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Abstract. Environmental change in general, and climate change in particular, can lead
to changes in distribution of fish stocks. When such changes involve transboundary fish
stocks, the countries sharing the stock need to reconsider their harvesting policies. We
investigate the effects of changing stock distribution on the optimal fishing policies in
a two players’ non-cooperative game. We compare reactive management, under which
the manager ignores future distributional shifts (knowingly or unknowingly), with proac-
tive management where the manager considers such shifts in his decisions. A dynamic
programming model is developed to identify closed-loop Nash strategies. We show that
the role of two players is symmetric under reactive management but asymmetric under
proactive management where managers anticipate future changes in stock ownership. The
player loosing the stock tends to harvest more aggressively compared to the player gain-
ing the stock who acts more conservatively. Strategic interactions show tendency for
complementary actions that can change abruptly during the ownership transition. The
differences between management regimes vary from quantitative to qualitative; differences
are minimal for stocks with little or no schooling, whereas highly-schooling stocks may
avoid collapse only under proactive management.

Keywords: Adaptive policy, Climate change, Closed-loop Nash competitive solution,
Concentration profile, Discrete-time continuous-state Markov decision model, Dynamic
programming, International fisheries management, Non-cooperative game

1 Introduction

Effects of climate change on the distribution of transboundary stocks are receiving in-
creasing attention in fishery management literature (Hannesson et al. [2006], Ekerhovd
[2010], Sumaila et al. [2011]). Climate model projections (IPCC [2007]) indicate that dur-
ing the course of 21st century the atmospheric surface temperature is likely to increase by
1.8-4.0◦C. The atmospheric warming has significant effects, one of which is the increase of
ocean temperatures, particular in the Arctic areas. For fish rising sea temperatures may
have profound effects both for their distribution and abundance (Cheung et al. [2009]).
For example, Perry et al. [2005] showed that in the North Sea, two thirds of the studied
species had shown distributional responses to warming climate.

Fish distribution shifts impose a new challenge on the management of commercial fish
stocks (Hannesson [2007], Cochrane et al. [2009], Johnson and Welch [2010], Sumaila et
al. [2011]) and in practice. Transboundary stocks are usually shared using the principle
of “zonal attachment” in which countries’ shares of the total quota are proportional to the
proportion of the stock biomass in their Exclusive Economic Zones (EEZ). Displacement of
fish will threaten the stability of existing sharing agreements, as has happened for Atlantic
mackerel (Scomber scombrus): the extension of mackerel distribution to Icelandic EEZ
made the earlier sharing agreement not involving Iceland dysfunctional, and negotiations
for a broader agreement have so far not been successful (ICES [2011]).

The problem of shifting zonal attachment in the climate change context was first
examined by Hannesson [2007]. The stock was assumed originally to be under sole own-
ership, and then over time, as temperature rises, start to “spill” into the EEZ of another
country. The two countries respond to the changes with a time lag, and the management
decisions are non-cooperative. Managers in the model used by Hannesson make their
decisions based on their knowledge about past and current conditions: their expectation
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about the future stock distribution is a weighted average of the previous year’s estimate
and the currently observed split ratio. The optimal management decisions are based on
the assumption that the current estimate of the stock distribution is representative of the
future, as if there were no further change in the distribution. We define such manager as
“reactive”.

Our model builds upon Hannesson’s model [2007], but our managers can also be
“proactive” decision makers. We take this to mean that the manager takes into account
both the current stock distribution as well as an anticipation of future distributional
changes. In other words, managers may adapt to climate change, instead of merely
coping with it. The distinction between reactive and proactive strategies is usually left
implicit in discussions about climate change and fisheries, despite the recognition of this
issue in many other contexts (e.g., Petulla [1987], Lin and Carley [1993], Klassen and
Angell [1998], Zhen et al. [2011]).

Finding optimal harvest policies for proactive decision makers is much more demanding
than for reactive decision makers. We used dynamic programming (DP) to find the
optimal policies at each time step in a non-cooperative game. Proactive harvest decision
making in absence of a trend in the stock distribution was studied by Golubtsov and
McKelvey [2007] using a DP algorithm. In contrast to their work, our model includes
a rising temperature trend over time. However, to keep the model simple, we had to
assume the trend to be deterministic, whereas Hannesson [2007] assumed a stochastic
trend. Furthermore, we also consider general forms of fish stock concentration profiles
(Clark [1990]) in order to reveal a more complete picture of the problem. The main
research questions of our study are: How will managers’ belief about future environmental
trend and the consequent distributional shift affect their harvest policies, and what are
the implications of those decisions on the biological stock?

