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1. Introduction: philosophical preliminaries

The primary goal of science is understanding, i.e., creating orderly pictures of
the world compatible with our observations. The test for, as well as the use-
fulness of such pictures is that they allow extrapolating from previous obser-
vations. This predictive capability is the basis for the hypothetico-deductive
method (our main save-guard from wishful self-delusion) as well as for appli-
cations. Of course, regression analysis performs the same feats. The difference
is that the predictive capabilities of good scientific theories extend far beyond
the experimental situations from which they were inductively derived. Yet,
contrary to the standard tenet, predictive capabilities are not the only proof
of quality. For example, population genetics has made immense contribu-
tions to our understanding by showing that Mendel’s particulate mechanism
is compatible with the observations made on quantitative traits and that im-
perceptible selective pressures can have large effects over geologically very
short time periods, thus overthrowing earlier näıve ideas to these effects. Yet,
the reach of both pieces of theory in the cases where they can be tested in
concrete instances effectively go but little beyond that of mere regression.
What mattered is that the theory introduced a proper way of looking at the
problems, and thereby made extrapolation possible. By now an impressive
population genetical theory of short term adaptive evolution has been con-
structed, as surveyed in the Chapters by Warren Ewens [16] and Reinhard
Bürger [6]. At the predictive end this theory does not reach much beyond the
earlier feats. Still, these theoretical developments have greatly contributed to
our understanding, largely since they allow analysing “what if” scenarios on
a mechanistically founded and further essentially tautological basis, and thus
enrich our naturally rather poor intuition.

The main reason for the limited predictive reach of population genet-
ics theory is that genotypic fitnesses come in as unspecified phenomenological
parameters, or, more recently, are specified through an assumed special geno-
type to phenotype map combined with a simple phenomenological ecological
model. Only in the theory of neutral evolution there is a specification based
on assumed strong first principles: all fitnesses are equal to one (or zero in
the continuous time perspective to which we shall adhere below). The latter
assumption leads to both that theory’s mathematical strength and its lim-
itations as a tool: although used in all sorts of inferences, the outcomes of
those inferences hinge on this specific, often poorly tested, and moreover very
non-generic, assumption.

To get further at the predictive side we need a more realistic handle on
fitness. Mechanistically, fitness is determined by how the traits of phenotypes
influence their population dynamical performance. Not only that, often those
traits have our main interest in the first place. To link that primary focus
on traits to population genetics we have to assess the map from genotype
to phenotype and the ecological background for the population dynamical
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performance. In general, little can still be said about the former, notwith-
standing the great molecular advances. Hence, most theoretical efforts con-
centrate on deriving predictions based only on the relation between traits
and performance, sidestepping the need for population genetical modeling
and the concomittant need for knowing the genetic basis of those traits. The
main tool were initially, and to a large extent still are, optimisation models
in which a presumed fitness proxy, like the strength of a bone or an energy
intake rate is maximised as a function of a set of trait vectors delimited by
constraints, justified by their users with a hand-waving reference to Fisher’s
fundamental theorem (c.f. the Chapters by Ewens [16] and Bürger [6]).

Better thought out approaches are based on ESS theory (see the Chap-
ter by Metz [34, Subsection 2.2]). ESS is an abbreviation of Evolutionarily
Stable Strategy. However, as the definition of an ESS does not bring with it
that an ESS is stable in the standard mathematical sense (see e.g. [34, Figure
2.4]), we prefer to interpret the abbreviation as Evolutionarily Steady Strat-
egy. ESSes are the traps of any evolutionary process driven by the invasion of
new mutants. They are defined as such values of the trait vector, here called
strategies, that no mutant playing an alternative strategy can invade in the
environment produced by them. The important difference with the optimisa-
tion approach is that the ESS argument accounts for the fact that fitnesses
not only depend on the traits of phenotypes but also on the environment in
which those phenotypes live, and that this environment is not constant but
codetermined by the phenotypes that are currently around (for if this were
not the case populations would either grow to infinity or go extinct, except
when the fitnesses are zero).

The ESS approach not only is better founded, it also has the advantage
that we do not need an ever applicable fitness concept, which may exist in
the simplified world of population genetical theory but does not do so so
readily in the more messy ecologies of real life. Instead it suffices to have
a fitness concept that characterises the potential for population growth of
mutant phenotypes in an environment set by resident phenotypes, not yet
influenced by the mutant.

In this Chapter we investigate how optimisation approaches fit with the
ESS viewpoint. There are three reasons for embarking on such an effort. The
first one is practical. We want to develop a feel for the reach of the opti-
misation results. In general, optimisation approaches appear to work rather
well, notwithstanding their basically flawed methodology. This paradox will
be resolved at the end of Subsection 2.3. The optimisation literature is not so
much wrong as imprecise in that its reach is far less than suggested, and its
results have been put only to correspondingly restricted tests. The next two
reasons come into play when we want to do away with those strong implicit
restrictions. The first one is again practical. Given the relative simplicity of
optimisation procedures we want a handle on how to rig an eco-evolutionary
model so that its ESSes can be calculated from an optimisation principle, as
well as insight into the robustness of the results from such limited models.
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Finally, on the fundamental side there is the wish for insight on a meta-level.
In precisely what manner do the various approaches in the literature fit to-
gether? In the textbooks one can find various hand-waving answers. We aim
for precise ones.

2. Setting the stage: technical preliminaries

As the concepts and their technical implementation described below are not
only needed as context for the discussion of evolutionary optimisation argu-
ments but are of considerable importance in their own right, we have strived
for a self-contained exposition. We assume throughout that populations are
large and relatively well mixed, i.e., any individual is directly or indirectly
affected by a large number of other individuals each of which on average
has but a small effect on the demographic behaviour of the focal individual.
(For some further extensions, see [33, Section ’Aggregates’].) Moreover, for
the ease of the exposition we assume till Subsection 2.4 that reproduction is
clonal.

2.1. Fitness and fitness proxies

The effectiveness of ESS calculations is based on the close to universal ex-
istence of a scalar quantity, called fitness, characterising the speed at which
a phenotype can invade in a given environment. (NB: This fitness concept
is essentially different from the population genetical one; see the Chapter by
Metz [34, Subsection 2.2.].) Here we define environment as anything outside
an individual that influences its population dynamical behaviour, which by
definition consists of impinging on the environment, giving birth and dying
(see e.g. [33, 35, 41, 40]). We then can construct a Markovian representation of
that behaviour in terms of a state space, transition probabilities that depend
on the course of the environment and outputs that either deterministically
depend on, or occur in a Poisson (or Poisson cluster) process with rates that
depend on the individual’s state and the condition of the environment. Given
the course of the environment, individuals independently move through their
state spaces, the population state is a measure over this space, and the ex-
pectation of this measure, which is again a measure, moves according to a
positive linear evolutionary system. The theory of such systems then tells
that generally the expected size of a population in an ergodic environment
will in the long run on average grow or decline exponentially (for details,
see [33, 17]). The per capita rate of this growth, to be denoted generally
as ρ, or in accordance with standard custom in the special case of constant
environments as r, is the sought after fitness.

Example. Finite state individuals and clonal reproduction. The following ex-
ample lacks in biological realism but is the simplest one demonstrating the
basic principles. A partial justification may be the hunch that any useful
model has to be approximable (uniformly for all relevant environments) by a
finite state model.
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The expected growth of a population of independent finite state indi-
viduals in continuous time in a constant environment is given by

d
dt
N = (R + T)N,

N the vector of spatial densities of individuals in different states. (In our
present context N refers to the mutants. To keep the notational burden low
we suppress dependences on the trait vector of the mutants and resident en-
vironment.) The matrices R and T are built up from per capita rates. The
off-diagonal components of T equal the transition rates between the corre-
sponding states, the diagonal components equal minus the overall rates of
transitions from the states minus the state dependent death rates. The com-
ponents of R equal the average per capita birth rates in dependence on the
state of the parent split according to the state of the offspring. The fitness
of the type of individuals under consideration corresponds to the rightmost
eigenvalue of R + T (which is necessarily real and goes with a positive eigen-
vector since otherwise the trajectory would leave the positive cone).

The theory of branching processes moreover tells that when a population
is started with a single individual it will, barring some technical conditions,
eventually either go extinct or grow exponentially, with the probability of the
latter being positive if and only if its fitness is so (see [27, 3, 4, 21]).

From any more general perspective ρ necessarily is a function of two
variables, the trait vector of the individuals Y and the environment E, to be
written as ρ(Y |E). (Depending on the context we may suppress one or both
of these arguments.)

The existence of such a fitness is the basis for all deliberations below.
However, given its existence it is often possible to replace ρ by some more
easily determined quantity that leads to the same outcome for the calcu-
lations that have our interest. For example, in optimisation calculations ρ
can be replaced with any quantity that is monotonically related to it, and
in many other types of ESS calculation one may replace ρ with any sign-
equivalent quantity. We shall refer to such quantities as fitness proxies. An
example of an often used fitness proxy of the first type is the average rate of
energy intake. It should be noted though, that being a fitness proxy is always
predicated on additional assumptions. For instance, it may help a forager
little to increase its average energy intake in an environment where doing so
drastically increases its exposure to predation. An important fitness proxy
of the second type, restricted to non-fluctuating environments, is the loga-
rithm of the average life-time offspring number ln(R0), where R0 is defined
as the dominant eigenvalue (or more generally spectral radius, or, still more
generally, Perron root) of the next generation operator. (The advantage of
using births as reference points in the life cycle is that usually the set of birth
states is considerably smaller than the full complement of states necessary to
describe how an individual passes through its life. However, if that happens
to be more convenient, other points in the life cycle where the individual by



When do optimisation arguments make evolutionary sense? 7

necessity can be in but a few states may also be used as basis for the book-
keeping.) This next generation operator is constructed by calculating from
a model for the behaviour of individuals how many offspring are born on
average in different birth states dependent on the birth state of the parent
(see e.g. [10]).

