u (0),u (1),...,u (T=1-1,) (k=1,...,0)!
and a corresponding trajectory
X = {xi(O),xi(1),...,xi(T)} (i=1,...,n)
which minimize the performance index
T n _
J(u) = ) ) oy (t) |x; (0) =% (&) | .
t=1 i=1

This basic model is flexible enough and allows various modi-
fications and extensions. But even in this simple form, the model
is useful in practice, as it takes into account in some optimal
way the main features of manpower planning models: the dynamic
of training specialists and the limits of available resources

(see Section 2.5).

It should be noted that the model considered above can be
interpreted either on a national/regional (macro) level or on an
institutional planning (micro) level. Below, some examples and

extensions of this basic model will be considered.

2.2 1Inwvestment Submodel

In the model considered above, the values of training fgci]1-
ities (buildings, equipments, etc.) were supposed to be given
beforehand, that 1is, the variables fs(t) in (8) were considered
to be exogenous. In many practical cases, it is preferable to
incorporate into the manpower model the subsystem for planning

the development of training facilities (e.g. construction of

buildings) .
Let z(t) ={zn(t)} be the vector of available training facil-
ities at step t (n=1,...,N). The vectors x(t) may conincide with

the vectors f(t) or be connected with them by some linear trans-

formation.
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There are M options (activities) in increasing training

facilities. Let

vm(t) {(m=1,...,M) be the funds allocated to the m-th
activity at step t; and

qnm(t) be the increase of the n-th facility per unit of

m-th activity at step t (n=1,...,N; m=1,...,M).

Then the state equations which describe the development of the

training fagilities will be the following:
M
z (£+1) = (1-8_(£))z (t) + m£1 qp (B) v (- 1) (25)
(n=1,...,N; £t=0,1,...,T=-1_-1)

m

where 1-—6n(t) is the depreciation rate for the n-th facility,

and T is the time lag for investments in the m-th activity.

In matrix form equations (25) can be rewritten as
z{(t+1) = (I-A(t))z(t) + Q(B)v(t-1) . (26)

The initial conditions

- 0 - -
zn(O) = zn (n=1,...,N) (27)
and
— O — . —
v e-1 ) = v (t-1) (m=1,...,M; O<tcr -1) (28)
are supposed to be known.
Ctearly,
2
zn(t) >0 , vm(t) >0 . (29)

The budget constraints can be given either for each step t:

M
) v (t) < c(t) (30)
m=1
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or for the total planning period:

where C is the given budget for the whole planning period.

In the considered case,vm(t) are additional control variables,

and constraints (8) should be replaced by the constraints

It~

] dnk(t)uk(t) <z (t) (n=1,...,N) (32)

where z(t)=={zn(t)} is the additional state vector of the system.

The development of capital stock for educational systems can

be described in a slightly different way:

z(t+1) = (I-A(t))z(t) + v(t) (33)

where vector v(t) {Vn(t)} denotes the total increase of capital

I

stock vector z(t) {zn(t)} in time period t. The constraints on

vectors v(t) are written in the form
R(t)v(t) < r(t); wv(t) > 0 (34)

where matrix R(t) specifies the resource requirements for educa-

tional capital stock development, ‘and r(t) is the vector of exoge-

nously given resources.

2.3 Vocational Training Submodel

Systems for vocational training or for improving professional
skill play an important role in educational systems. As in many
manpower systems, it is desirable to take into account the con-
tinuing process in education of the specialists.

The general scheme of professional skill improvement is pre-

sented in Figure 2.
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Let all manpower be broken down into n different grades
(groups). The transition of a specialist from one group to another
depends on whether this specialist enters courses for improving

his qualification or not.

Let

xi(t) be the total number of specialists of grade (group)
i (i=1,...,n) at the beginning of step t;

u?(t) be the number of specialists of grade i who at
step t enter courses for improving qualifications
of type k (k=1,...,r);

A(t) = aij(t) be the transition matrix for specialists
who do not enter any courses for improving
qualifications at step t,

Bk(t) = {b?j(t)} be the transition matrix for specialists

who enter courses at step t, Ty being the train-

ing time for courses of type k, and

Vi(t) be the new entrants to the type i manpower stock

at step t.

Then the equations which describe the dynamic of the dis-
triubtion of specialists over different groups will be the

following:

rooq nor K .
: aij(t)[f.(t) - k;1 uj(t{]+ .z ;1 bij(t—Tk)uj(t-Tk) + Vi(t)

n
X. (t+1) = 5
1 L J = L
= 3=1 k= (35)
or in matrix form
I x T ok k
x(t+1) = A(R) [x(t) - ) u (t{] + ] BY(t-T ,u (t—Tk) + v(t) . (36)
k=1 k=1 k

Equation t36) can also be written in the form

1 I k ‘ Kk
x(t+1) = A(L)x(t) + [B (t=1, ) u (t—Tk‘) - A(t)u (t)] + v(t)
1

k=
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Here x(t) 1s the vector of state variables and uk(t) are the vec-

tors of control variables.

A simpler version of the model is (r=1, 1, =0):

n n
x; (£+1) = j;[aij(t) xj(t) —uj(t)] + j; loij (Bu. () . = (37)

The initial conditions for (35):

— v
k _k
uj(t Tk) = uj(t Tk) .

The constraints can be written in the usual form:

r n
;T & ok < £
k=1 4=1 SJ J - S

where {fs(t)}is the vector of given resources [see (8)] and

Ik
xj(t) - kZ1 uj(t) > 0
x;(t) > 0 u}j‘(t) >0

With this model, different objective functions can be considered.
One is to meet given demand as closely as possible (22). Other
objective functions of practical interest are, for example, to
produce as many specialists as possible (24) (under given re-
sources and other limitations), or to minimize total expenditure
for education (23) with given requirements for manpower supply
(14) .