2 Model Specification

Solving problem of our interest requires a bio-economic model that combines both biolog-
ical (stock dynamics in space and time) and economic effects (profit-maximizing harvest
policy, constrained by the other player’s actions). In general terms, our model is a deter-
ministic, discrete time, two-player dynamic game model with a finite time horizon, one
continuous state variable, and one continuous action (policy) variable for each player.
We first describe the biological and economic sub-models, before describing the dynamic
programming methods that we use to find optimal policies.

2.1 Biological Model

We use a discrete-time logistic population growth model where stock renewal and har-
vesting alternate. During the part of a season when fishing takes place, the stock occupies
the EEZs of two countries. Stock renewal is determined by the combined stock size.

The discrete-time logistic growth function with harvesting is (e.g., Hannesson [2007]):

Rt(St) = aSt(1− St) + St (1)

St+1 = ptRt(St),
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where Rt is the stock after recruitment at time t, St is the stock size after harvest, a
is the growth ratio (the greater the parameter, the faster the stock is rebuilt), and pt is
the harvesting strategy, here expressed as the escapement proportion. We assume that
stock size is expressed relative to the carrying capacity; this parameter thus disappears
in normalization.

The fish stock we have in mind is a migratory stock that moves between spawning
and fishing grounds (Figure 1). No fishing takes place during the reproductive season.
During the fishing season, the harvestable stock Rt may be found entirely in the EEZ of
country 1 or country 2, or split among the two, depending on the ocean temperature. The
share of the harvestable stock in the EEZ of country 1 is given by parameter θt = θ1t , the
split ratio; the rest 1 − θt = θ2t spills into EEZ of country 2. Harvest takes place within
the country’s own EEZ; each country decides its own harvest strategy, the proportion
of fish pit to be left behind. As a result of harvesting, the stock size is reduced to Si

t .
Both streams of fish will then unite for reproduction. Next season, the stock will then
increase to a new level Rt+1 due to growth and reproduction of the fish left behind from
previous season t. This so-called split stream model was first introduced by McKelvey
and Golubtsov [2006].

                         

                             

                                                                              

                                 

 

Figure 1: The split stream game of McKelvey and Golubtsov [2006] employed in this pa-
per. R = stock after recruitment; S = stock after fishing; θ = split ratio; p = escapement
proportion (the strategy variable).

In this paper we mostly discuss distributional changes driven by the climate change
(i.e., the warming of sea water). However, in our formulation of split rule, the actual
driver is immaterial, as long as it is predictable for a proactive manager. We assume that
temperature increase is a linear function of time and that this leads to a linear decline in
split ratio from θ = 1 to θ = 0:

θt = min(1,max(0, 1− δ(t− tspill))) (2)

where δ is an annual trend parameter, δ = 0.04, and tspill = 12.5 is a parameter determin-
ing the timing of the transition. With these parameters, country 1 is the sole owner from
initial year to year 12, and from year 38 to terminal year country 2 is the sole owner; in
between two countries share the stock (Figure 2). We emphasize that only the proactive
manager has full knowledge of δ to estimate his future stock share. For a reactive man-
ager, who believes future split ratio to be the same as the current one, δ does not enter
the decision making process. Instead, he updates his estimate of the current split ratio
each season.
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Because split ratio θt is a deterministic function of time, we do not treat θt as an
independent state variable. Our model has therefore a single state variable, stock size R.
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Figure 2: The split rule θ(t). With the parameters used in this paper, the stock is shared
from year 12 to year 38.

2.2 Economic Model

In our model, two countries that share the fish stock play a non-cooperative game over a
finite time horizon. We assume they are risk neutral and their goals are to maximize the
sums of their current and discounted future payoff, constrained by the actions of the other
country. Furthermore, we assume that players are omniscient: they have full knowledge
about current state of the stock and its distribution as well each others’ rationality.

2.2.1 Revenue, Cost and Concentration Profile

For simplicity, we assume fish price to be exogenous and normalized to 1. The expression
for seasonal revenue is then straightforward and depends on the amount of fish (θR) and
the player’s fishing strategy (p):

V i
t = θitRt(1− pit). (3)

Cost of fishing is a key element for economic decisions. Fish stock density is critical
in determining costs of fishing: the lower the density, the more effort is needed to catch
a unit of fish. To describe how fish density experienced by fishermen depends on total
stock abundance, Clark [1990] introduced the concept of concentration profiles (see also
Steinshamn [2011]). A concentration profile describes how average maximum density of
fish depends on total stock abundance and is determined by spacing behavior of fish, i.e.,
by the degree of their schooling behavior; this will vary from species to species.