Example. Finite state individuals and clonal reproduction, continued. Order
the individual states so that the birth states come first. To step back and forth
between a population state and a birth based approach we need a matrix K
injecting the vector of birth rates into the space of changes in densities of all
individuals, young and old alike:

KT =


1 0 · · · 0 0 · · · · · · 0

0
. . . . . .

...
...

...
...

. . . . . . 0
...

...
0 · · · 0 1 0 · · · · · · 0

 .

As can be seen from this formula, KT maps the space of population rates
back onto the space of birth rates.

Arguing from first principles one can calculate the next generation ma-
trix by first calculating the expected times that the Markov chain stays in
each possible state before the individual dies as T−1K, after which the next
generation matrix can be expressed as L = KTRT−1K.

For the general case we observe that due to our assumption of environ-
mental constancy the state of an individual can always be replaced by a proxy
state consisting of age together with the state at birth, giving the production
of offspring dependent on the state at birth as an operator valued function
Λ(a). Integrating out over age gives the next-generation operator L.

Example. Finite state individuals and clonal reproduction, continued. In our
finite state model the state of an individual moves according to a Markov
chain with killing, and the probability that individuals born in certain birth
states at age a are alive and reside in certain states is given by the matrix
eaTK. Hence the average birth rate at age a split according to the birth state
of the parent and that of the kids is Λ(a) = KTReaTK. This expression
shows that given the mechanism as embodied in the matrices R and T it
is possible to calculate the average birth rate of an individual from only its
state at birth and age. Hence, age and birth state together are a proxy state
for the goal of calculating the average birth rates of individuals.

The vector of population birth rates B satisfies a vectorial version of
Lotka’s integral equation from mathematical demography

B(t) =

t−t0∫
0

Λ(a)B(t− a)da+ KTRe(t−t0)TN(t0)
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(if the initial datum is given in terms of the population composition at time
t0), which for t0 → −∞ reduces to

B(t) =

∞∫
0

Λ(a)B(t− a)da.

Substitution of an exponential trial solution B(t) = ertU gives that the inva-
sion fitness r can be calculated from Λ by solving the characteristic equation:

dominant eigenvalue of Λ̃(r) = 1, r ∈ R

(or equivalently det(I− Λ̃(r)) = 0, r ∈ R), with

Λ̃(z) :=
∞∫
0

e−zaΛ(a)da = KTR(T− zI)−1K for z > z0,

=∞ for z ≤ z0,

with z0 the rightmost root of det(T − zI), and that U equals the, positive,
eigenvector with eigenvalue 1 of Λ̃(r). The general theory of renewal equations
tells that for t0 → −∞ indeed B(t) will grow like ertU . From the fact that
also B(t) = KTRN(t) it follows that the r found in this manner is equal to
the dominant eigenvalue r of R + T.

To prove the sign equivalence of r and ln(R0) note that

L :=

∞∫
0

Λ(a)da = Λ̃(0) and R0 = dominant eigenvalue of L.

Since all components of Λ̃(z) are positive and decrease with z, also its dom-
inant eigenvalue decreases with z. Hence, r is positive when ln(R0) > 0 and
is negative when ln(R0) < 0.

The following argument shows that R0 rightfully can be interpreted
as an average lifetime offspring number. The average lifetime numbers of
offspring by individuals born in different states equals 1TL, where 1 is a vector
that has all its components equal to 1. The natural probability distribution
to average these numbers over is the stationary distribution generated by
the generation process itself, i.e., the right eigenvector U of L corresponding
to R0, normalised such that 1TU = 1. Doing so gives 1TLU = 1TR0U =
R01TU = R0.

A further, partial, proxy for ln(R0) in cases where the next generation
operator is representable by a matrix L is Q := −det(I−L). Q is sign equiv-
alent to ln(R0) where it counts most, that is, close to ln(R0) = 0. Moreover,
for path connected trait spaces and an L that depends continuously on the
traits, if r(Xi) = 0 for i = 1, . . . , k then Q(Xi) = 0 for the same Xi and if
moreover Q(Y ) < 0 for all Y different from those Xi then also r(Y ) < 0 for
those Y (see [37]).
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2.2. Resident environments and invasion fitness

The only environments that matter in ESS calculations are environments
generated by the attractors of some, so-called resident, community. In nature
populations are necessarily bounded. If this bound were too small our popu-
lation would go extinct in too short a time for it to reach an ESS. Hence we
assume that the population is infinite in numbers although bounded in den-
sity, i.e., number of individuals per unit of area or volume. The community
then follows a deterministic dynamics with as state space for each popula-
tion a closed bounded subset of the cone of positive measures over the state
space of the individuals, and as total state space the product of the state
spaces of the comprising species, plus the state spaces of the dynamics of
any inanimate resources. With an infinitesimal amount of noise the states of
such communities will approach an “extinction preserving chain attractor”
(see [26, 19]); with larger amounts of noise the community will in general end
up in a stochastic attractor, that is, a stationary distribution of community
states. We will throughout assume that the community attractor generates
an ergodic environment (to all appearances exceptions to this assumption are
rare).

Notation. The environment generated by a coalition of clones C={X1,..., Xk}
will be written as

Eattr(C)
with the convention that we write just X for C = {X}.

Convention 2.1. We take the use of the expression Eattr(C) as implying that
for a community starting with all types X ∈ C there exists an attractor with
the densities of all those types nonzero.

For ease of exposition we moreover proceed on the

Assumption 2.2. Eattr(C) is unique.

The domain of the function Eattr is therefore the space of all realisable coali-
tions.

Assumption 2.2 is not necessary for any of the developments below. All
statements can be extended to the general case with but minor modifications,
which, however, would tally up to a considerable amount of verbal clutter.

A combination of the preceding arguments leads to the

Definition 2.3. The quantity

sC(Y ) := ρ (Y |Eattr(C)) (2.1)

is called the invasion fitness of a new type Y in a C-community.

An essential observation is

Proposition 2.4.

sC(X) = 0 for all X ∈ C. (2.2)



10 Mats Gyllenberg, J.A.J. (Hans) Metz and Robert Service

Proof. The presence of X as a resident means that the density of X does not
go to zero and neither can it go to infinity. Therefore its average per capita
growth rate is zero. �

Hence for all X ∈ C, sC(X) = sX(X) = 0, and sC(Y ) > sC(X) whenever
sC(Y ) > 0, and similarly with > replaced by < or =.

2.3. Calculating ESSes

The usual way of calculating ESSes is by devising some procedure to maximise
ρ(X|E) over all potential trait values for any feasible E, resulting in a function
Xopt(E). As a next step one determines for each trait value the environment
that it generates as a resident, Eattr(X). Finally one varies X to find an
evolutionarily unbeatable value X∗, i.e., an X∗ such that

Xopt(Eattr(X∗)) = X∗. (2.3)

For more complicated trait spaces and ecologies solving such a com-
bined optimisation problem and equation tends to be far from easy. Hence,
determining a single optimisation principle that has to be satisfied by the
ESS can be a great help.

After calculating an ESS one should preferrably ascertain that the set
of trait values X0 from which it is approximated with non-zero probability
through a sequence X0, X1, X2, . . . such that sXi

(Xi+1) > 0, possibly inter-
spersed with polymorphisms, is sufficiently large to warrant consideration of
X∗ as a potential evolutionary prediction. Although the last condition is not
part and parcel of the ESS concept (it should have been!), only the attract-
ing ESSes, customarily called CSSes , are relevant as evolutionary predictions
(c.f. [11, 44, 12, 18]). (The acronym CSS is an abbreviation of the not overly
informative phrase ’Continuously Stable Strategy’.) One further advantage
of showing the existence of an optimisation principle is that this implies that
the corresponding ESSes are globally attractive in the case of clonal and hap-
loid organisms and may be expected to have a fair attainability in diploid
Mendelian ones.

An alternative way of spotting ESSes, which also immediately gives
insight in their evolutionary attractivity, is through the plotting of a so-called
Pairwise Invasibility Plot (PIP), i.e., a plot of the sign of the invasion fitness
of potential mutants with the potential resident trait values on the abscissa
and the potential mutant trait values on the ordinate. See Figure 3.2 and
the Chapter by Metz [34, Section 2, in particular Figure 2.4]. As we shall see
in Subsection 3.2, such plots also provide us with an easy diagnostic for the
presence or non-presence of an optimisation principle.

For higher dimensional trait spaces it is not possible to work with PIPs,
but the basic idea that underlies the determination of an ESS from a PIP
still goes through. Any ESS satisfies

G(X∗) = 0 with G(X) :=
dsX(Y )

dY

∣∣∣∣
Y=X

, (2.4)
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together with the condition that

H(X∗) :=
d2sX(Y )

dY 2

∣∣∣∣
Y=X=X∗

is negative definite. (2.5)

(In adaptive dynamics the vector GT is known as the selection gradient and
the matrix H as the selection Hessian.)