2.4 Three-Level Educational Planning Model

In this section, we consider the three-level educational
planning model, which incorporates three subsystems of specialist
training. This model is an optimization version of the Tinbergen

model (Correa and Tinbergen, 1962).
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The three levels in education are primary, secondary and
higher education (Fig. 3); or, in a health care system (Propoi,
(1978) nurses who graduate ffom medical schools, practical
physicians whograduate from medical institutes, and medical spe-
cialists of high level who are trained in special professional
courses (for example, postgraduates); or, in an industry, technicians,

engineers and researchers (teachers).

Some of the second-level specialists can be teachers for the
first-level educational subsystem, and all the third-level spe-
cialists are supposed to be instructors either for the second

level or for the third level educational subsystem.

We now consider the subsystems separately.

First Level: Let

Xi(t) be the number of specialists of the first level
type i (i.€I1) at time period t (the first level

manpower stock);

uk(t) be the number of entrants to the first level
educational system (schools) of type k (k(EK1)
at time period t;

al(t) be the proportion of specialists of the first

level type i (i.€I1) who leave the stock of the
first level labor force during time t because
of death or retirement (the first level man-

power stock attrition rate),

b.. (t) be the ratic of graduated specialists of the
first level type i to the total number of stu-
dents enrolled in the first level schools of
type k at time t (the first level graduating

ratio),

uil(t) be the number or entrants to the second level
educational system (institutes) of type k (kEEKZ)
from the first educational level of type i

(i 611) at time period t,
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T be the training period for the first educational
level of type k (k€5K1).

Then the state equations for the first educational level will

be as follows (iEEI1):
1 _ _ 1 1 1 U RO I N 21
xi(t+1) = (1 ai(t))xi(t) +.M££1 bik(t Tk)uk(t Tk) kéiz uki(t). - (38)

We have the usual conditions and constraints on variables

xl(t), u;(t) (see Section 2.1):

1

x;(0) = %] (L€1))
1 1, _ =1 1 1 . 1
uk(t—Tk) = uk(t—Tk) (Oitirk 1; KEK ) (39)
and
1 1
xi(t) >0 (t=1,. ,T: 1L€I)
(40)
u1(t) > 0 (t=0 T—T1-1 k€K2)
k - I 7 k 14
1 1 1 1
d k(t)uk(t) < £ (t) (s=1,...,8") (41)
k&gl 8 —~ s
and in addition,
21 1 1 21 . 1
uki(t) < ui(t)xi(t) , uki(t) >0 (1€e1) (42)

kEKR2

where coefficients ul(t) specify the availability of the first

level specialists for further education at the second level.

In (41), {f;(t)} is the vector of given resources (facilities)
for the first level educational subsystem (excluding teachers),
and d;k(t) is the amount of resource of type s which1is needed
for the education of each specialist of type k (k€K ) at time t.

The given resources vector {f;(t)} does not now include the

number of teachers available for the first level educational
system. In the three level model under consideration, these con-

straints can be treated separately.
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It is supposed that some of the second level specialists

are teachers for the first level educational system. The set of

all such specialities is denoted by 12 The set I2 of all second

1

level specialities contains the teachers set I?: 12 DI?. Let
2 : : s

also xi1(t) be the number of teachers available in speciality

i, EI%CIz at time t.

Generally speaking, a teacher spares only part of his work-

ing time for teaching; the other part may be left for practicing.
Let

8§, (t) be the ratio of teaching time to total working

time for the second level specialists of type
2 2

11€I1 (05611“:)51) and
gilk(t) be the ratio of required teachers of type i1
to students enrolled in the first educational
2. xexly.

level of type k (i_1 611;

Then the requirements for teachers of specialities of type
. 2 . L. .
1, €I1, which are necessary for training the first level students,

can be written in the form

2 : 2
: g-1k(t)u}1{(t) < (Si (t)Xi (t) (11613CI ) . (43)
kek! "1 1 1
Second level: Let
xi(t) be the number of second level specialists of
type i (iGEIZ) at time t (the second level
manpower stock);
ui(t) be the number of entrants to the institutes of
type k (kEKz);
ai(t) be the proportion of second level specialists

of type i (i.EIz) who leave the stock of the
second level specialists during time period t

(the second level manpower stock attrition rate);
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bik(t) be the ratio of second level graduates of type
i (1 e12) to the total number of students en-
rolled in the institutes of type k (kaKZ) at
time t;

uii(t) be the number of second level specialists of
type 1 who enter the third level educational
subsystem at time t (i 612, k<5K3);

Ti be the training time for the second educational

level of type k (k<5K2).
Then the state equations for the second educational level

subsystem will be the following (i.EIz):

X (e +1) = (1-a) (0)x (1) (44)

2 2 2 2 21 2 _ 32
+ kng bik(t - ”L'k) [uk(t - Tk) + iéﬂ uki(t - Tk)] k£K3 uki(t)

Equations (44) are valid if the teachers (for the first educa-
tional level, i.GIf) divide their working time between practicing
and teaching. In this case, the real manpower stock should be

introduced by:

. (t) , ifi%l"f ,
x.(t) = (45)

2 . . 2
[1 —5i(t)]xi(t) , if 1 € I

If the teachers do not practice and thus really leave

the second level manpower stock, then the right side of the equa-
2

tion (44) should be reduced by the terms di(t)xi(t) fofri<EI1.

The initial conditions

2 =2 .2
xi(O) = x; (1€1™)
2 -2 2 2 2
uk(t—Tk) —uk(t—Tk) (OitiTk_1’ k €K™) ' (48)
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and constraints

x5 30 (1€1% t=1,...,T)
2 2 4
2
uk(t) >0 (k€K"; t=0, ,T—Tk—1)
2 2 2 2
Lo ds _(t)ul(t) < £2(t) (s=1,...,8%) (48)
keK2 sk k s
32 2 2 32 .
u” . | < or(t)x.(t); u . (t) > 0 €1
kezKB ki (8) < oy (B)x,(t) kl( ) > (1 ) (49)
have similar form tc those for the first level subsystem. (Con-

straints in teaching facilities of the second level subsystem

will be considered later).

