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Abstract

The interest in fishing-induced life-history evolution has been growing in the
last decade, in part because of the increasing number of studies suggesting evo-
lutionary changes in life-history traits, and the potential ecological and eco-
nomic consequences these changes may have. Among the traits that could
evolve in response to fishing, growth has lately received attention. However,
critical reading of the literature on growth evolution in fish reveals conceptual
confusion about the nature of ‘growth’ itself as an evolving trait, and about the
different ways fishing can affect growth and size-at-age of fish, both on ecologi-
cal and on evolutionary time-scales. It is important to separate the advantages
of being big and the costs of growing to a large size, particularly when studying
life-history evolution. In this review, we explore the selection pressures on
growth and the resultant evolution of growth from a mechanistic viewpoint.
We define important concepts and outline the processes that must be
accounted for before observed phenotypic changes can be ascribed to growth
evolution. When listing traits that could be traded-off with growth rate, we
group the mechanisms into those affecting resource acquisition and those gov-
erning resource allocation. We summarize potential effects of fishing on traits
related to growth and discuss methods for detecting evolution of growth. We
also challenge the prevailing expectation that fishing-induced evolution should
always lead to slower growth.

harvested stocks, the requirements for harvest-induced
evolution are typically fulfilled, namely that: (i) fishing is

In recent years, the potential evolutionary consequences
of fishing have received considerable attention (reviewed
and discussed in Law 1991; Dieckmann & Heino 2007;
Jorgensen et al. 2007; Kuparinen & Merild 2007; Marshall
& Browman 2007; Fenberg & Roy 2008; Hutchings & Fra-
ser 2008; Naish & Hard 2008; Dunlop et al. 2009a). For
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selective on phenotypic traits, either because the gear in
use is actively targeting fish with certain traits (see Ham-
ley 1975 for a review of gill net selectivity) or because ele-
vated mortality in general favours traits expressed early
rather than late in life; and (ii) there is heritable genetic
variability for several of these traits (Gjedrem 1983;
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Carlson & Seamons 2008). Furthermore, exploitation
rates are often several-fold higher than natural mortality
(Mertz & Myers 1998) so the overall selection might be
strong. Fishing is therefore likely to influence the course
of evolution, but what is not immediately obvious is which
traits will evolve, in which direction and how quickly will
evolution proceed, how important will it be relative to
other forces causing phenotypic change, and, finally, how
we can best manage any potential consequences.

One life-history trait that is expected to evolve in
response to fishing is growth rate. Early literature on fish-
ing-induced evolution of growth was dominated by the
hypothesis that fishing would select against fast-growing,
large fish because fishing mortality typically increases with
body size (eventually exceeding natural mortality in most
exploited stocks), and that growth could consequently
evolve towards slower rates (Rutter 1902; Miller 1957;
1979; Kristiansen & Svasand 1998). This
hypothesis is intuitive and has been reiterated many times,
but serious attempts to test or evaluate it were for a long
time restricted to Ricker’s (1981) classic work on the

Favro et al.

declining size of Pacific salmon. Within the last decade,
there has been a resurgence of studies on fishing-induced
evolution of growth, both from experiments (Conover &
Munch 2002; Biro & Post 2008) and from examinations of
wild populations (Edeline et al. 2007; Swain et al. 2007).
The work by Conover & Munch (2002) drew considerable
media attention and scientific debate (Hilborn 2006;
Conover & Munch 2007). The same occurred with the
study by Edeline et al. (2007), which was included among
the journal Nature’s research highlights of 2007 (Anony-
mous 2007, see also Conover 2007) and was praised else-
(Coltman 2008). However, these studies have
revealed that predictions on the direction of evolution of

where

growth are more complex than was thought when the first
hypotheses were formulated. In particular, many studies
confuse growth rate with size-at-age, or treat growth rate
as the evolving trait without considering other traits and
processes that influence size-at-age. Here we aim to address
the confusion by a concept-oriented review of mechanisms
that affect growth (and consequently size-at-age) through
their impact on the acquisition and allocation of resources.
We further interpret each mechanism in light of fishing-
induced evolution, and expose the difficulties associated
with the measurement of growth rate from field data.
Finally, we consider the achievements of the field as a
whole and where future research is needed.

Definitions and Key Concepts

It is often deceptive to think of growth as a single trait,
when instead it is the outcome of a complex suite of
behavioural, morphological and physiological processes.
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These processes relate to both incoming resources and
subsequent partitioning of those resources, and in partic-
ular to how surplus resources are allocated among com-
peting needs. Different components of growth are
therefore subject to various selection pressures, making
evolutionary change in growth inherently difficult to pre-
dict and quantify from data. In this section, we first pro-
vide key definitions, and highlight areas where
misconceptions typically occur. Our approach and defini-
tions are inspired by foraging behaviour (Lima & Dill
1990), a life-cycle perspective to energy allocation (e.g.
Roff 1983; Kozlowski 1992), and energy budgets and
flows within individual organisms (e.g. Kooijman 2010).

Acquisition, allocation, and growth

Key processes involved in energy budgeting within an
individual are resource acquisition, resource allocation,
and growth (Figs 1 and 2). We define resource acquisition
as the processes involved in foraging, ingestion and diges-
tion. Resource acquisition controls the total amount of
resources available to the organism, and these are allo-
cated to various competing needs.