In addition to ESSes, which are by definition monomorphic, there may
exist Evolutionarily Steady Coalitions (ESCs), i.e., combinations of pheno-
types C such that sC(Y ) < 0 for all Y /∈ C. Finding non-monomorphic ESCs
through an extension of the optimisation route is tricky. However, the adap-
tive dynamics toolbox works almost unchanged. It lets us calculate candidate
ESCs by intersecting the adaptive “isoclines” (see the Chapter by Metz [34,
Subsection 2.4]) defined by setting the selection gradients equal to 0,

Gi(C∗) = 0 for i = 1, . . . , k, with Gi(C) =
dsC(Y )

dY

∣∣∣∣
Y=Xi

, (2.6)

followed by a check that a so-found singular point indeed corresponds to local
fitness maxima

Hi(C∗) :=
d2sC∗(Y )

dY 2

∣∣∣∣
Y=X∗i

is negative definite, for i = 1, . . . , k. (2.7)

The local attractivity of any found ESS or ESC can be gauged by ap-
proximating the trait substitution process with the so-called canonical equa-
tion of adaptive dynamics (see [34, Subsection 2.5]).

Combining the previous considerations shows that a good recipe for nu-
merically finding possibly attracting candidate ESSes is running the canonical
equation for a reasonable sample of initial conditions and mutational covari-
ance matrices. Necessary and sufficient conditions for a guaranteed local con-
vergence, independent of the mutational covariance matrix can be found in
[29, 30, 31].

Resolution of the paradox from Section 1: As a final issue we point to the fact
that an ESS maximises the invasion fitness in the environment as set by that
strategy. Hence, if we just measure the environment we may predict the evo-
lutionarily steady trait values that go with that environment by maximising
fitness in that environment. This is why the predictions from optimisation
theory work so well. Optimisation theory may not predict the outcome of
evolution, for that would entail also predicting the environment that goes
with the ESS, but it often very satisfactorily predicts the strategies that
may be present in that environment. However, such limited predictions are
of little practical use when it comes to gauging the potential consequences of
purposeful or inadvertent environmental manipulation like controlled fishing
regimes or human induced global warming.

2.4. Genetics

Not many species that have our interest reproduce clonally. Luckily many
results from the clonal theory go through almost unaltered under Mendelian
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inheritance. For the community dynamics one has to distinguish individu-
als according to their genotypes, and incorporate their mating opportunities
with different genotypes into the description of the environment (c.f. [9]; this
in the case of casual matings, with more extended pair formation it becomes
necessary to extend the state space of individuals to keep track of their mar-
riage status). Alleles reproduce clonally and as such have invasion fitnesses.
So in principle we can calculate ESSes based on the population dynamics of
hypothetical mutant alleles affecting the phenotype.

To link with the usually encountered arguments that tend to be implic-
itly based on the assumption of clonal reproduction, we define for Mendelian
diploids a mock fitnesss of phenotypes by introducing a parallel clonal model
with individuals passing through their lives like their Mendelian counterparts
and having a reproduction equal to the average of the contributions through
the micro- and macro-gametic routes (for humans semen and ova) of those
counterparts. The definition of R0 can be similarly extended. As an example
we give the recipe for the calculation of R0 when, except possibly for a sex
difference, there is but a single birth state.

Example. Mendelian diploids with everybody born equal. In the case of
diploid hermaphrodites with but a single birth state, R0 equals half the sum
of the average numbers of offspring fathered or mothered. The factor 1/2 comes
from the wish to define R0 such that the outcome from naive evolutionary
calculations based on this “offspring number” for individuals matches the
outcome from more detailed genetically based calculations.

When the sexes are separate, the sex difference comes on top of the
physiological structure, spatial position, etc.. In diploids, if everybody is born
equal but for their sex, the corresponding next-generation operator is

L = 1
2

(
`ff `fm
`mf `mm

)
.

with `ff the lifetime number of daughters of a female, `fm the lifetime number
of daughters of a male, `mf the lifetime number of sons of a female, and `mm

the lifetime number of sons of a male, all for the mutant, as they happen to
occur in the environmental and genetic background provided by the resident
population.

The simplest case is when the sex determination is independent of the
trait in which the mutant differs from the resident as then we can write
`ff = pff , `mf = pmf , `fm = pfm, `mm = pmm, with m and f the numbers of
offspring fathered and mothered over a lifetime, and pm and pf the probability
of being born a male or a female. Therefore L has rank one and

R0 = 1
2 (pff + pmm) .

This result could also have been obtained more directly by observing that
everybody is born stochastically equal, having the same probabilities of being
born male or female. We then get R0 by just averaging over the possibilities.

As a curiosity we mention that when the trait in which the mutant differs
has an influence on the sex determination we can still end up with the same
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formula by defining pm and pf to be the asymptotic probabilities of being born
a male or a female, i.e., by choosing for pm and pf the components of the right
eigenvector U of L, and defining m and f again as the number of offspring
fathered or mothered over a lifetime, i.e., f = `ff +`mf , m = `fm +`mm. Then,
by using R0 = 1TLU , exactly the same formula for R0 is obtained. Only the
similarity of the expressions is pleasing: to calculate pm and pf we first have
to calculate R0.

With the above definitions various fitness-based deductions for the clonal
case go through for Mendelian inheritance. In particular, for genetically ho-
mogeneous populations the fitness of a resident equals zero (since genetically
homogeneous populations breed true and resident populations by definition
do not in the long run grow or decline). Moreover, the invasion of a new
mutant in a homogeneous population is correctly predicted, as that mutant
initially only occurs in heterozygotes that breed true by backcrossing with
the homogeneous resident.

The situation for ESCs is more complicated as there may be so-called
genetic constraints. So it may happen, for example, that an invading mutant
heterozygote also has a positive fitness in the environmental background pro-
vided by its own homozygote. Luckily, in the so-called Ideal Free (IF) case,
as in the clonal case, all phenotypes comprising an ESC have fitness zero, at
least when there is only a single birth state and the ESC engenders a com-
munity dynamical equilibrium. This IF case is defined by the requirement
that there are no genetic constraints whatsoever, that is, mutants can occur
that produce any feasible type as heterozygotes in the genetic backgrounds
supplied by the resident population. Unfortunately at the present state of
knowledge about genotype to phenotype maps there is no way of predicting
for what traits persistent genetic constraints can indeed be ruled out.

Remark. Whether in general the conditions sC(X) = 0 for all X ∈ C and
sC(Y ) < 0 for all Y /∈ C imply that C is uninvadable by any non-neutral
mutant is still unresolved. For constant environments and individuals that
can be born in only one state the proof is easy as there the invasion R0 of a
mutant allele can be written as a positively weighted sum of the R0 of the
phenotypes of all the different heterozygotes in which it may occur [9, 14, 32].
Hence, if the fitness of all X ∈ C equals zero and no alternative phenotype
has positive fitness, any non-neutral genetic mutant has negative invasion
fitness. It would be nice to have the issue resolved more generally.

Haploids basically follow the clonal rules. See [37] for haplo-diploids like
hymenopterans in which the females are diploid and the males haploid (the
supplementary material to [42] lists the many known haplo-diploid taxa).
Polyploids as well as more complicated life cycles with both haploid and
diploid phases as seen in mosses, ferns and various sorts of algae still remain
to be studied.
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3. Results

3.1. General considerations

Assumption 3.1. For any ESCs

ρ (X|Eattr(C)) = 0 for all X ∈ C, (3.1)

that is, the ESCs that we consider are of clonal or haploid organisms, or in
the case of Mendelian diploids they are ESSes, or more generally ESCs in
which the fitness of all resident phenotypes is zero as is the case under the
IF assumption at least in cases where there is only one state at birth as well
as population dynamical equilibrium.

Notation. X will denote the set of potential trait vectors, C the set of all
coalitions C ∈ domain(Eattr) satistying equation (3.1), and E := Eattr(C).

Convention 3.2. When we speak of all C this is meant to refer only to C ∈ C,
and when we speak of all E this is meant to refer only to E ∈ E .

that is, we focus only on feasible E, i.e., E in the range of Eattr, and as
far as these E are concerned we restrict the discussion to clonal or haploid
organisms, or in the case of Mendelian diploids to monomorphisms while
for polymorphisms we restrict ourselves to environments that go with ESCs
satisfying Assumption 3.1.

Definition 3.3. We call a function φ : X → R an optimisation principle
when under any constraint the outcome of evolution can be determined by
maximising φ.

We shall below abbreviate this as φ being maximised by evolution. The pro-
viso “for any constraint” in Definition 3.3 mirrors the usual practice of com-
bining an optimisation principle, derived from the population dynamics, with
a discussion of the dependence of the evolutionary outcome on the possible
constraints.

Remark. The above definition of an optimisation principle may seem unduly
restrictive. Why not just ask for an optimisation principle to have its maxima
coinciding with any ESSes? The point is that mathematically speaking the
latter sort of optimisation principles always exist but are totally uninforma-
tive. Just calculate the ESSes for a model and take any function that has its
maxima at those points.

Optimisation principles correspond more or less to the textbook intu-
ition for the meaning of fitness, which generally fails to account for the fact
that the fitnesses of all possible types are bound to change with any change
in the character of the residents.

By letting the constraint set consist of just two possible trait values it
follows that

Lemma 3.4. If φ is an optimisation principle then

φ(Y ) < φ(X)⇔ sX(Y ) < 0 and φ(Y ) = φ(X)⇔ sX(Y ) = 0.
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As a consequence, in the clonal and haploid cases the existence of an
optimisation principle φ allows one to rule out mutual exclusion (sX(Y ) < 0
and sY (X) < 0) and protected polymorphisms (sX(Y ) > 0 and sY (X) > 0)
since both lead to the contradictory conclusion φ(Y ) < φ(X) < φ(Y ).