Let us denote the effective stock density experienced by the fleet of country i at within-
season time τ as ρiτ , which is the function of instantaneous sub-stream stock size xi

τ and
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split ratio θt:

ρiτ (x
i
τ ) =

(
xi
τ

θt

)b

, i = 1, 2. (4)

Because the stock size is normalized to a maximum of one and we have not included a
scaling parameter, this formulation expresses stock density in relative terms, with ρ = 1
obtained for an unfished stock. Because fish do not respect country boundaries, two
countries are assumed to have the same stock density at the beginning of each fishing
season, ρi0 = (θiR/θi)b = Rb. This explains why equation (4) has been corrected for split
ratio θ. Thus, two countries shall initially face same per unit cost of catching fish. Over
time within the season, their sub-stream stock densities will usually diverge.

If b = 0 in equation (4), density becomes a stock-size independent constant. This
would describe a fish species which is infinitely schooling and when fishermen can easily
find these schools and catch the last fish. Under such circumstances, both players face
the same cost per unit catch throughout the fishing season, until the stock is exhausted.
b = 1 is another special case where density is strictly proportional to the stock size; this
could happen when the area of fish distribution is unchanged, but the density changes
with stock size. b = 1 thus represents the case of non-schooling, uniformly distributed
fish. However, most of fish stocks behave between these extreme cases, and in our model,
we have focused in cases with 0 < b < 1.

Having understood implications of fish density on the unit costs, we can now derive
total costs Ct at season t:

Ct =

∫ 1

0

ceeτdτ, (5)

where ce is cost per unit effort and eτ is fishing effort at time τ . For simplicity, within-
season discounting is ignored in equation (5). Effort eτ is defined as function of instan-
taneous catch rate y, assumed constant within a season, and catchability coefficient q,
describing how easy (or difficult) the fish are to catch:

eiτ =
yi

qρiτ
. (6)

By solving equation (5) and equation (6), we get the total seasonal cost for each player
as (for details see Appendix A):

C i
t =

{
ceθit

q(1−b)
R1−b

t (1− pit
1−b

) , if 0 ≤ b < 1,

− ceθit
q

log(pit) , if b = 1.
(7)

Equation (7) implies that the greater the value b, the costlier it is to fish. Notice that when

b = 0, C i
t =

ceθit
q
Rt(1− pit) =

ceθit
q
Y i
t where Y is the total catch; the cost is independent of

initial stock R. In all other cases, costs are higher when R is lower.

2.2.2 Multi-period Profit Maximization

The objective of a risk neutral manager is to choose his harvest policy such that the net
present value of the stock is maximized. Because fishing takes place in a country’s own
zone, the immediate payoff vit depends on a player’s own strategy pit but not on the other
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player’s strategy p−i
t . The immediate payoff is vit = V i

t − C i
t , or, when 0 ≤ b < 1 (the

equation for b = 1 is derived similarly):

vit(p
i
t, Rt) = θitRt(1− pit)−

ceθ
i
t

q(1− b)
R1−b

t (1− pit
1−b

), i = 1, 2. (8)

The future payoffs from t + 1 to tmax − 1 are calculated analogously, noticing that the
future state of stock depends on harvest policies of both players. For simplicity, when
t = tmax, the future payoff is set to zero. This simplification is warranted because as long
as the final payoff is not unnaturally large, the actual value has no implications for the
policies during the period when the stock is shared.

The optimal harvest policies satisfy the two players’ simultaneous Bellman equations
(Miranda and Fackler [2002], p. 208):

V i
t (Rt) = max

pit

{
vit(p

i
t, Rt) +

tmax∑
k=t+1

vik(p
i
k | p−i

k

∗
, Rk)

(1 + r)k−t

}
, i = 1, 2, (9)

where r is the discount rate. The value functions V i(·) and optimal harvest policies pi
∗

are solved numerically; once pit are determined for initial state Rt, future policy decisions
become automatically decided. Changes in the state of the system are governed by both
players’ harvest policies together with the biological growth function (1).