Some of the resources are allocated to running costs of
the organism: mainly its basal metabolism (often quanti-
fied as resting metabolism), digestion and routine activity
(Fig. 2). Basal metabolism represents a set of basic pro-
cesses needed to remain alive and functional (e.g. mainte-
nance, immune defence and cognition). Note that
allocation to, for example, cognition, movement and diges-
tion may increase the organism’s potential for resource
acquisition, so allocation and acquisition are not com-
pletely separable. Of special importance for this review is
the availability of resources after basal metabolism and

Basal metabolism
Routine behaviour

Growth

Acquisition
Surplus resources

Reproduction

Fig. 1. Simplified representation of the basic logic of resource flow
underlying growth. Acquired resources are allocated to three main
components: (i) the ‘running costs’ of an individual including basal
metabolism and routine behaviour, (ii) somatic growth including struc-
tures and stores, and (iii) reproduction. Before maturation, changes in
surplus resources will translate directly into changes in growth,
whereas a proportion of the surplus resources is allocated towards
reproduction from maturation onwards. A more comprehensive flow-
chart is shown in Fig. 2.
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Fig. 2. Resource acquisition (left) and allocation (right) are both adaptive processes. The amount of acquired resources is affected by many pro-
cesses influencing foraging and ingestion, which after digestion translates into available resources. Resources allocated to routine metabolism,
reproduction and structural growth are generally not available for later use, whereas resources deposited in stores can be utilized later. Changes
in any of the components affecting resource acquisition or in how the acquired resources are allocated may lead to altered growth.

routine activity have been accounted for, and we term
these surplus resources (Fig. 1). Surplus resources are often
termed ‘surplus energy’ (Ware 1975; Roff 1983) or
‘growth effort’” (Abrams & Rowe 1996); by referring to
‘resources’ we acknowledge that not only is the total
energy important, but the nature of that energy (e.g. its
nutrient composition) has consequences as well (e.g. Pul-
liam 1975; Blount et al. 2000; Grandison et al. 2009).
During the immature phase of the life cycle, surplus
resources will result in somatic growth, which includes the
growth of all tissues in the body except for germ cells; it
is therefore distinguished from reproductive investment,
which allocates a proportion of the surplus resources to
reproduction as the individual becomes sexually mature.

Size is a state, growth is a process

Individual body size is of profound ecological impor-
tance. Larger individuals usually have increased survival,
are more successful at attracting mates, have higher
fecundity, have an enhanced capability to withstand star-
vation, and are better in competition for resources (Peters
1983). However, food requirements are generally higher
for larger animals, and growing big takes time and
resources. There are thus several components in a cost—
benefit budget that jointly determine the evolutionary
advantages and disadvantages of having a particular size.
Behavioural and life-history strategies will therefore often
be size-dependent and change as an animal grows
(McNamara & Houston 1996). From a fisheries perspec-
tive, the size distribution of individuals also has a strong
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influence on population dynamics, including recruitment
(Persson ef al. 2007) and fisheries yield (Law & Grey
1989; Conover & Munch 2002).

Growth and size are intimately linked and often corre-
lated (for example, fast-growing individuals are often big)
but, obviously, they are not the same. For example, large
individuals may, when they use their resources for repro-
duction, grow more slowly than smaller fish. Thus,
whereas body size characterizes an individual’s state,
growth is the process that leads to that state. For example,
it can be risky to grow fast, but once a certain size is
attained, the payback in terms of survival or reproduction
can be good.

It is tempting to think that selection on growth could
be fully understood by studying selection on size, or vice
versa, but this is not the case. To be able to grow to a
certain size, an individual needs to acquire resources
through foraging, usually at a cost of exposure to preda-
tors, parasites and infections. From an evolutionary per-
spective, it is therefore important to separate between the
advantages of being big and the costs of growing to a
large size. Consequently, there can be selection not only
on body size but also on the growth-related processes that
allow the individual to attain a certain size. Growth and
size are coupled, so selection on one may lead to indirect
selection on the other, and growth and size may also be
correlated with other traits under selection.

Observing growth directly implies measuring changes
in size over time, and growth per unit of time is referred
to as growth rate. The most common measures of growth
rate in fish are length increment or body mass increment
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per time (for other definitions see Dmitriew 2011). These
measures differ in one important aspect: increase in
length is usually irreversible, whereas weight can increase
or decrease as stores are deposited and utilized, or as
gonad mass is built and spawned.

Growth is evolutionarily optimized, not maximized

In the past, growth was often regarded as a trait that
should, under natural selection, evolve towards maxi-
mum rates, within the limits of physiological constraints
(e.g. Ricklefs 1969). However, there may be several ben-
efits of sub-maximal growth, and it was surprisingly
recently that growth became more widely regarded as
being evolutionarily optimized rather than maximized
(in large part due to the review by Arendt 1997; but
see also Case 1978). Two well-documented phenomena
clearly support this conclusion in fish. First, when indi-
viduals are given excess food after a period of food
deprivation, they often grow faster than control groups
that are fed ad libitum. This phenomenon, referred to
as compensatory growth or catch-up growth (reviewed
in Metcalfe & Monaghan 2001; Ali et al. 2003), illus-
trates how growth rate is normally well below the phys-
iological capacity (Sundstrom et al 2007). A wide
spectrum of delayed and immediate costs of compensa-
tory growth have been identified (Arendt 1997; Metcalfe
& Monaghan 2001; Arendt & Reznick 2005; Mangel &
Munch 2005), further suggesting that although faster
growth is possible, it implies costs, particularly in terms
of survival. The ability for fast growth may, for example, be
costly in terms of starvation tolerance: a recent study in
European sea bass Dicentrarchus labrax identified a positive
correlation between the rate of mass loss during a starva-
tion period and the growth during a subsequent compensa-
tory period (Dupont-Prinet et al. 2010).