So far we only considered φ as a function on X . For many models with
an optimisation principle (to wit, all those models that we have encountered)
it is possible to extend φ to the whole of C. Such models are characterised by
the fact that for C = {X1, . . . , Xn} one has φ(X1) = · · · = φ(Xn). Therefore
we can set φ(C) equal to the common value of the φ(Xi). This extension is
consistent in that one still has φ(Y ) > φ(C) ⇔ sC(Y ) > 0 for any Y ∈ X
and C ∈ C. A consequence is that in the clonal and haploid cases invasion
implies substitution: if sX(Y ) > 0 then we know that X and Y cannot
form a stable coalition C, since this would lead to the contradiction that
φ(X) = φ(C) = φ(Y ) while φ(X) < φ(Y ). Thus the outcome of a successful
invasion can only be that the resident dies out and is replaced by the invading
type. Therefore each successful mutant X increases φ(X), and hence any ESS
attracts.

In Mendelian diploids the argument given for convergence to an ESS
does not work, as invasion needs not imply substitution. Population dynam-
ically stable coalitions may arise when a heterozygote mutant invades that
also enjoys positive fitness in the environment set by a population of the
corresponding homozygotes. This is usually excluded for smooth genotype to
phenotype maps when only small mutational steps are allowed as then the
genotype to phenotype map is locally additive and invasion fitness is neces-
sarily smooth in the invader trait, and will usually be smooth in the resident
traits away from population dynamical bifurcation points. Moreover, in the
case of potentially larger mutational steps, under the IF assumption a further
mutant may appear that realises the phenotype of the heterozygote in any
genetic background. In that case, at least when the environment is constant
and the organisms have but a single birth state, such an evolutionary stale-
mate will after a while be broken up again. It may be expected that this
results in an eventual convergence to the ESS. The strongest expression of
this conviction can be found in [23]. However, whether this is indeed the case
without exception is not fully clear yet. See further [12, 22, 45, 15, 13]; note
though that all these authors restrict themselves to non-fluctuating environ-
ments and single birth states.

3.2. Highest abstraction level: traits only

Let us now turn to the most general context in which a discussion of opti-
misation is meaningful. Thus we forget about the maps Eattr : X → E and
ρ : X × E → R and simply suppose that (X,Y ) 7→ sX(Y ) is a given invasion
fitness function X ×X → R on which we impose, a priori, only the condition
sX(X) = 0 for all X ∈ X . The question then arises what conditions are
necessary and sufficient for the existence of a function φ : X → R such that
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the conclusion

φ(Y ) < φ(X)⇔ sX(Y ) < 0 and φ(Y ) = φ(X)⇔ sX(Y ) = 0.

of Lemma 3.4 holds. For the purposes of this section we forget about any
interpretation in terms of evolutionary outcomes and call any such function
φ an optimisation principle for s. The question of characterising those s which
admit an optimisation principle is addressed in [39] and [20] the results of
which we now briefly discuss.

Clearly we are only interested in the sign of the invasion fitness function
sX(Y ). In the case of one dimensional traits it is customary to represent the
sign of the invasion fitness function by means of a pairwise invasibility plot
(PIP) as in Figure 3.1. If x and y (we denote here, as in the rest of the paper,
real numbers by lowercase letters and general vectors by uppercase letters)
are plotted on the customary axes, then points (x, y) where sx(y) > 0 are
coloured grey, points where sx(y) < 0 white and the neutral boundaries
sx(y) = 0 black. Since a PIP contains all information about the sign of the
invasion fitness function s, any conditions we impose on s should only depend
on the corresponding PIP.

The first observation, already mentioned implicitly in Subsection 3.1, is
the following:

Lemma 3.5 (Sign-antisymmetry). If there exists an optimisation principle for
s then

sX(Y ) > 0⇔ sY (X) < 0.

In terms of PIPs this is the property of skew-symmetry: by flipping the dia-
gram with respect to the line x = y the positive grey regions are mapped to
negative white ones and vice versa, while the neutral black lines are mapped
onto themselves.

A second observation that is also a straightforward consequence of the
definitions is:

Lemma 3.6 (Sign-transitivity). If there exists an optimisation principle for s
then

sX(Y ) ≥ 0 and sY (Z) ≥ 0 ⇒ sX(Z) ≥ 0.

The content of Lemma 3.6 can be reformulated using the familiar game
of rock-scissors-paper.

Definition 3.7. An ordered triple (X,Y, Z) ∈ X 3 is called a rock-scissors-
paper-cycle if

sX(Y ) > 0, sY (Z) > 0, and sZ(X) > 0. (3.2)

The triple (X,Y, Z) is called a weak rock-scissors-paper-cycle if it satisfies
(3.2) with two of the three > signs replaced by ≥ signs.

Under the additional assumption of sign-antisymmetry, sign-transitivity for
s is exactly the statement that there are no weak rock-scissors-paper-cycles.
The advantage of this viewpoint is that it emphasises that one can prove the
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nonexistence of an optimisation principle by exhibiting just a single (weak)
rock-scissors-paper-cycle.

We note that the simple proofs of Lemmas 3.5 and 3.6 are based on the
properties of antisymmetry and transitivity enjoyed by the order relation of
the real numbers. Also note that, for the purposes of the discussion on the
existence of optimisation principles, we are only interested in the sign of the
invasion fitness function. These observations motivate us, following [20], to
consider directly the binary relation �s on X defined as follows:

Definition 3.8. Given an invasion fitness function s : X → X define the weak
invadability relation �s by X �s Y ⇔ sX(Y ) ≥ 0.

We note that our assumption sX(X) = 0 implies that this relation is
always reflexive, i.e., X �s X. The content of Lemma 3.6 is then that if s
admits an optimisation principle then �s must be a transitive relation. A
binary relation ∼ is called total, if for any X,Y in the relevant domains at
least one of the alternatives X ∼ Y or Y ∼ X holds. The relation �s defined
above is total if and only if there is no case of mutual exclusion sX(Y ) < 0,
sY (X) < 0. A total and transitive binary relation is called a total preorder.

On an abstract level we now see that an optimisation principle can be
considered a representation of the relation �s by means of an order preserving
map φ : X → R so that X �s X ⇔ φ(X) ≤ φ(Y ).

One of the theorems that led to the birth of order theory was Georg
Cantor’s theorem that a countable dense (between any two points lies a third)
linear order without a largest or smallest element is isomorphic to the rational
numbers as an ordered set. By extending and adapting the proof of this fact,
it can be shown that the necessary conditions we have listed, along with
the rather nonrestrictive requirements that the trait space be a separable
metric space and the invasion fitness is at least separately continuous, are also
sufficient for the existence of an optimisation principle [20]. More specifically,
one has:

Theorem 3.9. Let X be a trait space which is a separable metric space. Let
s : X × X → R be a given invasion fitness function which is continuous in
each variable separately. Then, if there exists no optimisation principle for s,
at least one of the following alternatives holds:

(i) There is a pair of traits X,Y satisfying mutual exclusion sX(Y ) < 0,
sY (X) ≤ 0, or

(ii) there is a weak rock-scissors-paper-cycle.

Note the minor technicality that for mutual exclusion we must allow one
“≤” sign just as we were forced to introduce weak rock-scissors-paper-cycles.
If in stead we just ruled out sX(Y ) < 0, sY (X) < 0 then one could give the
counterexample consisting of X = {X,Y } and sX(Y ) = −1, sY (X) = 0. Also
note that protected coexistence sX(Y ) > 0, sY (X) > 0 is technically covered
by (iii), since if X,Y enjoy protected coexistence, then (X,X, Y ) is a weak
rock-scissors-paper-cycle.
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Figure 3.1. How the presence of an optimisation principle can be
detected from PIPs. Panels (a) to (d) and (h) are examples of PIPs
for models with an optimisation principle. Panel (e) is not skew sym-
metric and therefore there is no optimisation principle. In Panel (f)
the presence of a rock-scissors paper trait triple is indicated by arrows.
Panel (g) shows the ‘opposite corners’ obstruction to optimisation: an
axis parallel rectangle with one pair of opposite corners in the positive
region of the PIP while the other pair lies in the negative region. (You
are encouraged to find yourself an opposite corners configuration in
Panel (f) and a rock-scissors-paper triple in Panel (g).) Finally Panel
(h) shows how the transitivity condition directly manifests itself in the
PIP: above any resident trait value x1 there is a certain alternation of
plus and minus regions. If we read of the trait values that are selectively
neutral relative to x1 then these trait values should have exactly the
same pattern of plus and minus regions above them. (Check for yourself
that this condition is not fulfilled in Panels (e) to (g).)
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We note now a second criterion for PIPs which follows from the order
theoretic viewpoint. For any trait X one may consider the set Inv(X) of
trait types Y satisfying the weak invadability condition Y �s X. One can
show easily that �s is a total preorder if and only if the sets Inv(X) (some
of which may coincide) are totally ordered by inclusion. Given X and Y , if
neither Inv(X) ⊆ Inv(Y ) nor vice versa, there must be elements X ′, Y ′ such
that X ′ ∈ Inv(X), X ′ /∈ Inv(Y ), Y ′ /∈ Inv(X) and Y ′ ∈ Inv(Y ). In terms of
PIPs this means that some four points (x, x′), (x, y′), (y, x′), (y, y′) form the
corners of an axis parallel rectangle such that one pair of opposite corners
lies in the white region of the PIP while the other pair lies in the grey/black
region; see Figure 3.1, Panel (g). Hence, a PIP accords with the existence of
an optimisation principle if and only if it is skew symmetric and there exist
no such ’opposite corner’ configurations.

Theorem 3.9 has a useful corollary. We begin with a preliminary one-
dimensional formulation:

Corollary 3.10. Suppose the trait space is an interval I on the real line and
suppose s : I × I → R is separately continuous in the resident and invader
traits. Then there is an optimisation principle for s if and only if the following
two conditions hold for all x, y ∈ I:

(i) sign(sx(y)) = −sign(sy(x)),
(ii) if sx(y) = 0 then sign(sx(z)) = sign(sy(z)) for all z.

