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In spatial games players typically alter their strategy by imitating the most successful or

one randomly selected neighbor. Since when a single neighbor is taken as reference, the

information stemming from other neighbors is neglected, which begets the consideration of

alternative, possibly more realistic approaches. Here we show that strategy changes inspired

not only by the performance of individual neighbors but rather by entire neighborhoods

introduce a qualitatively different evolutionary dynamics that is able to support the stable

existence of very small cooperative clusters. This leads to phase diagrams that differ sig-

nificantly from those obtained by means of pairwise strategy updating. In particular, the

survivability of cooperators is possible even by high temptations to defect and over a much

wider uncertainty range. We support the simulation results by means of pair approximations

and analysis of spatial patterns, which jointly highlight the importance of local information

for the resolution of social dilemmas.
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Cooperative behavior is extremely important, both in the animal world as well as across human

societies [1–4]. Yet cooperation is also an evolutionary puzzle, as it is costly to the actors though

beneficial to the commons. How cooperation evolved amongst selfish and unrelated individuals is

therefore still ardently investigated, as evidenced by recent reviews [5–10].

Evolutionary game theory [11–13] provides an apt theoretical framework to address the sub-

tleties of the evolution of cooperation. One of the most popular games that is representative for

situations constituting a social dilemma is the prisoner’s dilemma game [1]. It can be summarized

succinctly. Two individuals have to decide simultaneously whether they wish to cooperate or not.

Cooperator pays a cost c towards the mutual benefit b where b > c > 0, while defector contributes

nothing. This yields the temptation to defect T = b, reward for mutual cooperation R = b − c,

punishment for mutual defection P = 0, and the sucker’s payoff S = −c, which for the prisoner’s

dilemma game thus satisfy T > R > P > S and 2R > T + S. Evidently, for an individual it

is best to defect regardless of what the opponent does. As rational players are aware of this, they

both defect, in turn obtaining P rather than R, hence the social dilemma [14].

Several mechanisms that facilitate the evolution of cooperation are known. Nowak summarizes

five rules [6], which are kin selection [15], direct reciprocity [16], indirect reciprocity [17], group

selection [18], and network reciprocity [19]. Networks in particular, have received substantial at-

tention in the recent past [7]. While scale-free networks appear to provide the best environment for

the evolution of cooperation [20–27], small-world [28–32] and hierarchical networks [33–35] also

received ample attention. Largely motivated by the discovery that complex networks facilitate the

evolution of cooperation, heterogeneity in general has emerged as an important property that may

help keep defectors in the minority [36–39]. Coevolutionary games [10], where the structure of

the network was subject to evolution just as the strategies of players have been studied thoroughly

too [40–54], with the prevailing conclusion being that this may give rise to robust cooperative

states and lead to socially preferable interaction networks in a spontaneous manner. Quite remark-

ably, this has recently been confirmed empirically [55], although very extensive experiments also

indicate that the human behavior may suppress network reciprocity [56, 57].

In fact, how human decision-making affects the evolution of cooperation is of particular rele-

vance for the present work. Szabó et al. [58] have recently considered a special type of strategy

updating. Instead of players exclusively caring only about their own payoffs when updating their

strategies, they investigated what happens when a pair of randomly chosen neighboring players

tries to maximize their collective income by simultaneously updating their two strategies. It was



reported that the proposed strategy update rule produces the antiferromagnetic ordering structure

of cooperators and defectors on the square lattice at sufficiently low noise intensities, and that this

favors the evolution of cooperation more than the traditional pairwise imitation updating. Human

decision-making dynamics has also been investigated experimentally, whereby we are particularly

interested in the so called “social influence” effect reported by Lorenz et al. [59]. As stated in

their paper, social influence among group members plays an important role in individual decision-

making.

One may then ask how this affects the evolution of cooperation. To address this question, we

propose an adaptive strategy-adoption rule in which the social influence is taken into account.