Third level: The third level subsystem is the highest educa-

tional level in the considered model. Let

xi(t) be the number of third level specialists of
type i_(i.€I3) at time t;

ai(t) be the proportion of third level specialists of
type 1 (iEEI3) who leave the stock of the third
level labor force during time period t because
of death or retirement (the third level manpower
stock attrition rate);

bik(t) be the ratio of third level graduates of type
i (i_GIB) to the total number of second level
specialists enrolled in the third level educa-
tional subsystem of type k (kEEK3) at time t;

Ti be the training time for third level specialists

of type k €K3.

Then the state equations for the third level educational subsystem

will be the following (i €1I°):

X(E+1) = (1-ad () () +  b) (t-1) ] we(t-1) (50)

kK3 jere
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It is supposed that there is not any enrollment to the third level

educational subsystem outside of the system.

The initial conditions for the third level subsystem.are:

x3(0) = X3 (1 e1°)

1 1 (51)
32 3, _ =32, 3 3. 3 .2
ukj(t-rk) = ukj(t ) (O<t<r -1 k€K, JEI)

Each specialist at the third level is supposed to be a teacher
either for the second level or for the third level educational

subsystem. Let

5i(t) be the ratio of teaching time to total working
time for the third level specialists of type
i (1€17);

gii(t) be the ratio of required third level teachers

of type i (i.€I3) to students enrolled in the
second educational level of type k (kGEKZ) at time t;

gik(t) be the ratio of third level teachers of type
i (i_€I3) required for training the second
level specialists enrolled in the third educa-

tional level of type k (kGEK3) at time t.

Then the requirements for teachers for both the second and the

third level educational subsystems can be written in the form
. 3

(Le€e17)

32, 2
)

.3 32 3 3
g, (t)u, (t) + _giy (B)
kek2 ik k kezKJ 1k :

. . c(t . 2
R R (52)

The real manpower stock of third level specialists will be defined

by the expression

)= n-sdmixdie , derd . (53)
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Other constraints for the third level subsystem are written

in the ordinary form:

3 . 3
x;(t) > 0 i€l
e L 5 oY
] € . . = - -
ukj(t) > 0 (J€I7; k€K7; t=0,1,...,T Ty 1)
2
al (1) T wde) < £2(0) (s=1,...,87) (55)
kek3 S jerz *J - s
where f30t)= {fg(t)} is the vector of given resources (facilities)

for the third level educational subsystem (excluding teachers)
3
and dsk

needed for training one specialist of type k at time t.

(t) is the amount of the resource of type s, which is

Objective function: Considering the state equations and
constraints for these three levels, one can see that if the num-
ber of steps T for state variables {x](t),x2(t),x3(t)} is fixed,
then the duration of control sequences will be different for con-
trols of each subsystem (see Figure 4 where shading denotes the
given a priori values). There are several ways to treat this
situation. For example, one can choose large T and consider
all the variables onty for the period which is =squal to
mhu{T-—1—T;,’P—1-—ri,1“—1—Ti},or assume that the number of steps

for all state variables is the same and is ecual to T (Propoi, 1978).

We shall now formulate the performance index for this model,
which will quantify the quality of a chosen plan of enrollment

for all three educational subsystem levels.

It is supposed that the projected figures of demand for each
level of specialists are available for all time periods t of

nlanning period T, that is, the numbers

X! (6), X2 (t), X2 (t) (1.€1'; i.€1%; i, €1 (56)
i i i 1 2 3
1 2 3
are given for each t=1,...,T.

The objective in planning the three-level model under con-
sideration is to determine a plan for enrollment to all three

educational subsystems
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®, ', ®, 9% ® k ek ke 1

211 2 32

1 3 . 2
- -
1EI,k3EK ,12€I)

for each t:=0,1,...,Tv-1 where Tv is different for each vy-th
(v=1,2,3) subsystem (Figure 4), which satisfies all the dynamic
and static constraints of the system and yields the manpower
stock [see (45) and (53)]:

1 ~2 ~3 . 1. . 2. 3

) x: (t) (11 €1 ; i, €1°; i, €I17)
as close to demand (5¢6) as possible for the whole planning horizon

t=1,...,T. Thus the objective function can be written as

J = rlf T. al(t) [x](t) - %) (t) |
e=1 i€l . .
+ 151 . al(t) [Q?(t) - x2(t) | (57)
t=1 ier? 1 1 .

T
3 ~3 3
+ a; (B) |X7(t) - X7 (t) ’
21 ié;3 i | i i l

where al(t) (1e1y, ai(t) (i €1, ai(t) (i €1°) are some weight-
ing coefficients, and i%(t) and iz(t) are defined by (45) and
(53).

Remarks The three level model, like Problem 1, allows dif-
ferent modifications and variants.

a. The simple case of this three level system is when
types of education specialities directly correspond to the spe-
cialities in manpower stock. Then the state equations (38)

(48) and (50) are replaced by the following [cf. (5)]:
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1 21

B 1
x; (E+1) = (1-a, )x; (8 +u; (t) - 'Z up 4 (t)
1 15 1 i tal
2
X (E+1) = (1-ma )% (O + v (©0+ [, (0 - Fue, (58
2 2 1 2 i, 2 i, 3%
X (E+1) = (1-a, )x> (1) + § w2 (1) (i, €I1',i,€1%,i,€19)
i i i . 1.1 1 2 3
3 3 13 i, '3t

The state equations (58) yield DLP problems of a transpor-

tation type (Propoi, 1976).

b. 1If in the state equations (33), (44) and (50) the
transitions from one group i to another j are permitted, then the
terms (1-ai(t))xi(t) in these equations should be replaced by
the § aij(t)xj(t) (cf. (1)1.