Proof. The necessity of the two conditions given is clear: the first condition
is just a restatement of the conclusion of Lemma 3.5 while the failure of the
second implies the presence of a weak rock-scissors-paper-cycle.

To prove the sufficiency of the stated conditions, we show that the pres-
ence of a weak rock-scissors-paper triple leads to a contradiction under the
assumptions (i) and (ii). First note that the presence of “=” in the weak rock-
scissors-paper inequalities immediately implies a contradiction to (i)-(ii).

We are left to consider the following case: sx(y) > 0, sy(z) > 0, sz(x) >
0. For definiteness we assume that on the real line one has x < y < z, the
other cases being similar. Let x′ = sup{t < y : sx(t) = 0}. By continuity
sx(x′) = 0. Now using (i) and (ii) one sees that sx′(z) < 0. Thus by Rolle’s
theorem one has sz′(z) = 0 for some x′ < z′ < y. Similar reasoning shows
that sx(x′′) = 0 for some x′ < z′ < x′′ < y, which contradicts the definition
of x′. �

In terms of PIPs the conditions mentioned in Corollary 3.10 mean that when-
ever (x, y) lies on the black neutral line sx(y) = 0, and one draws vertical
lines passing through the points x and y on the horizontal axis, the pat-
terns of white and grey on these lines are identical; see Figure 3.1, Panel (h).
Of course, due to skew symmetry, one observes the same pattern in corre-
sponding horizontal lines. Together these conditions are thus necessary and
sufficient for the existence of an optimisation principle.

The next Corollary generalises 3.10 to higher dimensional trait spaces.
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Corollary 3.11. Suppose X is a path connected trait space which is separable
and metrisable and the invasion fitness function s is separately continuous
in the resident and invader traits. Then the following two conditions for all
X,Y ∈ X are together necessary and sufficient for the existence of an opti-
misation principle:

(i) sign(sX(Y )) = −sign(sY (X)),
(ii) if sX(Y ) = 0 then sign(sX(Z)) = sign(sY (Z)) for all Z ∈ X .

Proof. It is enough to show that under condition (i) the presence of a weak
rock-scissors-paper-cycle leads to a violation of condition (ii). Thus suppose
condition (i) holds and that there is a weak rock-scissors-paper-cycle in X .
By path connectedness one can find a path γ : I → X parametrised by an
interval I ⊂ R such that the cycle is contained in the image γI. Apply-
ing Corollary 3.10 to the trait space I equipped with the invasion fitness
function (x, y) 7→ sγ(x)(γ(y)) we find x, y, z ∈ I such that sγ(x)(γ(y)) = 0,
but sign(sγ(x)(γ(z))) 6= sign(sγ(y)(γ(z))), so (ii) fails for X = γ(x) and
Y = γ(y). �

The following derived criterion will prove useful in Section 4, Application
4.3.

Corollary 3.12. If there is an optimisation principle and sX(Y ) = 0, then the
sets {Z|sX(Z) = 0} and {Z|sY (Z) = 0} are equal.

As a final point we note that when the trait space is multidimensional,
the presence of an optimisation principle implies that all of the informa-
tion necessary for deducing evolutionary outcomes is captured by a one-
dimensional quantity. Even for a one dimensional trait, s has to satisfy very
strict requirements. From a mathematical viewpoint such a situation is highly
nongeneric. Yet, the practical fact is that optimisation models are frequently
encountered in the literature, in textbooks in particular. The cause is no
doubt our penchant for making simplifications to ease the math, but one
should not be misled into believing that optimisation is the default scenario
in the real world.

3.3. Medium abstraction level: traits and environments

Delving deeper into the determining factors for having an optimisation princi-
ple we consider as first step in the mechanistic direction the separate functions
(Y,E) 7→ ρ(Y |E) and X 7→ Eattr(X). This problem was first investigated for
the clonal and haploid cases in [38]. [39] covers also the diploid case under
the same assumptions as made in this chapter. Below we give a summary of
the results. Proofs can be found in the references.

The first result in [39, 38] may not come entirely unexpected given the
results from Subsection 3.2. An eco-evolutionary model has an optimisation
principle if and only if “the trait values affect fitness effectively in a one-
dimensional monotone manner”. The term “effectively” here means that the
specified properties only need to pertain to the range of fitness values closely
surrounding the change from negative to positive. More precisely,
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Proposition 3.13. An eco-evolutionary model has an optimisation principle if
and only if

A. there exists a function φ : X → R and a function g : R×E → R, increasing
in its first argument, such that

sign ρ(X|E) = sign g(φ(X), E). (3.3)

In that case φ, or any increasing function of φ, is an optimisation principle.
A perhaps more surprising result is

Proposition 3.14. Condition A is equivalent to

B. there exists a function ψ : E → R and a function h : X×R→ R, increasing
in its second argument, such that

sign ρ(X|E) = sign h(X|ψ(E), ) (3.4)

which can be paraphrased as “the environment acts effectively in a one-
dimensional monotone manner”.

Propositions 3.13 and 3.14 show once again that optimisation principles,
although frequently encountered in the literature, are exceptions rather than
the rule.

Definition 3.15. We shall call a function ψ : E → R as in condition B a
pessimisation principle.

Conditions A and B are related to each other by

Proposition 3.16. If an optimisation principle, or equivalently a pessimisation
principle, exists, it is possible to choose the functions φ and ψ such that

sign ρ(X|E) = sign (φ(X) + ψ(E)), (3.5)

where φ and ψ are connected through the relation

φ(X) = −ψ(Eattr(X)). (3.6)

(Optimisation and pessimisation principles are only uniquely determined up
to increasing transformations.) Hence, given a pessimisation principle ψ it is
possible to construct a matching optimisation principle φ via the construction
(3.6) and vice versa.

Corollary 3.17. When a pessimisation principle ψ exists, evolution minimises
ψ(Eattr(X)) under any constraint on X.

Better still, ψ(Eattr)) decreases with each increase in its matching φ(X).
Moreover, fitness increases with ψ where it counts, i.e., around zero. Hence
the choice of the term “pessimisation principle”. When a pessimisation prin-
ciple exists, in the end the worst attainable world remains, together with the
type(s) that can just cope with it. The following example may give a more
concrete feel for the issue.
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Example. The textbook scenario for so-called r-selection Consider a struc-
tured population in continuous time regulated through an additional death
rate dE which is the same for all states of an individual and with all other
demographic parameters independent of E. Then minus the mean death rate,
−〈dE (E(t))〉time, associated with an environment provides a pessimization
principle (i.e., evolution maximises the mean death rate), with the asymptotic
relative growth rate ρ0 calculated on the assumption that dE = 0 as matching
optimization principle. A special case is where the environment is constant
except for occasional instantaneous decimating catastrophes, provided the
latter kill totally indiscriminately (so that ρ0 equals the intrinsic rate of pop-
ulation increase or Malthusian parameter r for that constant environment).
But for the (essential, but generally unmentioned) indiscriminateness, this is
the condition touted in the textbooks as supporting r-maximisation.

The practical importance of Proposition 3.16 is that, while condition A
is close to trivial, the equivalent condition B and relation (3.6) often provide
a useful tool for either deriving optimisation principles or proving the non-
existence of such principles for large families of eco-evolutionary models.

The two optimisation principles most frequently touted in the evolu-
tionary ecology literature are the intrinsic rate of population increase r and
the lifetime offspring number R0. The results discussed above can be used to
characterise the ecological scenarios for which evolution “just maximises” r
or R0. Here “just maximising a function of X and E” should be interpreted
as maximising that function by varying X for an unspecified choice of E (the
latter as reflection of the absence of any mention of E in the usual statements
in the non-epidemiological literature).

Remark. A convention of logic is that when a statement is not explicitly
indicated as pertaining to a specific individual case, or subset of cases, it
should be interpreted as pertaining to all possible cases. This convention is
itself but a formalisation of the human habit of interpreting open statements
like “raven are black” as meaning that all raven are black and not as some
raven being black, or raven being black only under certain circumstances.

Under the presupposition that the community dynamics engenders con-
stant environments so that the Malthusian parameter r and the lifetime off-
spring number R0 are well defined, the following results hold good.

Proposition 3.18. Evolution just maximises r if and only if

C. the combination of life histories and ecological embedding is such that r
can be written as

r(X|E) = g (r(X|E0), E)

for some function g that increases in its first argument, and E0 some fixed,
but otherwise arbitrary, environment,

Proposition 3.19. Evolution just maximises R0 if and only if
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D. the combination of life histories and ecological embedding is such that
ln(R0) can be written as

ln (R0(X|E)) = g (ln (R0(X|E0)) , E)

for some function g that increases in its first argument, and E0 some fixed,
but otherwise arbitrary, environment.

In contrast to criteria A and B, criteria C and D are relatively easy to
check in specific situations.

A fair fraction of textbook statements, if taken literally, applies only
when condition C or D is fulfilled.

3.4. Lowest abstraction level: life histories

The next step in the mechanistic direction is to consider how invasion fitness ρ
is built up from demographic parameters (in an evolutionary context usually
referred to as life-history traits), and what conditions on those parameters
correspond to the conditions that were found in Subsection 3.3.

Presently two manuscripts are floating around, by Roger Bowers [5] and
by Claus Rueffler and co-workers [43], that relate life cycle structure to prop-
erties of the associated invasion fitness function. Both manuscripts deal with
finite state individuals in constant environments, i.e., community dynamical
equilibria. The first one considers continuous time community models with all
phenotypes within a species influencing the environment in the same manner.
The dependence of the demographic parameters is considered to be essen-
tially affine in the community composition, in a manner that depends on the,
bivariate, traits. The second one considers discrete time population models
with separable demographic parameters, that is, parameters that can each be
decomposed into an inherited parameter times possibly a scalar function of
E, referred to as regulatory function and denoted as R, without any further
a priori assumptions on how E is determined. Some of the inherited demo-
graphic parameters are supposed to be under evolutionary control and then
are called traits. The environment is supposed to be organised as the carte-
sian product of one-dimesional components, and the regulatory functions are
supposed to be monotone in the order relation imposed by the positive cone.
We only review the material that pertains to the existence or non-existence
of optimisation principles.