Countergradient variation is another phenomenon that
shows a clear role for local adaptations in growth
(Conover & Present 1990). In the wild, populations expe-
riencing different growth conditions may show compara-
ble growth within a season, even though there might be
considerable differences, for example, in the length of the
growing season or temperature along a latitudinal gradi-
ent. One species where countergradient variation has been
studied is the Atlantic silverside, Menidia menidia, a small
annual fish found along the east coast of North America:
in common garden experiments, individuals from the
northern populations grow faster than their southern
counterparts, indicating a genetic basis for the difference
(Conover & Present 1990). The northern population’s
increased growth rate in the lab compensates for shorter
growing season in the wild, so that when different popu-
lations are sampled in their native environment, the dif-
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ferences in size-at-age are smaller than the local
environment would prescribe (Conover & Present 1990).
Countergradient variation has also been observed in a
number of other fish species and other taxa (Conover &
Schultz 1995).

Compensatory growth and countergradient variation
demonstrate that growth is evolutionarily ‘optimized’ at
levels below the physiological capacity. Which trade-offs
cause adaptive differences in growth between individuals,
populations and species? Is it possible to predict how the
mechanisms underlying growth may evolve in response to
fishing? In the remainder of this paper we try to answer
these central questions by splitting growth into several
processes and analyzing each process separately. We
describe selection on growth-related traits in a natural
setting, and how that selection may be modified due to
fishing. In practice we do this mainly by identifying the
underlying trade-offs and evaluating how the costs and
benefits change from the natural setting to one in which
fishing occurs.

Factors Affecting Growth

Even though growth is usually observed as one variable
(the rate of change in size) the process of growth consists
of two main components: acquisition of resources and
subsequent allocation to different needs. Below we pro-
vide a conceptual review of factors affecting observed
growth rate. Although we attempt to break growth down
into component processes, it is important to keep in
mind that there are developmental constraints, shared
mechanisms, delayed effects, variable heritabilities, and
genetic correlations that may influence phenotypic expres-
sion as well as the ability of each trait to evolve. On top
of this, growth is also very sensitive to environmental
conditions, so for any phenotypic effect one needs to bear
in mind that there might be genetic influences as well as
phenotypic plasticity.

Key processes: resource acquisition and allocation

Organisms have a limited amount of resources they can
use, not only for growth, but also for storage, reproduc-
tion and maintenance. That resources are finite can, as
illustrated by Reznick et al. (2000), be depicted as a pie
where allocation decisions are represented as slices, with
the sum of all slices necessarily constrained by the size of
the whole pie. Consequently, increasing the ‘growth-slice’
will decrease the size of some other slice(s), for instance
the amount of resources allocated to reproduction. This
paradigm underlies much of life-history theory (e.g. Roff
1992) and energy allocation modelling (e.g. Roff 1983;
Kozlowski 1992).

Marine Ecology 33 (2012) 1-25 © 2011 Blackwell Verlag GmbH
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However, the total size of the pie depends on resource
acquisition. If an individual is efficient in gaining
resources, the pie becomes larger (Reznick ef al. 2000).
Constraints on acquisition may, however, arise through
avoidance of predation or through food limitation. Here,
we highlight the many traits which could be traded-off
with growth rate. We group basic mechanisms into two
categories: those affecting resource acquisition (the size of
the whole pie) and those governing resource allocation
(the relative size of each slice).

Resource acquisition revolves around the processes of
foraging leading up to ingestion and digestion (Fig. 2).
Foraging involves behavioural and morphological adapta-
tions related to finding and capturing prey, as well as
physiological and anatomical adaptations involved in
sensing and cognition. Many trade-offs have been exten-
sively studied within the field of foraging ecology (e.g.
Stephens et al. 2007), and most of these relate to behav-
iour and risk-taking. In Table 1, we list many of the
trade-offs relating to resource acquisition, and how they
may be perturbed by fishing activities.

To illustrate that there are also less intuitive costs
related to acquisition, consider the example of digestion.
In fish, the entire digestion process typically consumes
some 10% of the energy content of the ingested food
(Tandler & Beamish 1979). However, digestion also
requires oxygen and, as aquatic respiration is costly, this
is often in conflict with other purposes such as escaping
predators (Arnott ef al. 2006). This conflict has been
demonstrated in a comprehensive set of experiments on
the Atlantic silverside along the axis of countergradient
variation of growth described above. Northern silverside
populations, which experience short growing seasons,
increase their growth rate by voluntarily ingesting larger
meals (Lankford et al. 2001) and consequently have
higher metabolic rates and consume more oxygen (Arnott
et al. 2006). In common garden experiments, northern
populations are poorer swimmers (Billerbeck et al. 2001),
which gives them poorer escapement responses and they
are consequently eaten more often by predators (Lankford
et al. 2001; Munch & Conover 2003). Physiological mech-
anisms related to digestion thus translate increased
growth rate into higher predation rates. Similar results
have also been obtained from experiments by Suzuki
et al. (2010), who hypothesized that individual medaka
Oryzias latipes being predated upon by an ambush preda-
tor might trade off cautiousness to forage more intensely.
When fishing elevates mortality rates, speeding up growth
rate and reproduction by digesting faster might be
favoured, even if it means being exposed to some extra
predation mortality. Through this mechanism, fishing
might thus increase acquisition rates and, if allocation
does not change, also growth rate. Further trade-offs

Marine Ecology 33 (2012) 1-25 © 2011 Blackwell Verlag GmbH

Fishing-induced evolution of growth

related to resource acquisition and how these may
respond to fishing are listed in Table 1.