2.3 Numerical Methods

We apply dynamic programming (DP) to solve the optimization problem given by the
simultaneous Bellman equations (9) (Miranda and Fackler [2002], Chapter 8). Thus, in
the process of backward induction, we first identify the players’ optimal policies for all
subgames during the terminal period; the optimal policies under non-cooperative harvest
are Nash equilibria (Clark [1990], Chapter 5.4). When these are known for the terminal
period, optimal policies during the previous period can be solved, and so forth. This
procedure eventually yields optimal policies for all subgames. These optimal policies are
subgame perfect Nash equilibria (Mas-Colell et al. [1995], Miranda and Fackler [2002]).

Because optimal policies are state-dependent and influenced by the players’ past ac-
tions, we are dealing with closed-loop equilibria (Fudenberg and Tirole [1991], p. 130),
irrespective of whether managers are proactive or reactive. However, how future payoffs
are determined differs between the management regimes. Under proactive management,
future payoffs follow from the value function and are based on correct projection of θ
and assuming optimal future policies. Under reactive management, optimal policies are
guided by the assumption that θ remains in its current value. In this case we follow Han-
nesson [2007] and calculate future payoffs as the discounted payoffs that result from both
players choosing certain proportional escapements (pit) and then maintaining the resulting
absolute escapements (Si

t = pitθ
i
tRt) indefinitely.

To find the Nash equilibria in each subgame, we used an exhaustive search on a 100
× 100 grid, representing escapements p1 and p2 evenly spaced in 0.0001 . . . 1. In most
cases a unique, globally stable Nash equilibrium was identified. However, under proactive
regime, the exhaustive search occasionally failed to identify Nash equilibria. By studying
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the reaction curves1 for such subgames, we found that a small proportion of failures were
caused by numerical inaccuracy introduced by the finite search grid. In the vast majority
of failures, however, the absence of Nash equilibrium was genuine. This is possible because
in our model reaction curves can be discontinuous, and therefore they may not intersect
(thick curves in Figure 3; see Appendix B for further discussion). However, all subgames
had at least one local Nash equilibrium. Furthermore, when multiple local Nash equilibria
existed, at least two of them were Pareto efficient. To select one equilibrium in a consistent
and unambiguous way, we use a gradient ascent algorithm. This can be envisaged as a
negotiation process where the players simultaneously adjust their bids in small steps, based
on what is advantageous to them at that very moment. The starting point is no fishing,
(p1, p2) = (1, 1), and the gradient is defined by the partial derivatives of each players’ total
payoff with respect to their fishing policies for the focal season. This algorithm converges
to a point that is a local Nash equilibrium (Figure 3).

In all simulations, we assume two managers/countries in question to be identical in
terms of their management regimes (reactive or proactive) and in the economic parameters
(price of fish, unit cost of fishing effort, and discount rate). They become asymmetric in
the course of fishing season because of different effort expended and because diverging
stock densities imply different catch rates per unit effort. Price and the cost of per unit
effort are fixed constants in the model. All the results are based on a setting where the
fish stock is first under the sole ownership of country 1, then starts gradually spilling into
the jurisdiction of country 2, until at some point it enters the sole ownership of country 2
(Figure 2). Stock size is discretized to 50 bins, with a uniform bin density above R = 0.2
and doubled density below that; linear interpolation is used to estimate future payoffs
for intermediate stock sizes. Minimum stock is set to R = 10−4, below which stock is
considered extinct.

All simulations were conducted with R (R Development Core Team [2011]), and the
code is available from the authors on request.

3 Results

Here we focus in comparing reactive and proactive management. We start with results
from the backward induction, focusing in qualitative differences of the policy functions
between the two management regimes. We then move on to dynamic path analysis and to
describing how knowledge about the future changes the strategic interactions between the
players. Finally, we describe how the results depend on the choice of the key parameters
in our model.