c. It was supposed above, that each specialist who enters

the next educational level, graduates from it. If we assume that
2 3
(1 -bik(t)) and (1 -bik

and third educational levels, then the dropouts

(t)) are the attrition rates for the second

- 2 2 2 27 2 1 . 1
Yo D-by () 1 (e-10) + ) (1)) =z, (t), i, €1
2 ik KRk &1 Y%i'Y Tk i 1
and
3 3 32 3 2 . 2
} o5 (=br (et ] S(t-T) =20 (t), i, €1
3 Lk e Y%k i, 2
should be added to the second and third level manpower stock in
time period t. Here 211(t), i.1 GI1 (zi (t), 126512) is the num-

ber of specialists of type i1 (i2) who do not graduate from the
second (third) level educational subsystem and therefore return

to the first (second) level manpower stock.

d. As was mentioned above, the considered model is an op-
timization version (see also Propoi, 1978) of the Tinbergen econ-
ometric model (Correa and Tinbergen, 1962 and Bowles 1969). 1In
the latter case, there is no freedom in the choice of enrollment

to all three educational levels, and the state equations are
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used to derive a set of required enrollments for an exogenously
given rate of economic growth. This economic growth determines
the demand for labor force (56), and the problem then is to cal-
culate from the equations (38), (44) and (50) such enrollments

for which
X (t) = x. (t); i\) € I , V= 1,2,3'
hold.

2.5 Some Applications and Comments

Above, the basic model and its modifications and variants
were considered. These modifications can either be reduced to the
basic Problem 1 or DLP methods can be directly used for their
solutions. Now we consider some applications of these models

(see also the survey of McNamara, 1973).

a. On the national level, a DLP model for a developing coun-
try's educational system was considered by Bowles (1969) (and has
been applied in Canada). The control variables include enrollments
and resources used at the various educational levels (primary,
secondary, technical and higher). The model allows the inclusion
of the import of a number of types of educated labor and the
sending abroad of students for their education. Thus for some
types of labor, there are three cptions: the production of labor
to a given level of schooling within the system; the production
of labor outside the system; or the importation of labor possess-

ing the required educational attainments from outside the system.

Constraints reflect the availability of different types of
teachers, student enrollments and transfers among the various
types of schools, school construction and current facility usage,
teacher recruitment or importation, and legal restrictions. Pro-
duction processes in the rest of the economy are not included in
the model explicitly; that is, the demands for the outputs of the
educational system and the supply for educational inputs are given

exogenously.
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The time period of only eight years was chosen for a planning
horizon, but the model is operated on a year-by-year sequential
basis . (That is, for each current state of the system, which is
considered as initial, a new 8 year plan is computed- The process

is then repeated for the next year).

From a mathematical point of view, there are hno state equa-
tions and state variables in explicit form (in Bowles, 1969).
However, the model can be easily reformulated in the DLP format
of Problem 1.

b. Optimal investment policies for education were considered
by Ritsen (1975 and 1976. The investment problem considers the
distribution of a given budget over courses (Ritsen, 1976) or the
balanced increase of the number of teachers and the volume of
the buildings (Ritsen, 1975). The objective in the first case is
to minimize the deviation of the actual manpower available from
the manpower targets. In the second case, it is the minimization
of total funds allocated to the system. These models were for-

mulated in quadratic forms but can be reformulated in DLP terms.

c. A simple multiperiod model for a training program was
considered by Balinsky (1974). The objective function is composed
of an educational cost and manpower shortage or supplus cost
components. The model may be used for planning a training pro-
gram for high school dropouts, or high schocl graduates or a
Master's degree program of a particular speciality. Due to the
small dimension of the problem considered, a dynamic programming

method was used for its solution.

d. On the institutional level, a DLP model was considered
by Walters, Mangold and Haran (1976) which was designed to aid
the administrator of a school in planning and decision-making for
a five-year horizon. There was no constraint, implicit or expli-
cit, put on the structure of the school to be modeled. The school
may be interdisciplinary, or organized by departments, and thus
the model can represent the university itself with a little modi-

fication. The optimization model was formulated in goal



-27-

programming terms and for the prototype case, has a dimension of
436 constraints and 966 variables. The problem was solved on an

IBM 370/175 using MPSX.

A simple DLP model was used by Averill (1975) to analyze ad-
mission policies for Yale University under the conventional two-
term operation and with the proposed summer term. The objective
of the model was to determine the admission policy, which maximizes
the number of students in residence (therefore minimizing the
number of vacancies) subject to constraints on enrollment capacity
and admission mix. The model's advantage is that the basic data
required to run it is normally available. Thus, the model can

be used by other universities to aid in their enrollment planning.

e. Other educational planning models are considered, for
example, in Bartholomew and Morris (1971), Bermant (1972 and 1975),
Khan (1971), Menges and Elstermann (1971), Law (1977), McNamara
(1973), Riordon and Mason (1971), Sinha and de Cenzo (1975), and
Smith (1971). It should be noted that frequently the models are
used on a simulation basis. For example, enrollment of new en-
trants is determined by a multivariable regression model and then
the state equations of the (1) type are used for the forecasting

of manpower or total students stock [see, for example, Law (1977)1.

3. MANPOWER PLANNING MODELS

The structure of this section, in which manpower models are
considered, is similar to the previous section on educational
models: first, basic models are introduced (there are two models
here: one is with recruitment as a control and the second 1is
with promotion as a control), then different modifications and

applications are discussed.
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3.1 Basic Model I

State Equations: Consider a population which is partitioned
into n grades (ranks, classes, age groups, regions, specialities).
Let Xi(t) be the number of people ingrade i (i =1,...,n) at time
period t; xi(t) is the stock of manpower grade i at time t; coef-
ficient aij(t) be the proportion of people in grade 1 at time
t +1 who were in grade j at time t, and ui(t) be the number of
recruitments in grade i at time t. Then the state equations which
describe the dynamics of the system can be written as follows

(i=1,...,n; t=0,1,...,):
n
x;(t+1) = ) a . (t)x;(t) + u; (t) (59)

or in vector form

x(t+1) A(t)x(t) + u(t) . (60)
Here x(t)=={x1(t),...,xn(t)} is the state vector, and ul(t)

= {u1(t),...,un(t)} is the control vector.