In particular, as a proxy for the social influence we assume that the decisions the players make

are affected by all their neighbors, not just a single randomly selected or the most successful

neighbor. Players can collect information from their neighbors, and moreover, their decision-

making is more likely to be affected by the circle of “close friends” rather than the whole social

environment. Generally, the performance of a strategy can be measured by comparing the average

payoff of the players who adopt this strategy with that of the players who adopt the other strategy,

if any, in the neighborhood. Players are more likely to adopt the strategy with better performance

within their neighborhoods for the purpose of maximizing their own payoffs. Based on the above

considerations, we introduce the so-called local influence to the strategy updating simply that,

before a potential update, each player considers the performance of its own strategy and that of the

other strategy, if present, within its neighborhood. As we will show in what follows, this introduces

a qualitatively different evolutionary dynamics that is able to support the stable existence of very

small cooperative clusters, which in turn supports the survivability of cooperative behavior even

under very unfavorable conditions. Besides simulation results [60], we will also present results

obtained with pair approximation methods, which are, along with the game theoretical model,

accurately described in the Methods section.

Results

We begin by presenting the fraction of cooperators ρC as a function of the cost-to-benefit ratio

r = c/b at two temperatures, namely at K = 0.1 and K = 0.83. Note that the usage of the latter

value is motivated by recent empirical research from behavioral science [61]. Results for both the

pairwise and locally influenced strategy updating are presented in Fig. 1(a,c). It can be observed



that for K = 0.1 the evolution of cooperation is promoted across the whole applicable span of r if

the traditionally used pairwise strategy updating is replaced by the proposed local influence based

strategy updating. For K = 0.83, however, the outcome is a bit less clear-cut. While pairwise

imitation fails to sustain cooperative behavior at such high values of r as locally influenced strategy

updating, it is nevertheless more apt for achieving complete cooperator dominance. As we will

show in what follows, it is indeed the case that locally influenced strategy updating often fails to

completely eliminate defectors at small values of r, yet it opens up the possibility of survival of

cooperators even under harsh defector-friendly conditions.

These simulation results can be corroborated by results of pair approximations (see Methods

for details), which we present in Fig. 1(b,d). The general trends are predicted correctly, although

as expect, the beneficial effect of network reciprocity [19] at low values of r are underestimated. It

is worth mentioning that the pair approximation is in general more accurate for larger values of K

[62]. This is due to the fact that the pair approximation method does not consider the long-range

correlations. Then the bigger clusters existing in the case of low K can not be properly described

by pair approximation. This explains why the pair approximation method poorly predicts the sim-

ulation results for low K. Indeed, it can be observed that the agreement with simulation results is

better for K = 0.83 than it is for K = 0.1. In particular, for K = 0.83 the pair approximation

method correctly predicts the occurrence of an intersection point [compare panels (c) and (d)].

Altogether, results of pair approximations corroborate the conclusion that the survivability of co-

operators, especially at high values of r, is substantially promoted by locally influenced strategy

updating.

Further adding to the robustness of this conclusion are results presented in Fig. 2(a,c), where we

present full K − r phase diagrams for both considered updating rules. It can be observed that the

positive impact of local influence on the evolution of cooperation persists across large regions of

K. On the other hand, the presented phase diagrams also evidence more clearly the failure of the

proposed updating rule to lead to an absorbing C phase. Moreover, there is a notable qualitative

difference in the critical behavior that is evoked by the updating rule. By focusing on the D → C+

D phase boundaries, it can be observed that for pairwise strategy updating there exists an optimal

value of K at which cooperators thrive best. Note that the D → C + D phase boundary is bell-

shaped, indicating that K ≈ 0.3 is the optimal temperature at which cooperators are able to survive

at the highest value of r. For strategy updating based on local influence, however, this feature is

absent. The D → C + D phase boundary is in fact an inverted bell, indicating the existence of



the worst rather than an optimal value of K. It is worth emphasizing that previous studies found

that it is the lack of overlapping triangles, as is the case for the square lattice as well as for random

regular graphs, that introduces the optimal uncertainty K for the evolution of cooperation for

pairwise strategy updating [62–64]. The results obtained by considering local influence therefore

suggest that the system is behaving as if overlapping triangles were in fact present in the interaction

network. Note that in the latter case an optimal K for the evolution of cooperation does not exist.

This leads us to the conclusion that the interaction network is effectively altered when the local

influence is taken into account. In particular, triplets of players that are not connected by means of

the original interaction graph (the square lattice) become effectively connected through the joint

participation of players in the same local groups (neighborhoods) that are subject to the same local

influence. An identical effect was indeed observed by the study of the public goods game [65],

where triplets also became effectively connected because of the participation of players in the

same groups. Below, we will provide further evidence concerning the effective linkage of triples

of players, which is essentially a side effect of locally influenced strategy updating. Another

interesting observation is that the parameter region of the mixed C +D phase in general widens as

K increases, which is in contract to the results obtained by means of pairwise strategy updating.