3.1 Policy Functions

To illustrate the results from backward induction, we present policy functions for both
players. These describe the Nash strategy of a player for all combinations of stock size and
period. We illustrate these policy functions as grey-scale images in Figures 4–6 that can be
seen as “road maps” that give a player’s optimal action under all possible conditions. The

1A reaction curve is a function that maps a player’s best response against his opponent’s all possible
responses. Intersections of reaction curves are Nash equilibria. Fudenberg and Tirole [1991] discuss
reaction curves also under name reaction correspondence.
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Figure 3: Discontinuity in the reaction curves when a = 0.6, b = 0.4, ce/q = 0.2, r = 10%,
R = 0.329, t = 31, and θ = 0.26. Red thick curve depicts the best response of player 2
to player 1’s strategy, and blue thick curve depicts the best response of player 1 to player
2’s strategy. Because these curves do not intersect, there is no global Nash equilibrium.
However, thin colored curves that show the local best responses do intersect, and these
intersections are local Nash equilibria. Both turn out to be Pareto efficient. One of these
is chosen using a gradient ascent algorithm; its path starting from (1, 1) is shown by the
black curve.

harvest policies are most conservative (i.e., the escapement is large) under sole ownership
and least conservative when the ownership is equal. Under reactive regime, the behavior
of player 1 and player 2 is almost symmetric, in a sense that their policy functions are
mirror-symmetric with respect to the point of time when the stock is equally shared
(θ = 0.5). This symmetry no longer holds under proactive management where knowledge
about the future makes the positions of the two players inherently different. Here we first
describe the basic patterns; we will elaborate on the underlying mechanism further down.

Policy functions are always different between reactive and proactive management. For
some parameter combinations the differences only become apparent under close scrutiny.
More typically, however, the policy functions are qualitatively different: under reactive
management, the escapement proportion at a certain stock size for the first player (who
is losing the stock) is monotonically decreasing with time, whereas under proactive man-
agement, the escapement proportion becomes non-monotonic. At weakest, monotonicity
is seen as a modest reduction in the harvest of player one that occurs after he has become
the minor owner, before his harvest increases again for last years of mutual ownership.

The non-monotonic harvest control can take striking forms. A “zebra” pattern is one
special form of non-monotonicity (Figure 4). It occurs only during the stock transition,
and is characterized by alternation of a low/nil harvest in one period and a substantial
harvest in another period. Moreover, the two players’ policies are in almost perfect anti-
synchrony. When the zebra pattern occurs, it prevails for most stock levels but is more
pronounced for low stock levels before entirely disappearing for very low stock levels. In
some other cases, the regular zebra pattern is replaced by apparently erratic harvest. This
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pattern emerges when reaction curves in individual subgames become discontinuous and
there is no global Nash equilibrium in a particular subgame.
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Figure 4: Policy functions under reactive (A) and proactive management (B) for country 1
(top) and country 2 (bottom). Policy here is escapement and is shown with the gray scale,
with white corresponding to zero harvest (p = 1) and black to zero escapement (p = 0).
Policy function is defined for all combinations stock and period. Stock trajectory when
R0 = 1 is shown with the curve (green). Proactive management reduces risk of stock
depletion, and may cause “pulse control”. a = 0.3, b = 0.1, ce/q = 0.2, and r = 10%.

3.2 Dynamic Path Analysis

Policy functions can be used to simulate the paths of optimal harvest and stock level, given
a certain initial state. Stock trajectories when the initial stock is unexploited (R0 = 1)
are illustrated by the green lines in figures 4-6 . The common observation is that during
sole ownership, the policy is to maintain or rebuild the stock to a certain “optimal” level2;
this applies regardless of i) whether it is ex-ante or ex-post transition, and ii) which one
of the two management regimes applies. When the stock becomes shared, it declines to
extinction or reaches a minimum level at around the time when the ownership is equal or
similar and then starts to recover.

In accordance with the differences in the policy functions, the differences in stock
trajectories between reactive and proactive management range from subtle to dramatic.
There are three main cases: the stock goes extinct regardless of the management regime
(not illustrated), the stock goes extinct under the reactive but not proactive management
regime (Figure 4), or the stock goes extinct under neither of the management regimes
(Figure 5–6). Thus, the reactive management is more vulnerable to the negative conse-
quences of non-cooperative exploitation.

2Because the intrinsic productivity of the stock is not influenced by the distributional change, under
cooperative management it would be optimal to keep the stock at this level all the time.
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Figure 5: Policy functions under reactive (A) and proactive management (B) for country
1 (top) and country 2 (bottom). Proactive management can induce complex dynamics.
See figure 4 for further explanations. a = 0.8, b = 0.4, ce/q = 0.2, and r = 10%.

Another observation is increased stock volatility under proactive management. Stock
trajectory of reactive management is always smooth and typically nearly symmetric
around θ = 0.5; this is a reflection of the monotonicity observed in policy functions:
a continuous and gradual change of harvest ensures a smooth stock trajectory. The re-
covery of the stock, whenever it occurs, is also monotonic. Under proactive management,
however, recovery might not be monotonic, and the stock can become fairly volatile (Fig-
ure 5B). These patterns are caused by non-monotonicity of the policy functions. The
largest volatility is associated with policy functions showing erratic policies. Curiously,
however, the pulse control does often not result in noticeable volatility because of the com-
plementarity of the two players’ policies, i.e., heavy harvest by one player is associated
with little or no harvest by the other.