In many cases, AT(t)==P, P being the transfer (promotion)
matrix with elements pij (probabilities with which members of
grade 1 move to grade j). In this case, state equation (60)

is replaced by
x(t+1) = x(t)P + u(t) , (61)

x(t) being a row vector.

Hence, the equation (59) allows stochastic interpretation
with Xi(t) as the expected number of people in grade i at time t
(Bartholomew, 1973; Grinold and Marshall, 1977).

A more general form of the equation (59) is when recruitment .
vector u(t) has the other partition in comparison with the manpower
stock vector x(t): {u(t)-= uk(U} (k=1,...,r). In this case, the
matrix B(t)={bik(t)}is introduced which shows the distribution
of recruitments of type k over the manpower stock grades i

(i=1,...,n) and the state equations (59) is replaced by [see (28)]:
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x(t+1) = A(t)x(t) + B(t)u(t) . (62)

Initial state in the state equation (59) is supposed to

be given

x(0) = x0 . (63)

Using (59) and (63), the state variable x(t) can be ex-
pressed as a function of controls u(t) in an explicit form
(Propoi, 1973):

0 t-1
x(t) = o(t,0)x + J o(t=-1,7+ Nulr) , (64)
=0

where

o(t,t) = A(t) ... A(1);

d(t,t+1)

I
[}
-
(o
'_l
[}

an identity matrix.

We can rewrite (6G4) as

t-1
x(t) = x(t) + ) W(t,t)ulr) (65)
=0
where
x(£) = o(t,0x°

W(t.t) = d(t-1,7+1) ,

and in matrix W(t,t) coefficient wij(t,T) is the proportion of
people entering grade j at time period 1 who are counted 1n grade
i at time period t (t>71; i,3=1,...,n); §i(t) is the legacy in
grade i at time t, which denotes the contribution of past inputs
(t <0) to the stock at future time t.
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Frequently, the matrix A(t) is constant over time: A(t) =A.

In this case

d(t, 1)

Il
>
1l
=
t
I
~
S
P
Il
>
s

wW(t, 1)

and instead of (45) we have

x(t) = x(t) + tz1 W(t-1nu(t) . (66)
=0
If we assume that M is the maximum number of time-steps with
which an individual is encountered, then only (M+ 1) matrices
wW(0),...,W(M) are needed for describing the flows through the
system. In this case, (66) is replaced by
t M
x(t) = ] W(t-0u(s) = ) W(Dult-1) . (67)
g=t-M =0
Models which are described by the state equations (59) are
called cross-sectional models in (Grinold, Marshall, 1977), as
compared to longitudinal models, which are described by equations
(65) or (67), in which state variables are excluded. The con- .
nection between the two types of models are given by (64) (see also
Zadeh and Desoer, 1963). The longitudinal models attempt to
describe the flow of a group (grade) through the manpower system

over time and are based on the entire history of the group (67).

In the cross—-sectional models, which are described by the
state equations, the history of the group, if necessary, is in-
cluded in the definition of the state of the system. For example,
if the partition of manpower on the ranks, specialities, etc. is
not sufficient for predicting the future behavior of a manpower
system, then a new component -- the length of service (LOS) of an
individual -- should be introduced to the state of the system. In
this case, the state equation (59) is replaced by (Merchant,
1977) :
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‘ n
o+1 _ o o
x; (t+1) = 21 ajy (B)x5 () + uj (¢) (68)
where x?(t) is the number of people of LOS a in grade j at time
period t (a=1,...,N), N being the maximum length of service in
the system. Clearly, (68) can be rewritten in the matrix form

(59), where the matrix A(t] is now:

0 0o ..... 0 j
altey o ..... 0
A(t) = |0 A%y ... .. 0
0 0 aN(t)
and x(t)=={x?(t)} (i=1,...,n; a=1,...,N).

Thus, it can be argued that the description of the model in
the form (59) is more preferable because it is much simpler to
solve the problem with the state equation (59) as well as to
analyze and implement the solution than to use equation (65)

(see Propoi, 1973 and 1976).

Another advantage of the state-space description of the system
is that it allows us to introduce a notion of feasible (attain-
able) sets, which is useful for the analysis of the manpower sys-
tem behavior. But before doing that, we have to describe the

constraints on the system.

Constraints: Clearly,

ui(t) > 0 and xi(t) >0 , (i=1,...,u) (69)
(the remark in Section 2.1 on the integrity of the variables is
also valid for manpower models). If both hiring and firing are
used in the system, then ui(t) is not sign-restricted and

ug () = ul(t) - ul(t) ; ui(t) >0 , uj(t) >0




-32-

The resource constraints are usually associated with the

limitations on the total size of the organization:
n
}ox, (B) = X(t) (70)
or for each grade:
x; (8) < x(t) (i=1,...,n) (71)

where X (t) (§i(t)) are given, and/or on the size of recruitment:

n
) ou.(t) < Ut) (72)
. i —
i=1
or
u (8) < ug(e) (i=1,...,n) . (73)
The goal constraints for manpower models have the same form
as in (14)-(17). The constraints considered can be written in

the general form:

G(t)x(t) + D(t)u(t)

A
Hh
—
+
~
-
—
~J
=
~—

\'
o

x(t) >0 , u(t)

After delineating all the constraints on the system, we can
define the feasible sets of the system. Let X be the state space
of the state variables x(t). We shall call the sequences of vec-
tors u={u(0),...,u(T-1)} and x={x(0),...,x(T)} by the feasible
control and feasible trajectory, if they satisfy all the con-

straints of the system.

