Jens Borken-Kleefeld International Institute for Applied Systems Analysis (IIASA)

Remote sensing for identifying high emitters and validating emission models

J.Borken-Kleefeld¹, K. Kupiainen¹, <u>Y.Chen^{1,2}</u>, S.Hausberger³, M.Rexeis³, A.Sjodin⁴, M.Jerksjo⁴, J.Tate⁵

¹MAG-Program, IIASA – International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria

²Institute of Transportation Studies, University of California, Davis, CA 95616 United States

³Institute for Internal Combustion Engines and Thermodynamics, Graz University of Technology, Austria

⁴IVL Swedish Environmental Research Institute Ltd., Gothenburg, Sweden

⁵Institute for Transportation Studies, Leeds University, UK

We gratefully acknowledge the provision of remote sensing data by Gian-Marco Alt (AWEL, Baudirektion Zürich).

IIASA core competence:

Analysis of emissions, environmental and health impacts & identification of cost-effective measures for whole Europe for all sectors up to 2035 e.g. for Review of EU Strategy on Air Pollution

Future emissions of NO_x from light-duty diesel vehicles in EU27 as function of performance of Euro 6 diesel cars & light trucks

Therefore we are concerned to get emissions & emission factors right.

Main findings

Method:

High emitting vehicles ≠ vehicles with highest instantaneous emissions

Base emission factors:

- Some high emitters included in ARTEMIS DB, hence implicitly in HBEFA!
 - Are levels and shares, hence average emission factors correct?
- Share of high emitters estimated for several European sites
 - Preliminary results (and some problems) for Gothenburg & Zurich
- Comparison of instantaneous emission factors from RSD with PHEM model (=average emission factor)
 - Trends reproduced well for NOx but difficulties for CO

Emission modeling

High emitters important for both urban and highway fleet emissions

Traditional interpretation of RSD

Emission spikes part of normal operation

3s average CO EFs for Gasoline Euro4 PC

Modal emission measurements: TUG

Emission spikes part of normal operation

Modal emission measurements: TUG

New approach

- Establish a reference distribution from chassis dynamometer data
- Identify high-emitters from the difference between Remote Sensing Data and clean reference chassis data

Working definition for a high emitting vehicle:

A vehicle whose average emissions are by at least 2 standard deviation higher than the average emissions of the sample tested.

New approach: RSD vs. Chassis benchmark using CO from PC-G4 to illustrate method

SE RSD for Gothenburg: IVL

NOx EF: PHEM vs. chassis dyno vs. RSD

PC Gasoline Euro 3 & 4 (no HE data for other techologies) Gothenburg 2007 & Zurich 2011

Gothenburg (2007): 0-2° grade, NO+NO2 Zurich (avg. 2000-2011): 9° uphill, NO measured, NO2 calculated from HBFFA 3.1 shares

For PC Gasoline Furo 3:

- PHEM lower than RSD,
- opposite load behavior
- Chassis dyno relatively stable
- Some NOx HE in Gothenburg!?

For PC Gasoline Furo 4:

- PHEM -20%/+40% vs. RSD,
- Opposite load behavior
- Chassis data and RSD at same levels
 - no NOx HF at these sites?

NOx EF: PHEM vs. chassis dyno vs. RSD

PC Gasoline Euro 3 & 4 (no HE data for other technologies) Gothenburg 2007 & Zurich 2011

For PC Gasoline Euro 3:

- PHEM >> RSD (?)
- Chassis clean << RSD (?)
- => Many CO HE PC-G3 (?)

For PC Gasoline Euro 4:

- PHEM >> RSD (?)
- Chassis clean > RSD Gothenburg<< RSD Zurich
- ⇒ Many CO HE in Zurich (?)

PHEM CO for these urban driving conditions not correct.

Gothenburg (2007): 0-2° grade, Zurich (avg. 2000-2011): 9° uphill

Approach depends on credibility of input data modal data with high emitters only for PC-G3 & G4

PC- Gasoline	Share HE: NOx			Share HE: CO		
	Chassis dyno	RSD Zurich (2000-2011)	RSD Gothenb. (2007)	Chassis dyno	RSD Zurich (2000-2011)	RSD Gothenb. (2007)
EURO 3	33% (3 in 9)	(neg.)-1%	18%-24%	33% (3 in 9)	22%-29%	22%
EURO 4	17% (4 in 24)	(neg.)	(neg.)	17% (4 in 24)	23%-33%	(neg.)-5%

Method nice (?) but not yet robust as devil is in details

- Modal chassis data available and reliable !!!
- Correct data treatment, e.g.
 - match records form speed and emissions instruments calculated
 - conversion volume increments to fuel specific EF
- Correct filtering for comparing RSD and Chassis data

Note: Here, RSD indicate different shares than in base data!

share of HE

Strongly

affects

Anything suitable for work program 2013!?

NOx: PHEM simulated EF vs. mean RSD EF

calibrated to 30-160 vehicles each incl. unknown high emitters

PHEM very good

- For PC gasoline at both sites
- For PC diesel somewhat lower

CO: PHEM simulated EF vs. mean RSD EF

calibrated to 30-160 vehicles each incl. unknown high emitters

PHEM higher for Euro G2 – G5, calibration to engine maps difficult

%difference mean EF: PHEM simul. vs. RSD

PHEM for (urban) driving situations

- gasoline E3-E4 30-40% lower,
- diesel E1-E3 20-30% lower.

PHEM for (urban) driving situations

- gasoline cars much higher,
- diesel cars lower.

Outlook

Identifying high emitters:

- Some high emitters included in ARTEMIS DB, hence implicitly in HBEFA!
 - Are levels and shares, hence average emission factors correct?
 - More modal emission measurements available?

Validation of average emission factors:

- Share of high emitters estimated for several European sites
- Comparison of instantaneous emission factors from RSD with PHEM model
 - We continue with data from UK (ITS Leeds)
 - More RSD sites? NL?
 - Analyse aging effects from RSD spanning 2000 to 2011/2?
 - Analyse cross-country effects between CH-SE-UK NL?! sites?

If share high emitters is known, we can generalize on whole driving cycle