The allocation of acquired resources is also a dynamic
and multifaceted process. Owing to its direct relevance
for fitness,
considerable attention, often contrasted with allocation to
growth as the only other recipient of energy (e.g. Roff 1983;
Kozlowski 1992). Growth trajectories are split in two broad
categories depending on the age-schedule of allocation to

allocation to reproduction has received

growth and reproduction: determinate (a sharp transition
from allocation to growth to allocation to reproduction,
leading to growth curves resembling a hockey-stick) and
indeterminate (more gradual transition from allocation to
growth to allocation to reproduction and more von
Bertalanffy-like growth curves; reviewed in Heino & Kaitala
1996; see also Von Bertalanffy and Pirozynski 1953). In fish,
indeterminate growth is common, giving extra degrees of
freedom to adult life histories.

Although growth and reproduction can receive a large
proportion of resources, they are only two of several
resource-demanding processes in an individual. In a
more complete picture, investment in other components
such as maintenance, immune defence, digestion, mor-
phology, cognition, behaviour, and storage also need to
be considered (Fig.2). Each of these components
receives energy and resources in an amount that is
likely adaptive in the environment in which the organ-
ism has evolved. By down-regulating any of these com-
ponents, energy and metabolic capacity can be freed for
somatic growth. Examples of components with compet-
ing demands for energy and resources are given in
Table 2.

Developmental constraints and delayed effects of growth

Having outlined how resource acquisition (Table 1) and
resource allocation (Table 2) are malleable processes that
can respond to selection pressures (including those from
fishing), it is necessary to understand that constraints may
act directly on growth rate. In particular, the development
rate of certain body structures may constrain the growth
rates of other structures or induce costs related to rapid
growth. For instance, rapidly growing snails have thinner
shells because the rate of calcium deposition does not keep
up with increased growth rates, and individuals with thin
shells are more vulnerable to predators (Palmer 1981). Sim-
ilarly, rapid growth may result in compromised morphol-
ogy, such as suboptimal body proportions, increased
fluctuating asymmetry, and skeletal deformities (see Arendt
1997). For example, a positive correlation between rapid
growth rates and the degree of coronary lesions was
reported in Atlantic salmon (Saunders et al. 1992). Such
effects may be exacerbated by energy-maximizing diets,
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Table 2. Continued.

Potential fishing-induced

adaptation

Trait group

Relevant literature

Relation to fishing

Mechanism or trade-off in nature

Specific trait

Complex patterns of natural and fishing-

If variation in size is correlated

Phenology

induced selection arise on local populations of

salmon harvested in different parts of their
spawning migration (Kendall & Quinn 2009)

with variation in phenology
(e.g. if large individuals arrive

earlier at the spawning

of growth

grounds), then selection on

size and potentially growth
could arise. For example,
large and fast-growing

coho salmon smolts migrated
earlier than their smaller and

slower-growing conspecifics

(Sundstrom et al. 2010)

Enberg, Jargensen, Dunlop, Varpe, Boukal, Baulier, Eliassen & Heino

which may lead to deficiency of essential nutrients
(Pulliam 1975). Another study, on zebra finches Taeniopy-
gia guttata, showed that individual variation in resting
metabolic rate may be a consequence of the growth trajec-
tory during early ontogeny, with high metabolic rates
in adulthood being caused by accelerated growth during
earlier life stages (Criscuolo et al. 2008). These examples
emphasize that not all costs of growth are immediate,
which can make it harder to identify the trade-off in
nature.

Effects of the environment

Growth rate is also influenced by environmental condi-
tions such as temperature or the type and abundance of
food items. The latter may, in turn, be influenced by den-
sity dependence, for example if a large population
depletes its food resource. There is also a potential for
social effects, for example, reduced numbers of old and
large individuals in a population may release an inhibi-
tion of maturation on smaller and younger individuals
(Kolluru & Reznick 1996). Fishing affects many of these
relationships directly, for example by decreasing the num-
ber of fish, which can induce an increase in prey abun-
dance and lead to more resources becoming available.
Furthermore, phenotypic expression may depend on the
environmental conditions through developmental chan-
nelling or phenotypic plasticity. It is therefore difficult to
conclude whether detectable changes in size-at-age during
a period of fishing are due to fishing-induced evolution
or indirect effects of fishing on environmental characteris-
tics. The method of Swain et al. (2007) offers one good
example of how one may work around this problem.
They included proxies for the biotic and abiotic environ-
ment, and estimated their effects on growth trajectories.
In this paper we do not aim to review the environmen-
tal influences of growth, as there is a general awareness of
the phenomenon and it is often corrected for in studies.
We merely want to emphasize that whenever a pheno-
typic trait is quantified, one needs to correct for environ-
mental influences before one can make inferences about
underlying genetic differences, be it between populations
or trends in time-series analyses. Whenever genetic varia-
tion underlies some of the phenotypic variation in a trait,
the trait is heritable, and natural or artificial selection
may mould that trait over time. However, modelling
studies suggest that phenotypic plasticity in growth and
maturation dominate the picture, especially over short
time scales, and that these may mask underlying evolu-
tionary change that takes place at a comparatively slower
pace (see Dunlop et al. 2009b; Enberg et al. 2009). Proba-
bly due to such plastic effects, the analysis by Hilborn &
Minte-Vera (2008) did not reveal any clear pattern