The feasible sets of the system, described by the state
equation (55) and constraints (74), are the sets of all

states in X, which can be attained from the given initial state
t(xo) the feasible

set of all states x(t), which are attainable from xo at t steps.

at the given number of steps. We denote by R

Formally, the feasible sets Rt(xo) can be defined by recurrent

formulas (Propoi, 1973):
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R, (0) = {x(1) | x(t) =A®)x" + B)u(0);6(0)x° +D(0)u(0) < £(0); u(0) >0}
R, (x") = {x(t+1) | x(t+1) =A(E)x(t) + B(t)u(t) ;G(t)x(t) + Du(t) <£(t);
x(t) €R ()5 x(t) 20; ult) >0} (£=2,3,...) . (75)

Obviously, feasible sets in this case are convex polyhedrons.

Objective Function: We can single out two basic types of
objectives in manpower systems: minimization of the total devia-
tion between feasible and required manpower for a whole planning
horizon, which can be expressed in (19)-(22) form; or minimi-
zation of the total expenditures for operation and development
of the manpower system, which can be expressed in the form

J = TE1 E [c] (£)x, (t) + c?(t)u.(t)] . (76)
t=0 i=1 * % i

Thus, we can formulate the following basic model.

Problem 3.1: Given the initial state

and the state equations
x(t+1) = A(t)x(t) + B(t)u(t) (t=0,...,T-1)

with constraints

G(t)x(t) + D(t)ult) < £(t) ,

X(t) _>_ 0[ u(t) < 0 ’

find a control u={u(0),...,u(t-1)} and a corresponding trajec-
tory x={x(0),...,x(T)}, which minimize the objective function
T-1 n _
J = ) oo (B) | x.(8) - x,(t)]
t=0 i=1 * t *
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This basic model is applied to the manpower control prob-
lems by recruitment (Bartholomew, 1973). Modifications of the
basic model as well as some applications are considered in Section
3.4,

3.2 Basic Model II

In the basic model considered above (Problem 3.1), the con-
trol variables are recruitments. Another type of governing of
a manpower system development is the control of transients from

grade to grade over time. To describe models of this type, we
have to express the internal flows in the system (see Fig. 5).

State Equations: We use the same partition of the manpower
into n grades as in the previous section. Thus, xi(t) is the
manpower stock in grade i (i=1,...,n) at time t. Let uij(t) be
the number of people in grade i at time t+ 1 who were in grade j
at time t (flow from j to i in time period t). Then the state

equations of the manpower system will be the tollowing

n n
x; (84 1) = %, (€) + z u, . (t) - 21 uji(t) + z, (t) (77)

with initial condition

Xl(O) = Xi (i=1l°"ln) - (78)
Here zi(t) expresses the external change in manpower stock.
It may be, for example, the exogenously given change in the popu-

lation of the system due to deaths and births:

+ _
Z-(t) = zi(t) - zl(t) H (79)

where zTCU >0 and z. (t) >0, or may also include the changes in man-
it = i —

power due to recruitment and dismissal:

2, (£) = z3(t) = 23 (E) + ujq(t) = Uy, (E) - (80)

where uio(t)3_0 and u i(t)g:O are the controllable flows from

0
outside the system to grade i and outside the system from grade 1i
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in time period t. In this case, the model includes both types

of controls: "promotion" and "recruitment".

Sometimes it is more convenient to express the uncontrollable

component of zi(t) as a proportion of the current manpower stock:
z, (t) -z (t) = (1-a;(t))x;(t) (81)

where ai(t) is the attrition rate in the manpower stock of grade

i at time t.

Constraints: Clearly,

x,(t) >0 uij(t) >0 .
The upper bounds on the control variables can be given either

in the form

0 < uij(t) < uij(t) (82)

where Gij(t) are given numbers, or in the form

0 < u..

1](t) < oy () x, () (83)

J

where 0_§aij(t)_i1. The upper bounds on the state variables are

given in the form (70) or (71).

The resource constraints usually have the form [cf. (8)]
iij dgjq (Bluy (8 < £ (£) (84)

where dkij(t) is the required amount of resource k per transition

of unit (e.g. 100 persons) from grade i to grade j at time t; and

fk(t) is the given amount of resource k at time t.
Objective Function: The objectives for this type of model
are the same as for the model considered in Section 3.1. Thus,

we can formulate the following basic model for control by promo-

tion.
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Problem_3.2: Given the initial state
0
x; (0) = X5

and the state equations
n n
x;(E+1) = %, (8) + 2 u, . (t) - g u, . (t) + 2. (t)

with constraints

by dyjy (Blugy () < £ (¢)
i,3
0 < uys () < oy (E)x; (6)
n
Z x; (8) 2 X(t); x.(£) >0

which minimize the objective function

T-1 n _
J= ) ) o,(t) |x,(t) =%, (t)]
t=0 i=1
The problem 3.2 is a DLP problem of the transportation type
(Propoi, 1976) in comparison with the problem 3.1, which is a

DLP problem of the general type,

We will now consider some extensions and modifications of

these basic problems.

3.3 General Manpower Planning Model

The basic models (Problems 1 and 2) allow us to build the
general manpower planning model which comprises all major fea-
tures of a manpower system. This model was developed by Ivanilov

and Petrov, 1971.

We consider a system with its population partitioned into
some groups (grades). Let I be the set of these groups, xi(t)
be the number of people in group i €I at time period t. Consider-

ing the state equations (77), we note that in fact not all
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trangsitions from orie group to another are permitted. 1In addition,

it is necessary to distinguish ways of transition from i to j.

Thus, we denote by uij(t) the number of individuals of group
j at time t who begin the transition from j to i, using the s-th

way of transition,Tij being the time for this transition.

Let J+(i) be the set of groups j, the representatives of which
can transit to group i; J (i) be the set of groups to which tran-
sitions from grade i are allowed and S(i,]j) be the set of all
possible transitions from j to i. We assume that transition

from group i to group j by way s takes Tij time steps.

Then the state equations (77) with (80) can be gener-

xi(t) + Z Z u:?.j(t_T?.j)

jeat (i) s€s(i,j)

:E: :E: S, (€) + u;,(€)

alized as follows:

xi(t-+1)

jl
JEI (i) s€s(j,i)
(85)
- u..(t) + zT(t) - 27 (1)
01i i i !
(i€1, t=0,1,...,T-1)
The initial staté

(0) = x0 (i€l (86)
Xl = l ta X 8}

and preplanning controls uij(tL't< 0, are known.