We have also constructed full K − r phase diagrams by means of pair approximations. Fig-

ure 2(b,d) features the obtained results, from which it follows that qualitative features, compared

to the simulation results, are again captured fairly accurately, although the extent of the parameter

region of the mixed C + D phase is overestimated. Expectedly, the predictions are also less accu-

rate near the phase boundaries, which is because the pair approximation does not take into account

loops nor does it take into account long-range correlations, which however, have a noticeable effect

especially in the vicinity of critical transitions [66].

In order to obtain an understanding of the reported observations, we proceed with the presenta-

tion of characteristic spatial patterns, as obtained for both pairwise and locally influenced strategy

updating rules, in Fig. 3. Regardless of which update rule is applied, cooperators form compact

clusters by means of which they are able to exploit the mechanism of network reciprocity [19].

If the value of r is small, the clusters are larger and more compact than for higher values of r.

On the other hand, the spatial patterns emerging under the two update rules also have noticeable

dissimilarities. Foremost, given a value of r, pairwise strategy updating yields larger clusters than

locally influenced strategy updating, even if the density of cooperators is approximately the same

[compare panels (a) and (c)]. Nearer to the extinction threshold the stationary densities differ,



yet the difference in the spatial patterns the two rules generate becomes most apparent [compare

panels (b) and (d)].

The visual inspection of the characteristic spatial patterns invites a quantitative analysis of the

exposed differences, the results of which are presented in Fig. 4 separately for both updating rules.

It can be observed that, in general, as r increases, the cluster size decreases. The number of clus-

ters, on the other hand, is maximal at an intermediate value of r. Concrete r values, however,

differ significantly for the two considered strategy updating rules. In particular, by pairwise strat-

egy updating both the clusters size and the number of clusters are shifted significantly towards

lower values of r. One reason is obviously that pairwise strategy updating simply does not sup-

port the survivability of cooperators by as high values of r as locally influenced strategy updating.

Nonetheless, the fact that for any given value of r, where comparisons are possible, the typical

cluster size obtained with pairwise strategy updating is much larger than the one obtained with

locally influenced strategy updating begets the conclusion that there are significant differences in

the way cooperators cluster to withstand being wiped out by defectors. Note that for cooperators

to survive under pairwise updating the minimally required cluster size is ≈ 76.18, while for lo-

cally influenced updating it is only 6.61. Moreover, for pairwise strategy updating the cluster size

decreases much faster, which speaks in favor of the increased stability of the clusters under locally

influenced strategy updating.

To confirm these conjectures, we present in Fig. 5 two typical C-cluster configurations and

analyze the survivability of cooperators separately for each particular case. For the sake of sim-

plicity but without loss of generality, we consider for the following analysis only the K → 0 limit.

Then if the payoff of each cooperator along the boundary is larger than that of each defector in its

neighborhood, we are allowed to conclude that such a C-cluster will survive. For the left C-cluster

pattern in Fig. 5 under pairwise updating, the payoffs of a cooperator C (PC) and defector D (PD)

along the boundary are

PC = 2 and PD = 1 + 4r, (1)

respectively. For locally influenced updating, however, the average payoff of cooperators (P̄C) and

the average payoff of defectors (P̄D) along the boundary are given by

P̄C = 2 and P̄D = 1 + 4r, (2)

respectively. Thus for such a C-cluster pattern to survive, both update rules lead to r < −0.25.

Indeed, neither locally influenced nor pairwise strategy updating support the survivability of such



a pattern. Performing the same analysis for the configuration on the right, however, yields a

different outcome. The payoff of a cooperator C2 (PC2) on the boundary and that of the two types

of defectors D1 and D2 (PD2 and PD1) are

PC2 = 1, PD1 = 2 + 4r andPD2 = 1 + 4r, (3)

respectively. For locally influenced updating the corresponding payoffs are

P̄C =
5

2
and P̄D =

5

3
+ 4r. (4)

Accordingly, we find that under pairwise updating the condition for survivability is r < −0.25,

while under locally influenced updating it is only r < 5
24

. Hence, locally influenced strategy

updating can warrant the survivability of cooperators when grouped in this way, while pairwise

updating can not. Note also that the C-cluster configuration on the right of Fig. 5 is the smallest

one which can persist in the population under the most hostile conditions under locally influenced

strategy updating. Based on this analysis, we can in fact estimate the extinction threshold r =

5
24

≈ 0.21 in the limit K → 0, and indeed we find excellent agreement between this analytical

approximation and the simulation results presented in Fig. 2(c).