We start with the plethora of sufficient conditions for the existence of an
optimisation principle derived by Rueffler et al. [43]. Two immediate trivial
cases are

Proposition 3.20. If there exists a scalar function ψ : E → R such that all
regulatory functions can be written as monotonically increasing functions of
ψ(E), then evolution maximises −ψ(Eattr(X)).

Proposition 3.21. If all demographic parameters come with the same R, then
evolution minimises R(Eattr(X)) and maximises the dominant eigenvalue of
the population projection matrix for R set equal to some arbitrary fixed value.
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Figure 3.2. Life cycle that satisfies the conditions of
Proposition 3.22 (and also condition 1 of Proposition 3.25).

An example is when the only influence of the environment is through a death
probability that is independent of the state or type of an individual on top
of any state- or type-dependent ones. In that case evolution maximises that
death probability and the value of r for any given fixed value of that proba-
bility.

In the next Proposition we use the term transition ratio to cover both
the state-transition-and-survival probabilities and the fertilities, and refer to
both types of event together as ’transitions’.

Proposition 3.22. If
(i) the states can be partitioned into n disjunct classes Gi, i ∈ N modn, n

even, with each class only connecting to the following class through a
single state that may be an element of either class,
with the transition ratios from states in odd numbered classes not being
regulated and the transition ratios from states in the even numbered
classes not evolving (the unregulated resp. non-evolving classes), and

(ii) the transition ratios from the classes that can only be left from a single
state satisfy the following restrictions
for non-evolving classes: the transition ratios to the next class are all
regulated in the same way, and
for unregulated classes: if the class does not connect to the next class
only through single states in both classes, the transition ratios to the
next class are non-evolving,

then there is an optimisation principle.

This optimisation principle can be calculated by treating the entrance stream
into any of the classes as ”births” for which we calculate R0. This R0 (i) is a
fitness proxy and (ii) can be written as a product of a function of the traits
times a function of E. The result then follows from Proposition 3.19.

Remark. Without further restrictions on the models described in Propostion
3.22 the R0 referred to above may be infinite. This happens as soon as one
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Fig. 2.— Life-cycle graph of a hypothetical perennial plant with a seedling (1), juvenile (2) and

flowering state (3).

assume a trade-off between f13 and f23. An increase in one of these parameters is accompanied by70

a decrease in the other and vice versa. Furthermore, they assume that seedling survival and the

production of seeds decrease with increasing population density, reflecting intraspecific competition.72

More specifically, f13 and t21 are assumed to be monotonically decreasing functions of the total

population density given by N1+N2+N3. For this specific model Takada and Nakajima derive that74

selection favors the combination of f13 and f23 maximizing the total population size. In accordance

with Levins’ results, in case of concave trade-offs the optimization criterion has a maximum at an76

intermediate value of f13 such that vegetative and seed reproduction occur simultaneously, while in

case of convex trade-offs the optimization criterion has a maximum at the maximal value of either78

f13 or f23 such that all resources are expected to be invested in one mode of reproduction. A natural

question to ask is how robust this result is when the specific assumptions of Takada and Nakajima80

are modified? For example, is optimization still possible when survival of vegetative propagules is

density-dependent instead of the production of seeds? Does the answer depend on whether survival82

of seeds and vegetative propagules decrease with the same or with different population statistics?

And how do all these results change if we assume that the survival probability of adult plants rather84

than the number of vegetative propagules trades off with seed production?

To search for patterns in the relationship between assumptions and evolutionary outcomes one86

could analyze many model variants separately. Alternatively, one can aim to identify structural

model features that are causally linked with specific evolutionary outcomes. The advantage of the88

latter strategy is at least twofold. First, once the work is done, one can predict the evolutionary

dynamics in a potentially large class of models. Second, identifying causal relationships between90

structural features and model behavior is the essential step towards a true understanding of the

observed phenomena. In this paper we follow this second approach and describe structural features92

in a large class of life history models that (i) are sufficient for the existence of optimization criteria,

(ii) correspond to either convex, linear, or concave contour lines of the fitness landscape and thereby94

Figure 3.3. Life cycle of a perennial plant with a seedling
(1), juvenile (2) and flowering (3) state. Q for this life cycle
equals −1 + (t22 + t33 + t21t32f13 + t32f23) − (t22t33), with
the bracketed terms corresponding to the first and second
sums in (3.7). From [43].

of the classes if disconnected from the rest of the life cycle has a nonnegative
growth rate. However, such a biological anomaly is implicitly excluded as this
would lead to a contradiction with the assumption that the models allow a
community dynamical equilibrium including the species under consideration.

Models of this type frequently occur in the literature. For examples see
Figure 3.2 and Application 4.2.

The remainder of the results of Rueffler and coworkers are based on
the fitness proxy Q described at the end of Subsection 2.1. The advantage
of Q over r or R0 is that Q is affine in each of the separate heritable demo-
graphic parameters (baseline state transition cum survival probabilities tij
and fertilities times survival probabilites fij) and regulatory functions (Rt,ij

and Rf,ij , supposedly lying between zero and one), together collected in the
demographic projection matrix A. More in particular, it is possible to write

Q = −1 +
∑
LA

L−
∑
L2∗

A

LM +
∑
L3∗

A

LMN − . . . , (3.7)

with (i) L, M and N so-called loop transmissions, where a loop is a sequence
of demographic parameters that lead from a given state to itself without
passing more than once through some other state, with the loop transmission
the product of the demographic parameters along the loop, (ii) LA the set of
all loops associated with A, and (iii) a ∗ hung on to an n-fold cartesian power
of LA indicating that only n-tuples are considered in which the sets of states
occurring in those loops are mutually exclusive (c.f. Figure 3.3). A loop is
called evolving if it contains at least one trait, and regulated if it contains at
least one demographic parameter affected by E.

Rueffler and co-workers use (3.7) together with
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Proposition 3.23. If it is possible to find functions g1 : X → R, g2 : X → R,
e1 : E → R and e2 : E → R with sign[g2] and sign[e1] constant such that

Q(X|E) = g1(X)e1(E) + g2(X)e2(E), (3.8)

then sign[e1(E)]g1(X)/|g2(X)| is an optimisation principle.

to delineate a zoo of special classes of sufficient conditions for the existence
of an optimisation principle in terms of the life cycle graph. The taxonomy
of this zoo is not simple. Moreover, it is not clear yet whether possibly any
further special cases are still out in the wild. Hence we give only one simple
example and refer to [43] for the details.

Example. Evolution of fertility patterns in perennial plants. Assume that we
are interested in the evolution in the two fertility parameters in the life-cycle
graph in Figure 3.3. The biological interpretation is that f13 corresponds
to fall reproduction, and f23 to spring reproduction so that the seeds can
already germinate in the same year and appear as a juvenile at the next
sampling time. Now assume that the environment influences only the winter
seed survival, and by that f31, and seedling survival t21. Then we get, with
a bar above a life history parameter indicating that it is constant and a tilde
that it evolves,

Q(f̃13, f̃12|E) =

[t̄32f̃23 + t̄22 + t̄33 − t̄22t̄33 − 1] + [t̄21t̄32f̃13][Rt,21(E)Rf,13(E)].

Hence evolution maximises (t̄21t̄32f̃13)/(1 + t̄22t̄33 − t̄22 − t̄33 − t̄32f̃23). (The
term (t̄32f̃23 + t̄22 + t̄33− t̄22t̄33−1) is negative since otherwise the population
would not have an equilibrium.)

The problem of determining sufficient conditions for the existence of an
optimisation principle can also be turned on its head in the form of deriving
necessary conditions for the non-existence of an optimisation principle, or, in
the terminology of [25], for selection to be frequency dependent. We start with
a condition presented by Roger Bowers [5], although phrased in a different
language.

Proposition 3.24. Let the community be described by
dN
dt

= M(X|N) (3.9)

with N the vector of population densities of all species in the community
differentiated according to the states of the individuals, M a corresponding
block diagonal matrix, and the map N 7→M(X|N) affine. Then a necessary
condition for evolution to be frequency dependent is that for each X the range
of the map N 7→M(X|N) is at least two dimensional.

Claus Rueffler and co-workers strengthen this type of condition to

Proposition 3.25. For selection to be frequency dependent it is necessary that
E has more than one component and that at least two evolving and two reg-
ulated loops exist which occur in one of the following combinations:
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Figure 4.1. Types of dynamics of the monomorphic version
of the model (4.1)-(4.3). The thin lines are contour lines of
φ. A reasonable constraint set is indicated in grey together
with the accompanying ESS.

(i) A pair of loops L, M exist that are both evolving and regulated such that

Q(X|E) = L(X|E) +M(X|E) + remainder. (3.10)

(ii) Three loops L, M , N exist where L is both evolving and regulated, M is
evolving and N is regulated such that

Q(X|E) = L(X|E) +M(X) +N(E) + remainder. (3.11)

(iii) Four loops L, M , N and O exist where L and M are evolving and N
and O are regulated and where L and N are unconnected such that

Q(X|E)=L(X)+M(X)+N(E)+O(E)−L(X)N(E)+remainder, (3.12)

where X, E and (X|E) are added as arguments to loops to indicate whether
they contain a trait, a regulated demographic parameter or both.