The equations (85) represent the general type of state equa-

tions and include the case (59), when

n
+ - —
x.(t) + z,(t) - 2,.(t) = 21 aij(t)xj(t) ,
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and (77), when

 (t) = Z uS.(t)

Y15 .. i)
s&S(1,3)

and all transitions from i to j are possible. As usual, all state

and control variables are nonnegative:

S

x;(£) >0, ufi(t) >0, wg (t) >0, ug,(t) >0 . (87)

0i - 0i

The upper bounds on transitions can be given in the form

S (t) < =S

0 < uij < uij(t) (88)

where Gij(t) are given, or in the form

s s
0 < uij(t) < aij(t)xi(t) ' (89)
where coefficients aij(t), O_:aij(t)_i1 are given [cf. (82) :and
(83)]. The upper bound constraints on variables xi(t) and uOi(t),
uoi(t) are written in the form (70)-(72).

The resource constraints are a generalization of constraints
(10) and (84):

3. -1 (90)

ij
Z Z Z Z diij(t,r)uij(t—r) < fk(t)(kEK)

i€r j€J+(i) s€S(i,3) =0

where diij(t,r) is the required amount of resource k per unit
transition from group i to j, when the s-th transition is used;

K is the total set of required resources.
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The resource constraints (90) are usually associated with
facilities for the people's *raining (e.g. building and equipment).
In addition to (90), we can single out the constraints on teachers'
(instructors') availability. Among all groups I of the system

population, we single out the set I, of the groups of teachers

0

(instructors) : IOCZI. Let giij(t,f) be the number of required

teachers of group k€I, for insuring the unit transition of people

0
from group i to group j when the way s is used. Then the con-
straints on teachers' availability can be written in the form

similar to (90)

S (943)

T, .1
Z Z Z i Gpiq (B DU (BT < xp () (KET)

ier jegt(i) s€s(i,j) 1=0

xk(t) is calculated from the state equations (85).

The goal constraints are analogous to the conditions (14)-
(17). We can consider different objectives with this model.

These objectives can be broken down into the following groups:

1) To bring the system (manpower stock {xi(T)}) as close
as possible to the desired state ii(T)(iEEI) at the
end of the planning period, or to keep during the
whole planning period t=1,...,T the manpower stock
{xi(t)} as close as possible to the given demand
in manpower xi(t)(iGEI,t==1,...,T) under given re-
sources and other constraints. The objective func-

tions for this case can be expressed as in (19)-(22).
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2) To minimize the total expenditure for the system's
transition to the given targets, which are expressed
by (14)-(16).. The objective function for this case

can be written in the form [cf. (23)]:

'—3

-1

Z Z Z Z Z 5 (D ufs (=) (92)

t=0 i€ex1 Jat (i s€S(i,]) =0

3) To maximize outputs in eligible groups of specialists
to the end of the planning period. The objective func-

tion for this case has the form of (2u4).

4) To combine planning (or policy analysis) &n manpower
and economy development. In this case, the objectives
should be of economic character rather than boumnd
by an "optimal" development of only manpower systems

(see Section 4).

3.4 gome Bxamples and Applications.

Now we consider some examples and applications of the models

described above.

A. Control by Recruitment These types of models relate
to the basic Model I. 1In the simple versions, the constraints

have the form (70) :

x.(¢) >0 , wu,(t) >0 ,

where X(t) is the given size of the organization, and the objec-

tive, for example, is to minimize the total salary bill

T n
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where ci(t) is the average salary cost in grade i at time period
t, or to minimize the total under- and over-manning in various
time periods and grades. The objective function is in this case

expressed by (21) which is eguik%alent to (19).

These types of models were considered by Bartholomew (1973);
Charnes, et al. (1969 and 1971); Dbavies (1973 and 19¥6); Grinold
and Marshall (1977), and many others.

It should be noted that many models considered in the ref-
erences mentigned above are not formulated in the exnlicit form

of Problem 1, but can be easily reduced to Problem 1.

b. Attainable Structures 1In a number of models, objec-

tive functions are given in inexplicit form. For this case, we

introduce feasible sets Rt(xo) (t=0,1,2,...), that is, the sets
of all states x(t), which are attainable by feasible controls

{u(0),...,u(t-1)} at t steps [see (75)].

Using this notion of the feasible sets, one can formulate
the following problems:
1. Find a structure X which can be obtained from the
initial state xo in T steps. Thus, the problem

is reduced to finding such a state x, which belongs

T
to the feasible set RT(XO) (T and x0 are given) :

0
X € RT(X )
This problem, in turn, is equivalent to finding an
arbitrary feasible control {u(0),...,u(t-1)} for

basic Problem 1 for given x0 and T.

2. Find an initial structure xo, from which the given
terminal structure Xq can be obtained [that is, find
xo for which XTGERT(XO)]. This problem can be reduced
to Problem 1 if the additional control variable x0 is
introduced and is equivalent to finding a feasible con-
trol {xo,u(O),...,u(T-1)} in Problem 1 with additional

condition x(T)==xT.
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3. Find reattainable in T steps structure x (that is, find

x, for which xfERT(x), and T is given).

This problem is equivalent to finding a feasible con-

trol in Problem 1 with the additional condition

where x is a new control variable.

Problems of this type were considered, for example, by
vajda (1975) and Bartholomew (1973). 1In some of these papers, pro-
perties of the feasible sets were investigated or simple numerical
examples were considered. As one can see from above, all such
problems are reduced to finding a feasible control in a corre-
sponding DLP problem and, therefore, standard LP or DLP methods

can be directly used for their solution.

c. Control by Promotion This type of problem is asso-

ciated withthe basic Problem 2. However, frequently both types
of control -- recruitment and promotion -- are used simultaneously
(see for example, Forbes, 1971). In this case, the models are
formulated as described in Section 3.3. The models of

these types may be used both on a national/regional (macro) level

or an institutional (micro) level.