With these insights, we argue that local influence based strategy updating can support the sur-

vivability only if the core of the C-cluster is isolated from defectors (compare left and right config-

uration of Fig. 5), because cooperators along the boundary can then gain a higher level of support

from the cluster and thus protect themselves against being exploited by defectors. In previous

works, where only pairwise strategy updating was considered, individual players were concerned

only with their own payoffs when updating their strategies. However, if individuals are exposed

to the local influence, i.e., they care about the performances of the strategies in their neighbor-

hood, cooperators can benefit not only from their own payoffs, but also from the payoffs of their

cooperative neighbors. In this sense, locally influenced strategy updating further strengthens the

linkage between cooperators within cooperative clusters, and so cooperators can reciprocate with

each other on a profounder and altogether more effective level.

Furthermore, we also investigate the effects of other typical topologies, i.e., the regular small-

world graph [67] and the scale-free network [68], for both pairwise and locally influenced strategy

updating rules. It is found that cooperation can also be promoted in the regular small-world graphs

with different rewiring probabilities. While for the scale-free networks, we find that cooperation

can be favored if individuals’ payoffs are normalized by the numbers of their neighbors. Hence we



can conclude that the promotion of cooperation by the locally influenced strategy updating rule is

overall robust to the variations of the underlying interaction networks.

Discussion

Summarizing, we have analyzed the impact of “local influence” on the evolution of cooperation

in the spatial prisoner’s dilemma game. Instead of the performance of a single neighbor, players

considered the performances of the two strategies within their neighborhoods. We have shown that

by going beyond the traditionally assumed pairwise strategy updating, the evolution of cooperation

can be promoted. We have determined full K − r phase diagrams by means of simulations and

pair approximation methods, which both indicate that this effect is robust against uncertainty by

strategy adoptions. Moreover, the phase separation lines indicate that the consideration of local in-

fluence effectively changes the interaction network as an optimal K is no longer inferable. This is

characteristic for interaction networks with overlapping triangles [62, 64], which are obviously not

part of the square lattice topology that we have employed. By analyzing the macroscopic features

of emerging spatial patterns as well as the survivability of typical cooperative clusters, we have

provided further insights as to how the consideration of local influence changes the evolutionary

dynamics. Finally, we have further found that the beneficial effect of locally influenced strategy

updating rule is, in general, robust to the variations of the underlying interaction networks.

Lastly, it is worth relating the presently considered strategy updating rule to previous game-

theoretical models. By the win-stay-lose-shift rule [32, 69–72], for example, each individual has

an aspiration according to which it judges whether or not to change strategy. The aspiration,

however, is traditionally assumed to be constant. In our case, on the other hand, we relax this

assumption by considering the aspiration as a dynamical quantity. Note that the average payoff of

the strategy that is not adopted by the focal player can in fact be regarded as the aspiration level.

This in turn implies that here the aspiration depends on the outcome of the game, and hence is

subject to change. Moreover, the present rule can be regarded as a learning rule. The difference

from the traditional single role model learning rule is that in the present case the strategy update

depends not on the comparison of a pair of individuals, but on the comparison of two groups of

individuals, each involving several individuals adopting the same strategy. Overall, we hope that

these considerations, and in particular the consideration of local influence, will motivate further

research aimed at promoting our understanding of the evolution of cooperation.



Methods

Mathematical model

Players are located on the vertices of a L × L square lattice with periodic boundary condi-

tions. Each individual is initially designated either as a cooperator C or defector D with equal

probability. For the pairwise imitation strategy updating rule [73] (we use the label “pairwise” in

the figure legends when applying this rule), Monte Carlo simulations of the game are carried out

comprising the following elementary steps. First, a randomly selected player x collects its payoff

Px by interacting with its four nearest neighbors. For the purpose of payoff evaluation, it is worth

introducing unit vectors S = [1, 0]T and [0, 1]T for cooperators and defectors, respectively. The

payoff matrix is

M =

⎡
⎢⎣

1 0

1 + r r

⎤
⎥⎦ ,

where r ∈ (0, 1) is the cost-to-benefit ratio. The payoff of player x is thus

Px =
∑

z∈Γ(x)

ST
x MSz ,

where Γ(x) represents its neighborhood. Then one randomly chosen neighbor y of player x also

acquires its payoff Py identically as previously player x.