Marine Ecology 33 (2012) 1-25 © 2011 Blackwell Verlag GmbH
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between change in size and fishing mortality in a large
number of marine fish stocks.

Fishing-Induced Evolution of Growth

Up until this point, we have been discussing the processes
and mechanisms involved in growth with the hope of
providing the necessary context for studying how fishing
might affect these processes. We argue that an under-
standing of the fundamentals of resource acquisition and
allocation is crucial to being able to predict the direction
and extent of fishing-induced evolution of growth and to
interpret trends in size-at-age or growth from phenotypic
data. For the remainder of this paper, we direct our
attention to fishing-induced evolution of growth more
specifically, and in particular describe what previous
research on the topic has taught us.

Expectations

Although several studies have suggested that fishing will
result in reduced growth rates (e.g. Miller 1957; Conover
& Munch 2002; Edeline et al. 2007), these predictions
have often been based on the influence of size on sur-
vival. If one considers a larger set of mechanisms, as listed
in Tables 1 and 2, it becomes more difficult to devise
general expectations for how fishing-induced selection
might change growth rates (see also Heino & Godg
2002). As is evident from Tables 1 and 2, there are fish-
ing-induced effects that could lead to higher or lower
acquisition rates, or to allocation of a greater or lesser
share to somatic growth, and there might be selection on
several of these mechanisms simultaneously.

The most fundamental consequence of increased mor-
tality from fishing is reduced expected life-span. Fish that
accelerate their life history through earlier maturation,
increased reproductive investment, or increased resource
acquisition and faster growth are thus likely to be
favoured. For example, Biro ef al. (2005) found that juve-
nile trout raised in low-food lakes took high risks to
achieve rapid growth and thereby shortened their dura-
tion of exposure to high predation at small size.

In general, a faster life history (higher acquisition rate
and earlier reproduction) will be favoured if the mortality
risk associated with it is lower than the extra mortality
accumulated with a slower life history (lower acquisition
rate and later reproduction) (Williams 1966). Increased
mortality from fishing may thus lead to the evolution of
faster resource acquisition and altered allocation patterns
to accelerate growth, as suggested by Case (1978). This
prediction is in contrast to the frequently cited expecta-
tion that fishing will cause evolution towards slower

Marine Ecology 33 (2012) 1-25 © 2011 Blackwell Verlag GmbH
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growth. Most likely there will be selection pressures acting
in both directions simultaneously, and depending on rela-
tive strengths, evolution of growth may go in either direc-
tion. Models have indeed supported our hypothesis, with
some predicting evolution of slower growth (Favro et al.
1979), some predicting evolution of faster growth (Enberg
et al. 2009; Jorgensen & Fiksen 2010), and others predict-
ing evolution of either faster or slower growth depending
on the size-selectivity of the fishery (Boukal et al. 2008;
Andersen & Brander 2009; Dunlop et al. 2009b). These
model findings challenge the prevailing notion that fish-
ing will always lead to evolution of slower growth.

Challenges in quantifying growth evolution from field data

Fishing-induced evolution of growth has been well docu-
mented in selection experiments (e.g. Conover & Munch
2002). In observational field studies, the task is more
challenging. In an ideal setting, allelic frequencies at the
loci that determine growth rate would be monitored to
detect whether growth is evolving (as suggested by
Kuparinen & Merild 2007). Unfortunately, we are still
years away from identifying all the genes that contribute
to the complex suite of processes and mechanisms affect-
ing growth of wild fish. Until then, much of our analysis
of growth evolution in wild populations will have, at best,
to focus on a restricted number or genes (or their prod-
ucts) of which various alleles have been associated with
differential growth rates (e.g. Case et al., 2006), or more
frequently rely on observational phenotypic data, which
can provide only indirect evidence for evolution. How-
ever, rather than giving up in the absence of genetic data,
we Dbelieve much can still be learned about fishing-
induced evolution of growth from the analysis of pheno-
typic data. The reality is that phenotypic data are most
readily available, notably time-series data for commercial
species, and we can still obtain valuable insight as long as
the various caveats and challenges are kept in mind.