The goal is, of course, to delimit the existence versus non-existence of
an optimisation principle in the form of necessary and sufficient conditions.
However, Figure 3.2 depicts a life cycle that satisfies requirement 1 of Propo-
sition 3.25 as well as the requirement of Proposition 3.22, showing that that
goal is not yet in sight.

4. Three applications

Application 4.1. Evolution away from chaos
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Consider the population dynamical equations

ni(t+ 1) = ai (f (E(t)))bi ni(t) for i = 0, . . . , k, (4.1)

with
E(t) = [c0n0(t) + · · ·+ cknk(t)], (4.2)

all ai, bi, and ci > 0, and f decreasing from 1 to 0 for E increasing from 0
to ∞.

With the choice
f(E(t)) = [1 + E(t)]−1, (4.3)

and k = 0, this model becomes the model launched into fashion by i.a. [24]
as a touchstone for the appearance of chaotic fluctuations in single species
population dynamics. Figure 4.1 shows the dependence of the dynamics on
the parameter values.

The trait vector appearing in (4.1) and (4.2) is

X = (a, b, c). (4.4)

The parameters a, 1/b, and c can be interpreted in individual-based terms as
respectively the per capita reproduction in a boom environment, the ability
to cope with a bust environment and the per capita impingement on the
common environment. From (4.1) we find

ρ(X|E) = L[a[f(E)]b] = ln[a] + bψ(E), (4.5)

with
ψ(E) = L[f(E)]

and L the log geometric mean operator

L(z) := lim
T→∞

T−1
T∑
t=1

ln(z(t)).

From ρ(X|Eattr(X)) = 0 we deduce that

ψ(Eattr(X)) = −b−1 ln[a], (4.6)

From Proposition 3.16 we conclude that evolution maximises

φ(X) :=
ln[a]
b

(4.7)

In accordance with Propositions 3.13 and 3.14 we can define the func-
tions g and h occurring in the definitions of monotone one-dimensional action
as

g(φ(X), E) := φ(X) + ψ(E) =: h(X,ψ(E)). (4.8)
Note that

ρ(X,E) = b(φ(X) + ψ(E)) (4.9)
showing that g and h are only sign equivalent to ρ, but not equal to ρ. It
can even be proved that for ρ given by (4.5) it is impossible to find pairs g
and φ, or h and ψ, for which such an equality holds good. Hence, even in the
domain of stable equilibria neither of the conditions C or D is fulfilled.
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Figure 4.2. Life cycle of a perennial plant.

It may be expected that increasing a will in general go at the cost
of increasing b. By combining the optimisation principle with a reasonable
trade-off between a and b it is found that in general the ESS will lie in the
region of stable equilibria (see Figure 4.1).

Application 4.2. Evolution of germination strategies
Figure 4.2 depicts the life history of a plant decomposed into two stages be-
tween which no information is transferred, as all seedlings are equal and so
are all newly produced seeds. Within the two stages the seeds and plants
are differentiated in e.g. (age, depth in soil)- respectively (age, size above
ground, size below ground)-classes. Sampling is done on a yearly basis, just
before germination time. Hence the boxes “seedling” and “fresh seeds” do not
correspond to states of the model as those conditions are but ephemeral on
the considered time scale. Yet we put them in since they provide the unique
connections between the stages that by that uniqueness prevent information
being transferred from one stage to another. The environmental influences on
an average individual plant can be decomposed into two components (Ea, Eb),
with Eb representing the influences on the seeds (consisting of e.g. seed pre-
dation pressures and fungal and bacterial attack rates at different depths; the
‘b’ refers to below ground), and with Ea representing influences on the plants
(capturing all direct and indirect competitive influences within the commu-
nity through shading, nutrient depletion and changing predation pressures;
the ‘a’ refers to above ground). Seedlings can survive only in so-called safe
sites, places that are temporarily without ground cover. Since the birth of
a safe site necessarily coincides with the demise or a state change of one or
more plants in the community it may be assumed that Ea also determines
the fraction of the area covered by safe sites. The quantity of evolutionary
interest is the germination strategy. Especially deeper buried seeds have only
a partial knowledge of whether they are in a safe site. Hence we can capture
the germination strategy by the dependence of the germination probability
on a seed’s state and whether it is in a safe site. Therefore, for a full descrip-
tion of the eco-evolutionary model the following quantities and functions are
needed, with aˇ indicating the mutant:
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N, Ň : vector of densities of seeds in different states,
P, P̌ : vector of densities of plants in different states,
U(Eb) : state distribution of a new seed just prior to germination time,
S(Eb) : matrix of survival and state transition probabilities of seeds,
h(Ea) : density of safe sites available at germination time,
k(Ea) : fraction of total area covered by those safe sites,
G, Ǧ : state dependent probabilities that a seed in a safe site germi-

nates,
F, F̌ : state dependent probabilities that a seed outside a safe site

germinates,
θ(Ea) : average number of seedlings in a safe site that survive seedling

competition divided by the average density of novel seedlings
in safe sites,

J(Ea) : state distribution of young plants that have survived seedling
competition,

A(Ea) : matrix of survival and state transition probabilities of plants,
Y (Ea) : seed production by plants in different plant states.

Note that the probability distribution of the state of a newborn seed
at the next germination time, encoded in the vector U , will in general be
defective (i.e., has total mass smaller than one) due to seed mortality. Note
also that in most concrete instances the probability distribution of plant
states after seedling competition, encoded in the vector J , will probably be
concentrated on but a single plant state: small juvenile. J by definition has
full mass as the probabilities of seedling death are all accounted for in θ(Ea).

The resident population state satisfies the following recurrences

N ′ = S(Eb)(I− k(Ea)diag(G)− (1− k(Ea))diag(F ))N

+ U(Eb)Y T(Ea)P, (4.10)

P ′ = A(Ea)P + J(Ea)h(Ea)θ(Ea)GTN,

In words, the seeds of next year consist of this year’s seeds that neither
germinate nor succumb plus the surviving new seeds from this year. The
plants of next year consist of this year’s surviving plants plus the new plants,
the density of which is calculated as the density of safe sites times this year’s
average numbers of survivors of seedling competition in a site. By the same
token, the mutant population state satisfies

Ň ′ = S(Eb)(I− k(Ea)diag(Ǧ)− (1− k(Ea))diag(F̌ ))Ň

+ U(Eb)Y T(Ea)P̌ , (4.11)

P̌ ′ = A(Ea)P̌ + J(Ea)h(Ea)θ(Ea)ǦTŇ .

These equations should be combined with equations for the remainder of the
community to determine (Ea, Eb).

For the calculations below we assume that the resident population dy-
namics converges to an equilibrium.
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As it turns out, the present model is still a bit too general to allow the
ES germination strategy to be determined from an optimisation principle.
However, it is only by considering more general models that it is possible to
delineate the crucial assumptions needed for the results from the previous
Section to apply.

At the resident equilibrium the average lifetime offspring number of
a resident equals 1. The calculation of this average lifetime offspring num-
ber can be broken down into a number of steps. First we calculate the
average number of full seasonal cycles (measured between end-of-seedling-
competition time points) that a survivor from the seedling stage lives through
during its lifetime, split up according to the state the plant was in at the
end-of-seedling-competition moments. From the general Markov chain re-
sults in [28] it follows that these numbers are given by the vector (I −
A(Ea,G,F ))−1J(Ea,G,F ) , with (Ea, Eb)G,F the equilibrium environment, to
be determined from the full community dynamical equations for the resident
strategy (G,F ). Hence, the average number of seeds that a plant that just
germinated in a safe site will produce over its lifetime is Y T(Ea,G,F )(I −
A(Ea,G,F ))−1J(Ea,G,F )θ(Ea,G,F ). Similarly, the average number of germi-
nation moments that a seed experiences while in various seed states equals
(I−S(Eb,G,F )(I−k(Ea,G,F )diag(G)−(1−k(Ea,G,F ))diag(F )))−1

U(Eb,G,F ).
Therefore, the probability of a seed germinating in a safe site instead of dying
or germinating elsewhere equals GT(I − S(Eb,G,F )(I − k(Ea,G,F )diag(G) −
(1− k(Ea,G,F ))diag(F )))−1U(Eb,G,F ). Multiplying these two numbers gives
an expression for R0(G,F |(Ea, Eb)G,F ) that we have to set equal to 1 as
part of the process of calculating the resident equilibrium. As it turns out,
there is no need to calculate this equilibrium in full. All that is needed later
is an expression for θ(Ea,G,F ) as a function of the other resident parame-
ters which can be determined from the equation R0 = 1. The calculation of
R0(Ǧ, F̌ |(Ea, Eb)G,F ) proceeds in a similar manner. After substituting the
earlier found expression for θ(Ea,G,F ) and cancelling terms in the numerator
and denominator we get

R0(Ǧ, F̌ |(Ea, Eb)G,F ) (4.12)

= ǦT(I−S(Eb,G,F )(I−k(Ea,G,F )diag(Ǧ)−(1−k(Ea,G,F ))diag(F̌ )))−1
U(Eb,G,F )

GT(I−S(Eb,G,F )(I−k(Ea,G,F )diag(G)−(1−k(Ea,G,F ))diag(F )))−1
U(Eb,G,F )

.

From this expression it can be seen that ESSes can be determined by opti-
mising (G,F ) in

φ̃(G,F ; k,S, U) := GT (I− S (I− kdiag(G)− (1− k)diag(F )))−1
U (4.13)

in dependence on (k,S, U), and solving the community dynamical equilibrium
equations together with

(G,F ) = (G,F )opt(k(Ea,G,F ),S(Eb,G,F ), U(Eb,G,F )). (4.14)

If and only if G and F do not influence the equilibrium values of the
seed state transition and survival probabilities and the fraction of the area
covered by safe sites, i.e., S(Eb,G,F ) = S̄, U(Eb,G,F ) = Ū and k(Ea,G,F ) = k̄,
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the function φ : (G,F ) 7→ φ̃(G,F ; k̄, S̄, Ū) is an evolutionary optimisation
principle, in accordance with Proposition 3.22.