After the evaluation of their payoffs, player x considers changing its strategy. Player x adopts

the strategy Sy of player y with the probability

T (Py − Px) =
1

1 + exp[(Px − Py)/K]
, (5)

where K is the uncertainty by strategy adoptions.

If the local influence is taken into account (we use the label “local” in the figure legends when

applying this rule), however, the elementary steps are as follows. First, we randomly choose a

player x with the strategy Sx. Next, we evaluate the average payoff P̄Sx of those players who

adopt the same strategy Sx, as well as the average payoff P̄S̄x
of those players who adopt the

opposite strategy S̄x of player x, if any, within the neighborhood. In particular, we have

P̄Sx =

∑
z∈Γ(x)

Pzδ(S̄
T
x Sz) + Px

∑
z∈Γ(x)

δ(S̄T
x Sz) + 1

and P̄S̄x
=

∑
z∈Γ(x)

Pzδ(S
T
x Sz)

∑
z∈Γ(x)

δ(ST
x Sz)

,



where the Dirac delta function δ(x) satisfies

δ(x) =

⎧⎪⎨
⎪⎩

0, ifx �= 0

1, ifx = 0
.

Lastly, player x will adopt the strategy S̄x with the probability

T (P̄S̄x
− P̄Sx) =

1

1 + exp[−(P̄S̄x
− P̄Sx)/K]

, (6)

where K is, as by pairwise imitation, the uncertainty by strategy adoptions.

The presented simulation results were obtained by using L = 100−400 depending on the prox-

imity to phase separation lines and the size of the emerging spatial patterns. In accordance with

the random sequential update, each Monte Carlo step, which consists of repeating the elementary

steps L × L times corresponding to all players, gives a chance once on average for every player

to alter its strategy. The stationary frequency of cooperators ρC is determined by averaging over

104 Monte Carlo steps in the stationary state after sufficiently long relaxation times. In general,

the stationary state has been considered to be reached when the average of the cooperation level

becomes time-independent. In our simulations, the relaxation time is 4 × 104 Monte Carlo steps.

We confirm that this relaxation time is long enough for the system to evolve into the stationary

state. To further increase the accuracy of our simulations, we have averaged the final outcome over

at least 50 independent initial conditions.

Pair approximations

Let pC and pD = 1− pC denote the frequencies of cooperators and defectors, respectively, and

let pCC , pCD, pDC and pDD represent the frequencies of CC, CD, DC and DD pairs, respectively.

Then qX|Y = pXY /pY with X, Y ∈ C, D specifies the conditional probability to find an X-player

given that the neighboring node is occupied by an Y -player. Note that here X , Y and Z denote

either C or D. Instead of the first-order approximation considering the frequency of strategies as

in the well-mixed population, the pair approximation tracks the frequencies of strategy pairs pXY

(X, Y ∈ C, D). The probabilities of larger configurations are approximated by the frequencies of

configurations not more complex than pairs. Based on the compatibility condition pX =
∑

Y pXY ,

the symmetry condition pXY = pY X , and closure conditions, pC and pCC can fully determine the

dynamics of the system. While the pair approximation for pairwise imitation is well-known and



can be looked up for example in the Appendix of [7] or more recently [74], for the imitation based

on local influence the derivations are as follows.

A defector is selected for strategy updating with the probability pD. Let kC and kD denote the

number of cooperators and defectors amongst the neighbors on a regular lattice with degree k,

respectively. The frequency of such a configuration is

k!

kC !kD!
qkC

C|DqkD

D|D,

and the payoff of the defector is PD(kC , kD) = (1 + r) · kC + r · kD. The configuration probability

with which a neighboring cooperator has k
′
C cooperators and k

′
D defectors as its neighbors is

(k − 1)!

k
′
C !k

′
D!

q
k
′
C

C|CDq
k
′
D

D|CD,

where qX|Y Z gives the conditional probability that a player next to the Y Z pair is in state X . The

payoff of the neighboring cooperator is PC(k
′
C , k

′
D) = k

′
C . Similarly, the configuration probability

with which a neighboring defector has k
′
C cooperators and k

′
D defectors as its neighbors is

(k − 1)!

k
′
C!k

′
D!

q
k
′
C

C|DDq
k
′
D

D|DD,

and the payoff of the neighboring defector is PD(k
′
C , k

′
D) = (1 + r) · k′

C + r · (k′
D + 1). Thus, the

average payoff P̄C of cooperators that are neighbors of the focal defector is

P̄C =
k−1∑

k
′
C=0

(k−1)!

k
′
C

!k
′
D

!
q

k
′
C

C|CDq
k
′
D

D|CD·PC(k
′
C , k

′
D)

= (k − 1) · qC|CD.