The first challenge to consider when analyzing pheno-
typic field data is that size at a given age is influenced by
how much resources are diverted to reproduction, if any.
In Fig. 3 we give a simplified schematic of how it is possi-
ble to attain the same distribution of size-at-age through
three different mechanisms: variable growth rate
(Fig. 3A), variable timing of maturation (Fig. 3B), and
variable investment into reproduction (Fig. 3C). The
energetic demands of reproduction are ubiquitous and
have strong effects on growth rate that only rarely can be
ignored. The challenge of understanding the processes
behind changes in size-at-age can be partly overcome by
studying juvenile growth because it is not affected by
reproductive investment (Heino et al. 2008; Swain et al.
2008).
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Growth rate Maturation age Reproductive investment

A B C
L~

Length

Age Age Age

Fig. 3. Size at a given age (indicated by the black vertical bars) is influenced not only by growth rate but also by the timing of maturation and
the subsequent investment into reproduction. Black lines show growth trajectories for individuals with different trait values, and open circles indi-
cate timing of first reproduction. (A) Different juvenile growth rates, due to adaptive differences in either resource acquisition or allocation to rou-
tine metabolism, lead to different growth trajectories and sizes at a given age even before maturation. (B) When the maturation schedule can
evolve, individuals with the same juvenile growth rate may have different post-maturation size-at-age depending on their maturation schedule.
(C) Variation in reproductive investment can also cause variation in size-at-age later in life, even among individuals with the same growth rate and
maturation age. In particular, increased reproductive investment will cause a more determinate growth pattern with a sharp transition between
juvenile growth and a more or less fixed adult size (lower growth curve), in contrast to indeterminate growth (top growth curve). In reality, these
three different processes are likely to interact and need to be accounted for before changes in size-at-age are equated to evolution of growth.
Worth highlighting is that all of these different processes could lead to similar patterns in size-at-age (where the growth trajectories cross the

black vertical bar).

Secondly, obtaining representative samples of a fish
population to estimate growth rate is difficult. Virtually
all sampling methods are size-selective, which is an obvi-
ous problem for estimating growth rate, although some
biases can be corrected for. The origin of the data makes
an important difference: the fishing fleet intentionally tar-
gets a certain size range of fishes (usually the larger end
of the size spectrum), determined by landing size and
gear regulations, geographical distribution, and market
valuation of differently sized fish (see Pardoe et al. 2009).
Studies based on catch data inherit these biases, and the
nature of those biases may change over time as the popu-
lation or fishing practices change. Scientific surveys are
intended to be less selective and more consistent over
time, as they follow deliberately designed sampling
schemes, aiming also for segments of the population that
are not specifically targeted by fisheries (for example
smaller and younger individuals). Nevertheless, unbiased
sampling over the entire population is
impossible.

Thirdly, purely demographic effects confound the esti-

virtually

mation of population parameters. Even unselective fishing
leads to higher mortality, leaving on average younger and
therefore smaller individuals. On top of this, selective
harvesting may lead to differential mortalities within a
cohort, for example when the largest members of a given
age class are harvested and the smaller ones survive, lead-
ing to demographic change in mean trait values over time
even within one cohort (Sinclair et al. 2002; Swain et al.
2007).

Fourthly, as we have emphasized above, growth rate is
generally not a directly observable trait but needs to be

16

inferred from observations of size-at-age. Repeated indi-
vidual measurements of size-at-age are preferable, for
example from recaptures of tagged individuals or through
back-calculations of growth patterns from scales or oto-
liths (e.g. Edeline et al. 2007; Swain et al. 2007), but such
samples are more laborious and costly to obtain and are
therefore relatively rare.

Last but not least, growth is notoriously plastic, being
influenced by both abiotic factors (e.g. temperature) and
a range of biotic factors such as predator and prey distri-
butions and density dependence. Conceptually, pheno-
typic plasticity can for example be accounted for by
estimating reaction norms describing how growth varies
with environmental factors, similar to what has been pro-
posed to help disentangle phenotypic plasticity and evolu-
tionary change in maturation (Heino etal 2002;
Dieckmann & Heino 2007). In practice, using a similar
methodology for growth may turn out to be more diffi-
cult because whereas observations of maturation often
carry along with them individual-level information on
growth (a major source of plasticity in maturation),
sources of growth plasticity are many and mostly difficult
to measure even at the level of a population, not to men-
tion that of an individual.

Empirical Evidence of Fishing-Induced Evolution
of Growth: What Have We Learned?

The body of literature relating to fishing-induced evolu-
tion of growth is diverse in both the species studied and
the methodology used (Table 3). Most investigations rely
on the analysis of time-series data from field studies, but

Marine Ecology 33 (2012) 1-25 © 2011 Blackwell Verlag GmbH
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Table 3. Continued.

Reference

Main finding

Agent of selection

Type of study Proxy for growth

Species

Mollet et al.

The method specifies a growth model based

Trawling

Energy allocation model fitted to
back-calculated individual

growth trajectories

Otolith data from surveys

Plaice

(2010)

on allometric scaling functions for

acquisition, maintenance, and

and market samples

Pleuronectes platessa

reproduction, with growth emerging as

the resultant outcome of these processes.

It enables quantifying temporal changes in

each of these processes as well as

maturation age

Neuheimer &

Declined length at age and age at maturity

Trawling

Year-class-specific length-at-day

Survey data,
of ages 5-10

Haddock

Taggart (2010)

not explained by temperature or

population density

1965-2001 year-classes

Melanogrammus
aeglefinus
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also include experiments performed in laboratory settings
(Conover & Munch 2002) and in semi-natural ponds
(Biro & Post 2008). In our view, growth evolution has
been most rigorously documented in pink salmon (Ricker
1981, 1995) and in the experiments on silversides
(Conover & Munch 2002, Conover et al., 2009). Part of
the reason these two studies were able to clearly
document fishing-induced evolution of growth was
because both species examined had a constant maturation
age; thus, the confounding factors of maturation and
reproductive investment (Fig. 3) could be excluded. How-
ever, at the same time that a constant maturation age
makes the results easily interpretable, it also limits the
generality of the conclusions because most fished species
have more flexible reproductive schedules. In the case of
silversides, declining food consumption rates were indica-
tive of evolving resource acquisition, and changes in
fecundity and egg size indicated that allocation to repro-
duction had evolved as well (Walsh et al. 2006). In addi-
tion, food conversion efficiency in the silversides declined,
suggesting changed allocation also to some of the more
subtle costs such as immune defence or maintenance.