We are still in the midst of exploring this model. Some first results and
more details can be found in [36].

Application 4.3. Virulence evolution
For a long time, it was close to dogma in epidemiological theorizing (e.g.,
[1, 2]) that the main basis for the study of virulence evolution should be
sought in the maximisation of R0, defined in epidemiology as the number
of secondary infections engendered by a primary infection in an otherwise
infection-free population. To this end, R0 is considered as a function of the
disease’s demographic parameters, which in turn are envisaged as functions
of some underlying trait vector that is supposed to be under evolutionary
control. Here we consider, following [8], how this dogma fares in the light of
Propositions 3.13 and 3.14 (see also [7]).

The epidemiological models that we consider below have been chosen
for the simplicity of the calculations they engender. In particular, their com-
munity dynamics possess unique internal point attractors.

We start by giving a full population dynamical description of the eco-
logical context, before reverting to considerations focusing on infected indi-
viduals. It is the individual-based dynamics of the latter that provides the
basis for the classification of the environmental feed-back loop relative to its
consequences for the ESSs of disease traits. The details of the population dy-
namics surrounding infected individuals is relevant only in so far as it acts as
an environment affecting the population dynamical behavior of the infected
individuals.

To characterise the instantaneous environmental conditions to which
infected individuals may be exposed, we follow standard custom by letting
S denote the density of susceptible individuals and I the density of infected
individuals. After specifying the dynamics of this instantaneous environment,
the corresponding evolutionary environments can be calculated from the at-
tractors of this dynamics. Infections occur according to the law of mass ac-
tion, with a fixed rate constant β. Infected individuals do not recover but
die at a per capita rate α, acting on top of the per capita death rate expe-
rienced by susceptible and infected individuals alike. In the absence of the
disease, I = 0, the population grows in a density-dependent manner, with
per capita birth rate b0 − hb(S, 0) and per capita death rate d0 + hd(S, 0),
with b0 > d0 > 0. The functions hb and hd both increase in S and I, with
hb(0, 0) = hd(0, 0) = 0. The full population dynamical equations are then
given by

dS
dt

= [b(S, I)− d(S, I)− βI]S,
dI
dt

= [βS − α− d(S, I)]I, (4.15)

with
b(S, I) = b0 − hb(S, I), d(S, I) = d0 + hd(S, I). (4.16)

(The implicit assumption that infected individuals are not allowed to repro-
duce greatly simplifies the proofs of the attractivity of the equilibria.)



When do optimisation arguments make evolutionary sense? 33

The parameters α and β are assumed to be under evolutionary control
by the disease (evolution in host-controlled traits is not considered here). In
agreement with the standard custom, we assume α and β to be connected by
a constraint: β cannot become too high and α simultaneously not too low,
which can be expressed as g(α, β) ≤ m with g increasing in β and decreasing
in α. As evolution acts to increase β and decrease α, it will quickly run
into this constraint. From there on, evolution will effectively be restricted
to the curve g(α, β) = m, alternatively parameterised as β = β(α), or as
(α(x), β(x)) for some scalar physiological trait x.

Within the general class of models (4.15), we consider four special cases,

(i) hb(S, I) = κ(S + I), hd(S, I) = 0,
(ii) hb(S, I) = 0, hd(S, I) = κS,
(iii) hb(S, I) = 0, hd(S, I) = κS2,
(iv) hb(S, I) = 0, hd(S, I) = κ(S + I).

(4.17)

These model families have been rigged so that for model (i) and (ii) the envi-
ronmental feedback for the disease is one-dimensional monotone. According
to Propositions 3.13 and 3.14, these models thus support an optimisation
principle. For model (i) the optimisation principle is equivalent (i.e., mono-
tonically related) to R0, while for model (ii) this is not the case. For model
(iii) the environment feedback acts one-dimensionally but not monotonically,
and for model (iv) it acts two-dimensionally.

It should be understood that we chose the specific examples in Equation
(4.17) primarily for didactical purposes. For their individual-based under-
pinning one may think of population regulation through fighting. For models
(i) and (iv) fighting may be initiated by all individuals, whereas for models (ii)
and (iii) infected individuals are assumed to suffer from fights without being
able to initiate such fights themselves. Model (iii) is based on the assumption
of aggression increasing linearly with aggressor density. Fighting, of course,
may here be replaced by any other form of interference competition.

In this application we will distinguish the customary evolutionary R0,
i.e., the infection-time production of new disease cases by a mutant disease
case introduced into a resident disease in equilibrium with its host, from
the customary epidemiological R0 by denoting the former as R. We start by
expressing R as a general function of the mutantt traits X̌ = (α̌, β̌) and of
the variables (S, I) parameterising the potential environmental conditions,

(i) R(α̌, β̌|S, I) = β̌S
α̌+d0

,

(ii) R(α̌, β̌|S, I) = β̌S
α̌+d0+κS ,

(iii) R(α̌, β̌|S, I) = β̌S
α̌+d0+κS2 ,

(iv) R(α̌, β̌|S, I) = β̌S
α̌+d0+κ(S+I) .

(4.18)

It is only later that we will confine attention to the realisable environments,
given by the equilibrium values (Ŝ(α, β), Î(α, β)) produced by the possible
residents X = (α, β).
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For model (i), R increases with S. So the optimisation principle can be
constructed directly from (3.6). Minimising Ŝ, which can easily be seen from
(4.15)-(4.17) to yield Ŝ = (α+d0)/β, should thus be equivalent to maximising
φ(α, β) = −Ŝ = −(α+d0)/β. To calculate R0 for this model, we observe that
R0(α, β) = R(α, β|S0, 0) = βS0/(α + d0), with S0 denoting the equilibrium
value for S in the absence of the disease. It is not difficult to see that R0

and the φ resulting from our general construction are indeed monotonically
related, independent of the value of S0.

For model (ii), R is again monotone in S. From Eattr(X) = Ŝ = (α +
d0)/(β−κ), we find the matched optimisation principle φ = −(α+d0)/(β−κ).
However, maximising φ is not equivalent to maximising R0 = βS0/(α +
d0 + κS0) = β(b0 − d0)/[κ(α + b0)], where we used S0 = (b0 − d0)/κ as
for model (i). To see this non-equivalence, it suffices to observe that the
contour lines, defined by R0(α, β) = R0(α0, β0) and φ(α, β) = φ(α0, β0)
for given (α0, β0), differ, as can be seen from the lack of coincidence in their
derivatives at (α0, β0), calculated via an implicit differentiation of the defining
relations: dα/dβ = (κα0 + b0)/(β0κ) for R0, which differs from dα/dβ =
(α0 + d0)/(β0 − κ) for φ.

The fact that invasion fitness in model (iii) is non-monotone in any
scalar summary of the condition of the environment, and that the evolution-
ary environment in model (iv) is essentially two-dimensional, can already
be guessed from (4.18). However, for a proof we have to deal with the fact
that, for instance, in model (iii) R should be non-monotone relative to what-
ever summary variable even when its domain is restricted to the realisable
values of S and in addition to an infinitesimal neighborhood of those combi-
nations of (α̌, β̌) and Ŝ(α, β) for which R(α̌, β̌|Ŝ(α, β)) = 1. The necessary
technicalities can be found in [8, Appendix A]. For the present exposi-
tion it suffices to note that in cases (iii) and (iv) the directions dα/dβ in
(α0, β0) of the contour lines {(α, β)|R(α, β|S(α0, β0), I(α0, β0)) = 1} and
{(α, β)|R(α0, β0)|S(α, β), I(α, β)) = 1}, which can be determined by implicit
differentiation, are generically different. Hence, by Corollary 3.12 neither case
allows an optimisation principle.

5. Discussion

The title question was interpreted by us as: find necessary and sufficient
conditions on eco-evolutionary models such that the ESSes for these mod-
els for all possible constraints on the trait space X can be calculated by
optimising some function φ : X → R. At the highest level of abstraction
this question was answered by naming two conditions that should be satis-
fied by the invasion fitness function (X,Y ) 7→ sX(Y ): (i) it should be sign-
antisymmetric, that is, sX(Y ) > 0⇔ sY (X) < 0, and (ii) there should be no
weak rock-scissors-paper configurations, that is, triples (X,Y, Z) such that
sX(Y ) ≥ 0, sY (Z) ≥ 0, and sZ(X) > 0. At a lower level of abstraction
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this was found to be equivalent to both the trait and the environment act-
ing effectively in a one-dimensional monotone manner. On a still lower level,
that of life history parameters, the picture becomes more diffuse. As even for
reasonably delimited classes of models no necessary and sufficient conditions
are available yet, all we could do is give a brief summary of the insights that
are available at the current time. This clearly is a highly interesting area for
further research.

Of course, there exist still lower levels of abstraction, like the organisa-
tion of foraging or the construction of bones. Although quite a lot of optimi-
sation modelling is done here in concrete applications, it for the time being
appears inopportune to extend our approach to these levels, primarily since
those applications customarily leave open the full eco-evolutionary context
that would be the ultimate justification of the presumed optimisation prin-
ciple. The best that one can say is that these applications should probably
be considered as attempts at predicting not so much evolutionary outcomes
as well as predicting properties of individuals from the environment in which
they are observed to live, on the supposition that the combination of re-
alised trait value and environment is currently sitting at an ESS, and that
the optimised quantity is a fair fitness proxy.
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