(7)

The average payoff P̄D of defectors that are neighbors of the focal defector, on the other hand, is

P̄D =

kD·
k−1∑

k
′
C

=0

(k−1)!

k
′
C

!k
′
D

!
q

k
′
C

C|DD
q

k
′
D

D|DD
·PD(k

′
C ,k

′
D)+PD(kC ,kD)

kD+1

=
kD ·[(k−1)·qC|DD+rk]+rk+kC

kD+1
.

(8)

Consequently, pC increases by 1/N where N = L2, with probability

Pr ob(ΔpC =
1

N
) = pD ·

k∑
kC=1

k!

kC !kD!
qkC

C|DqkD

D|D · T (P̄C − P̄D), (9)

where T (P̄C − P̄D) is the individual transition probability given by Eq. (6). The number of CC

pairs increases by kC , and thus pCC increases by 2kC/(kN) with probability

Pr ob(ΔpCC =
2kC

kN
) = pD · k!

kC !kD!
qkC

C|DqkD

D|D · T (P̄C − P̄D). (10)



A cooperator, on the other hand, is selected for strategy updating with the probability pC . The

frequency of a configuration that there are kC cooperators and kD defectors in the neighborhood

of the focal cooperator is
k!

kC !kD!
qkC

C|CqkD

D|C ,

and the payoff of the focal cooperator is PC(kC , kD) = kC . The configuration probability with

which a neighboring cooperator has k
′
C cooperators and k

′
D defectors as its neighbors is

(k − 1)!

k
′
C !k

′
D!

q
k
′
C

C|CCq
k
′
D

D|CC ,

and the payoff of the neighboring cooperator is PC(k
′
C , k

′
D) = k

′
C +1. Similarly, the configuration

probability with which a neighboring defector has k
′
C cooperators and k

′
D defectors as its neighbors

is
(k − 1)!

k
′
C !k

′
D!

q
k
′
C

C|DCq
k
′
D

D|DC ,

and the payoff of the neighboring defector is PD(k
′
C , k

′
D) = (1 + r) · (k

′
C + 1) + rk

′
D. Thus the

average payoff P̄C of cooperators in the neighborhood of the focal cooperator is

P̄C =

kC ·
k−1∑

k
′
C

=0

(k−1)!

k
′
C

!k
′
D

!
q

k
′
C

C|CC
q

k
′
D

D|CC
·PC(k

′
C ,k

′
D)+PC(kC ,kD)

kC+1

=
kC ·[(k−1)·qC|CC+2]

kC+1
,

(11)

while, the average payoff P̄D of defectors in the neighborhood of the focal cooperator is

P̄D =
k−1∑

k
′
C

=0

(k−1)!

k
′
C !k

′
D!

q
k
′
C

C|DCq
k
′
D

D|DC ·PD(k
′
C, k

′
D)

= (k − 1) · qC|DC + 1 + rk.

(12)

Thus pC decreases by 1/N with probability

Pr ob(ΔpC = − 1

N
) = pC ·

k−1∑
kC=0

k!

kC !kD!
qkC

C|CqkD

D|C · T (P̄D − P̄C). (13)

Moreover, the number of CC pairs decreases by kC and thus pCC decreases by 2kC/(kN) with

probability

Pr ob(ΔpCC = −2kC

kN
) = pC · k!

kC !kD!
qkC

C|CqkD

D|C · T (P̄D − P̄C). (14)

These derivations lead us to the master equations

ṗC = Pr ob(ΔpC =
1

N
) − Pr ob(ΔpC = − 1

N
) (15)



and

ṗCC =
k∑

kC=0

2kC

k
[Pr ob(ΔpCC =

2kC

kN
) − Pr ob(ΔpCC = −2kC

kN
)]. (16)

Although these equations are per derivation exact, they do depend on the density of triplet con-

figurations which are outside their scope. Thus, in order to “close” the system of differential

equations, the triplet configuration probabilities have to be approximated by probabilities of con-

figurations that are not more complex than pairs. Note that by using different closure conditions,

we can in general obtain different pair approximations. Here we employ the so-called ordinary

pair approximation method, where only the first-order pair correlations are considered. We thus

have qX|Y Z ≈ qX|Y .