On a regional (national) level, the flows of people from one
group to another are usually caused by some training or educa-
tional course (for example, vocational training). In this sense,
these models represent a flow type educational planning model
and in fact, were described in Section 2.4 (see also Ivanilov

and Petrov, 1971).

On an institutional level, the problem is to analyze the
best promotion and recruitment policies in an organization under
given requirements in manpower, and budget and other resource

constraints.
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An interesting model of this type is described by Billionnet
(1977). This model is operational at the Direction Centrale de
1'Aprés-vente of the Régie Nationale des Usines Renault and al-
lows one to study organizations including approximately 50 jobs
and a few thousand persons. With this model one can determine
answers to many questions regarding a large or small organization
in the short and middle terms. In the short term, it allows
finding the best movements to face an unexpected departure, a
promotion, or other individual hazards. In the middle term, it
allows allocation movements over time in order to face the ex-
pansion, the stagnation, and the regression of the different de-

partments of the organization.

Different manpower models using promotion as a control were
considered by Bartholomew (1973); Holl, Legrat and Benayon (1971);
Morgan (1971); Stanford (1976) and others.

4. LINKAGE WITH ECONOMY MODEL

In the considered educational or manpower models, the demand
for manpower and resource constraints for education are given
exogenously. Of great interest is the analysis of interrelations

between manpower and economy development models.

When the interaction between manpower and economy develop-
ment is analyzed, two major options should be taken into account:
development of some sectors in an economy in order to absorb the
projected surplus in manpower of certain types and development
of educational facilities in order to fill up possible shortages
in manpower for other sectors of an economy. Besides, we have
to add possibilities of labor force migration into and out of the

system.

The problem should be disaggregated on major economic acti-
vities (various industrial sectors, agriculture, construction,
transportation, public administration and other services) and

on the levels of education (primary, secondary, higher).
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Below, we consider a simple integrated optimization model of

economy-manpower interaction.

Let m(t) be the vector of skilled manpower at time t, n(t)
be the vector (of the same dimension) of the manpower increase
during time period t, and P(t) be the transition matrix. Then
the state equations for the manpower/educational subsystem will

be the following [see (5)]:
m(t+1) = P(t)m(t) + n(t) . (93)

The training of people requires resources; first of all,

teachers [see (13)1]:

n(t) < om(t) (94)

and second, buildings and equipment (8)
n(t) < ye(t) (95)
where ye(t) is the vector of capital stock for theeducational: 'sub-

system. The development of this subsystem can be expressed in

the same terms as development of the production system:

ye(t-+1) De(t)ye(t) + Ve(t) (96)

y(t+ 1) D(t)y(t) + v(t) (97)

where the subscript e refers to the educational subsystem, De(t);
D(t) are depreciation matrices. The balance of goods production

and their consumption for the total system will be the following

(I-A(t))z(t) = B(t)v(t) + Be(t)ve(t) + w(t) (98)

with constraints

z (t) < y(t) (99)
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and
L(t)z(t) < m(t) (100)

where the matrix L(t) specifies requirement in skilled labor for

each sector of economy, z(t) is the vector of gross outputs.

The connection between consumption vector w(t) and manpower

vector m(t) is assumed to be given as
w(t) = g(t) + F(t)m(t) (101)

where g(t) is the exogenously given vector of governmental con-
sumption, and the matrix F(t) expresses the consumption profile
for different categories of manpower. Conditions (100) and (101)
describe the linkage between the educational (93)-(96) and economy
(97)-(99) submodels.

The development of the educational system is upper bounded

by ithe growth of population
n(t) < Hx(t) = n(t) (102)

where x(t) is the population (sex/age) distribution vector and
can be obtained from demography models (see, for example, Rogers

1975), and H is a matrix.

With the model (93)-(102), optimal policies with different
objective functions can be analyzed. Here, for certainty, the

objective is to maximize the discounted consumption vector

i o= 7 B(t)(c(t),w(t)) . (103)

Thus, the problem is to choose such control vectors {v(t),z(t)}
and {Ve(t),n(t)}and corresponding state vectors y(t), Y, (t) and
m(t), which maximize (103) subject to (93)-(102).
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Two basic approaches can be singled out when separate sub-
models are incorporated into a whole system. The first approach
is the integration of.separafe models into an optimization problem
with a corresponding objective function. The second approach is
the investigation of linkage between submodels considering these
submodels on an independent basis, each with its own objective
function. Both approaches naturally have their own advantages and
drawbacks. The major advantage of the first "machine" approach
is that it allows one to take into account all the constraints
and interactions between many factors influencing the decision and
combining them into some optimal mix. However, the building of
an integrated model evidently leads to a very large optimization
problem, which though it is sometimes possible to solve, is
always very difficult to interpret. The "manual" approach --'when
information obtained from one submodel is interpreted by an
analyst and is supplied as an input to another submodel -- becomes
more attractive, but is more time consuming and sometimes may lead
to an uncertainty whether the "true optimal"” solution for a whole

system has been obtained or not.

Considering combined manpower-economy models, it is natural
to include demographic aspects into a whole system [see (102)].
Such models were described in Rogers and Ledent (1971) and
Grandinetti, Pezzella and LaBella (1977).

5. CONCLUSION

One can see from above, that many educational and manpower
planning models can be written in a standard DLP form. Hence,
for the solution of these problems, either standard LP.algorithms
(Dantzig, 1963) or special DLP methods (Glassey, 1970; Ho and
Manne, 1974; Propoi and Krivonozhko, 1977), which take into ac-

count the dynamic features of the problems, can be used.

Clearly, not all manpower and educational planning problems
can be written in the DLP format. In those cases, one may use
computer simulation methods (an interesting comparison of these
two approaches was made by Merchant, 1977) or may try to apply

a more sophisticated technique, such as stochastic optimization.
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