Despite the difficulty of generalization to many com-
mercial species, the case studies on pink salmon and sil-
versides nonetheless make a strong case that fishing has
the capability to induce evolutionary change in resource
acquisition and allocation. In the silverside experiment
where most confounding factors were controlled, the
strength of the evidence approaches proof that fishing can
cause evolution of growth, both in terms of changes in
resource acquisition and allocation.

The influence of reproduction

As we hope is now appreciated, observing change in size-
at-age is not sufficient evidence that growth rate has
evolved, as there are many potential factors that could
cause those changes. In particular, one needs to exhibit
caution when interpreting changes in size-at-age or
growth in a species where age at maturation or reproduc-
tive investment might change in response to fishing. Such
caution seems warranted in the study of Lake Winder-
mere pike by Edeline et al. (2007, 2009) where changes in
von Bertalanffy growth parameters (including asymptotic
length) were seen as evidence for growth evolution. The
von Bertalanffy parameters aggregate size-at-age informa-
tion and do not allow the separation of resource acquisi-
tion from resource allocation. This is a problem because,
as Edeline efal. (2007) point out themselves, gonad
weight decreased over time, especially in smaller young
female pike. This leaves open the possibility that changes
in reproductive investment could be underlying the
reported trend in asymptotic length. Therefore, although
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the Windermere pike study has been lauded as providing
evidence for fishing-induced evolution of growth (Conover
2007; Coltman 2008), the conclusions that can be drawn
are not so straightforward.

Increased reproductive investment is a commonly pre-
dicted response to fishing mortality (Law & Grey 1989;
Rijnsdorp et al. 2005). The most common explanation for
this type of pattern is that those individuals that invest
more in current reproduction (even at the cost of slower
growth) produce higher numbers of offspring over their
lifetime than those that invest less in reproduction. How-
ever, it is important to keep in mind that selection could
act on reproductive investment in other ways. For exam-
ple, in pink salmon (Ricker 1981, 1995) and whitefish
(Handford et al. 1977; see also Hamley 1975) the high
condition factor and high ratio of maximum girth over
body length, respectively, imply that gillnets could select
on reproductive investment either directly, by removing
fish with large gonads, or indirectly, by fishing out indi-
viduals with large energy stores that later would be used
for reproduction. It is thus interesting to observe that in
a fished population of lake whitefish, reproductive invest-
ment increased over the same period as sizes decreased
(Thomas et al. 2009). Thus, simultaneous change towards
lower condition and larger gonads suggests that fecundity
selection acts simultaneously with viability selection
imposed by the fishing gear.

Correlations between traits

Size-selective fishing lead to changes in life-history,
behavioural and morphological traits in the experiments
on silversides (Conover & Munch 2002; Walsh et al.
2006; Chiba et al. 2007), and it will be interesting to see
whether further experiments can reveal to what degree
these concurrent responses are due to genetic correlations
(Naish & Hard 2008) as opposed to being independent
processes of adaptation. In the pond experiments on rain-
bow trout by Biro & Post (2008), growth was correlated
with behavioural traits; because gillnetting harvested the
most active fish, there was selection on feeding behaviour
that also led to selection on other physiological traits
related to growth. These studies suggest that considering
different classes of traits together (e.g. behavioural, mor-
phological, physiological) is necessary to paint the full
picture of how fishing can lead to evolutionary growth
changes in harvested species.

Selective gear, but on which trait?

A surprisingly diverse range of fishing gear has been
shown to exert selection on growth and size-at-age
(Table 3).These gears are both active (trawls, angling with
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lures) and passive (gillnets) and can select directly on
girth (trawls, gillnets), feeding motivation (angling with
lures), activity (gillnets), and potentially also on swim-
ming and escape ability (trawls). Indirectly, selection on
morphological traits such as girth may affect the mecha-
nisms of building stores, growing large gonads and
expressing prominent secondary sexual characters. Thus,
the ultimate goal in understanding how gear selection
may lead to changes in growth rate or size-at-age is piec-
ing together a mosaic of the many mechanisms men-
tioned in Tables 1 and 2. This perspective may at first
glance seem discouraging, but in our opinion it can also
inspire new experiments and statistical analyses of avail-
able data, which will move the entire field of fishing-
induced evolution forward.

Accounting for the environment

As phenotypic plasticity can have strong effects on growth
rate, it is important to account for environmental factors.
Studies of fishing-induced evolution often rely on time-
series analysis or at least on consistent comparisons
between separate periods. Unfortunately, appropriate envi-
ronmental data are often unavailable or only available for
part of the time-series. For example, one of the earliest
studies of fishing-induced evolution showed that somatic
growth rate and condition factor of lake whitefish had
decreased, just as one would expect as an evolutionary
response to the highly girth-selective gillnet fishery with a
large mesh size (Handford et al. 1977). However, the data
did not permit Handford to draw strong conclusions about
whether the observed changes were evolutionary or caused
by phenotypic plasticity, as only limited information about
the environment was available. The whitefish population
had concurrently undergone a collapse with delayed recov-
ery, indicating large changes in density dependence and
potentially also other ecological changes (Bell et al. 1977).