[1] Axelrod, R. The Evolution of Cooperation (Basic Books, New York, 1984).

[2] Bowles, S. & Gintis, H. A Cooperative Species: Human Reciprocity and Its Evolution (Princeton

Univ. Press, Princeton, NJ, 2011).

[3] Hrdy, S. B. Mothers and Others: The Evolutionary Origins of Mutual Understanding (Harvard Univ.

Press, Cambridge, Massachusetts, 2011).

[4] Nowak, M. A. & Highfield, R. SuperCooperators: Altruism, Evolution, and Why We Need Each Other

to Succeed (Free Press, New York, 2011).

[5] Doebeli, M. & Hauert, C. Models of cooperation based on Prisoner’s Dilemma and Snowdrift game.

Ecol. Lett. 8, 748–766 (2005).

[6] Nowak, M. A. Five Rules for the Evolution of Cooperation. Science 314, 1560–1563 (2006).
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FIG. 1: Fraction of cooperators ρC as a function of the cost-to-benefit ratio r, as obtained for K = 0.1

[panels (a) and (b)] and K = 0.83 [panels (c) and (d)]. Results presented in panels (a) and (c) were

obtained by means of Monte Carlo simulations, while those presented in panels (b) and (d) were obtained

by means of pair approximation (see Methods section for details). Figure legend indicates whether pairwise

or locally influenced strategy updating was used.



FIG. 2: Full K − r phase diagrams, as obtained by means of Monte Carlo simulations [panels (a) and (c)]

and pair approximation [panels (b) and (d)]. Upper red (lower blue) lines denote the boundaries between

the mixed C + D and homogeneous D (C) phases.



FIG. 3: Characteristic snapshots of spatial patterns formed by cooperators (blue) and defectors (red) under

pairwise imitation [(a) r = 0.004, (b) r = 0.019] and under strategy updating based on local influence

[(c) r = 0.004, (d) r = 0.221]. The size of the square lattice was 100 × 100 and K = 0.83. (a) In

this snapshot there are 77 clusters, ranging in size from a single cooperator to 3042 cooperators, with a

weighted average size of 1925.21. The stationary fraction of cooperators is ρC ≈ 0.52. (b) In this snapshot

there are 99 clusters, ranging in size from a single cooperator to 162 cooperators, with a weighted average

size of 70.01. The stationary fraction of cooperators is ρC ≈ 0.19. These characteristics are significantly

different in the bottom two snapshots. (c) In this snapshot there are 439 clusters, ranging in size from a

single cooperator to 427 cooperators, with a weighted average size of 137.69. The stationary fraction of

cooperators is ρC ≈ 0.52. (d) In this snapshot there are 164 clusters, ranging in size from a single cooperator

to 19 cooperators, with a weighted average size of 6.63. The stationary fraction of cooperators is ρC ≈ 0.05.

Note that in snapshots (a) and (c) the densities of cooperators for both update rules are practically identical,

while nearer to the extinction thresholds [panels (b) and (d)] they differ quite significantly.



FIG. 4: Macroscopic properties of cooperative clusters in the dependence on the cost-to-benefit ratio r.

Cluster size (a) and cluster count (b) are depicted for pairwise and locally influenced strategy updating. In

both cases the cluster size decreases as r increases, while the cluster count reaches a maximum at a certain

value of r and then decreases. Note that for pairwise imitation a minimum cluster size of about 76.18 is

required for cooperators to survive. Taking into account the local influence of the neighbors reduces this to

6.61. The depicted results were determined in the stationary state on 100× 100 square lattices and by using

K = 0.83. Error bars indicate the standard deviation.



FIG. 5: Schematic presentation of two representative cooperative (blue) clusters surrounded by defectors

(red). The cluster depicted left has no chances of survival under pairwise or locally influenced strategy

updating. The cluster on the right, however, cannot prevail under pairwise imitation, but can do so under

locally influenced strategy updating. This is because the core of the cooperative cluster (C1 in the figure)

is quarantined from defectors in case imitation proceeds according to local influence (see main text for

details).