Despite the obvious challenges posed by studying a
highly plastic process such as growth, it is encouraging
that several recent studies have been able to account for
important abiotic and biotic environmental factors such
as ambient temperature, eutrophication and conspecific
biomass (e.g. Swain et al. 2007; Thomas & Eckmann
2007; Neuheimer & Taggart 2010). Even after adjusting
for certain environmental factors, these studies suggest
residual trends in size-at-age that are the result of selec-
tion pressures from fishing (Swain et al. 2007; Thomas &
Eckmann 2007; Neuheimer & Taggart 2010).

Conclusions and Future Directions
A promising avenue for future investigations is to build

on the approach taken by Swain et al. (2007, 2008) and
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study selection differentials. The response R of a trait to
selection S (the difference in the trait in the parents of
the next generation compared to the trait distribution in
the same cohort at birth) is R = h%S, where h* is the heri-
tability that typically takes values around 0.2-0.3 for life-
history traits, at least in gadoids and salmonids (Gjedrem
1983; Carlson & Seamons 2008). Heritabilities in this
range imply that the selection differential S is three to five
times stronger than the evolutionary response R (compar-
ing one generation with the next), and S may therefore
be easier to quantify, including the separation of effects
of fishing from effects of the environment. Another
advantage is that selection differentials can be quantified
by cohort. Individuals belonging to the same cohort often
experience similar environmental conditions, hence com-
parison within a cohort reduces the influence of environ-
mental variation on phenotypically plastic traits.

However, there are two inherent problems when study-
ing phenotypic selection differentials. First, one has to
measure a given trait for fish of different ages. For size this
may be accomplished through back-calculations of size-
at-age from scales, otoliths or other structures (as in Swain
et al. 2007). The second challenge is that the sampling
method should ideally be unselective for all types of fish
sampled. For gears with baits there is likely a correlation
between acquisition and catchability. If growth rate
decreases in the population, one may catch fewer and fewer
fish but the samples (collected with baited gear) could be
dominated by the fastest growing fish along the entire
time-series, meaning that the change in growth could be
underestimated or not detected at all. Most fishing gear,
even the types used in research surveys, are selective on
size, condition, satiation, activity or swimming speed, and
arriving at the correct conclusions may turn out to be sen-
sitive to any deviations from random sampling.

Another promising method is the process-based bioen-
ergetics method that fits process parameters to individual
growth trajectories (Mollet ef al. 2010). The data require-
ments are similar to that of Swain et al. (2007), and it
will be interesting to see how the method performs when
used to study temporal change and when applied to other
species.

In summary, studying fishing-induced evolution of
growth rate requires careful consideration of the many
processes involved in resource acquisition and allocation.
As with all aggregated phenomena, a deeper understand-
ing requires that the intertwined sub-processes are teased
apart and studied in more detail. Accounting for all the
components will, at least in field studies, remain impossi-
ble. However, this difficulty should not dissuade us from
trying to identify the main components. One important
point from our review is that one should distinguish
between size, which describes a state, and growth, which
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is a multitude of processes leading to a given size. This
includes acknowledging and correcting for plasticity and
environmental effects and simultaneously accounting for
changes in other important life-history traits, particularly
maturation schedule and reproductive investment. For
example, developing methods to apply reaction norms to
traits other than maturation and thereby incorporating
effects of environmental variables on growth will likely
help detect evolutionary changes. By involving other
approaches we can hope to expand the range of suitable
data also for species and stocks where environmental data
are otherwise unavailable, and broaden the scope of stud-
ies of fishing-induced evolution of growth. Examples of
these other approaches include stable isotope analyses
from scales and otoliths or oceanography modelling for
hind-casting environmental conditions and environmental
monitoring of potential prey or predator species. Because
growth integrates many dimensions of environmental
influence with physiological function, it will be exciting
and necessary to see how the phenotypic view of life his-
tory changes compares with genetic data when those
become available.

Many of the mechanisms that can lead to increased
growth rate due to fishing-induced evolution entail a risk-
ier life and could increase natural mortality rates (e.g
Jorgensen & Fiksen 2010). Growth evolution will affect
both species ecology and fisheries economics but the devil
is in the detail: the consequences will depend on which
traits are adapting and how. While increased individual
growth is sometimes seen as beneficial for the productivity
of a fish stock, the positive effects could be counteracted by
a larger loss through predation and other sources of natural
mortality (Swain 2011). And while slow growth means
smaller fish, these adaptations are likely to help individuals
survive to reproduce and populations persist in an envi-
ronment dominated by fishing. Earlier maturation may
also have a positive influence on stock reproduction,
although this does not necessarily propagate to an increase
in harvestable biomass or catches (Enberg ef al. 2009).
Whether productivity and viability will increase or decrease
will thus depend on the evolution of multiple life-history
traits, and no thorough analysis exists yet. Many challenges
of demonstrating and interpreting growth evolution and its
consequences lie ahead, and an increased understanding
requires that multiple biological disciplines together colour
the rich picture of intertwined mechanisms and the com-
plex layers of confounding factors.
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