As b is increased (i.e., stock is more evenly dispersed and more costly to exploit),
proactive stock trajectory is gradually smoothed out. The quantitative difference of stock
between proactive and reactive management becomes minimal (Figure 6).

In terms of the realized payoff, the proactive management brings slightly higher cu-
mulative payoff (excluding the first and the last period) for both players than the reactive
management; the difference becomes large only when the stock collapses under reactive
management. An important exception occurs when stock collapses also under proactive
management: in this case, reactive management brings higher cumulative payoff for both
players (the proactive players race to exhaust the stock).

3.3 Strategic Interactions

A study of the two players’ optimal policies under the alternative management regimes
helps to understand the mechanisms behind the observed differences in stock trajectories.
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Figure 6: Policy functions under reactive (A) and proactive management (B) for country 1
(top) and country 2 (bottom). For certain parameters, the quantitative difference between
the management regimes is small. See figure 4 for further explanations. a = 0.5, b = 0.9,
ce/q = 0.2, and r = 10%.

Here we limit ourselves to cases where the stock does not go extinct. We summarize the
main features of the strategic interactions below; Table 1 includes a schematic summary
of the main phases of interactions.

Under reactive management, the strategic interactions are simple (Table 1). We can
distinguish three phases: (1) When the stock is under sole ownership of player 1, there is
no strategic interaction, and the sole owner aims to maintain the stock at an optimal level;
(2) When the stock starts to spill to the jurisdiction of country 2, the non-cooperative
harvest starts. The main owner harvests more than he would do under sole ownership,
but less than the minor owner who is a free rider. When the original major owner becomes
the minor owner, the roles of the players are reversed, but there is no fundamental change
in the game; (3) In the end, the stock becomes under sole ownership of player 2, who in
turn starts to pursue sole owner optimal management. This may involve first letting the
stock to recover to the optimal level.

Under proactive management, the strategic interactions become more complicated
(Table 1):

(1a) “Sole owner optimum”: Initially, ex ante the transition, the situation is exactly the
same as for the reactive manager.

(1b) “Anticipation”: The stock is still in sole ownership of player 1 but under the proac-
tive management, anticipation of player 2 entering the game leads player 1 to in-
crease his harvest relative to the single player optimum. In our simple, deterministic
model, anticipation occurs just one time step ahead.

(2a) “Mutual race to fish”: Both players engage in heavy harvest. This phase is similar



Comparing proactive and reactive management 12

Table 1: Schematic summary of time line of the strategic interactions.

Ownership Management regime
Reactive Proactive

Sole owner: country 1 Sole owner optimum Sole owner optimum
Anticipation

Spilling starts Mutual race-to-fish Mutual race to fish
harvest1 < harvest2 harvest1 < harvest2

harvest1 ≥ harvest2
Equal shares harvest1 = harvest2 Pseudo-cooperation

harvest1 > harvest2 Loser’s race to fish
Spilling ends harvest1 > harvest2
Sole owner: country 2 Sole-owner optimum Sole-owner optimum

under reactive and proactive regimes.

(2b) “Pseudo-cooperation”: Under proactive management, the non-cooperative Nash
equilibria can involve a period of no or little harvest, as if the players would coop-
eratively rebuild the stock. Indeed, some rebuilding of stock is in the interest of
both players: for player 2 because he is the major owner and approaching the point
where player 1 can no longer fish the stock down, and for player 1 because he can
benefit from increased stock during the next phase. This phase only occurs when b
is low enough to make harvesting a small stock profitable.

(2c) “The loser’s race to fish”: Player 1 no longer has power to push stock down, so
it can pay for player 2 to conserve stock. Player 2 adopts a bang-bang harvest
strategy before he reaches optimal stock level. The future value of player 1’s stock
is diminishing (see Figure 7); he then engages heavily in his terminal harvest.

(3) “Sole owner optimum”: Ex post the transition, the situation is similar to that under
the reactive management, apart from the terminal effects arising from the finite time
horizon of the model.

In summary, we observe that the strategic interactions induced by reactive manage-
ment are much simpler than those occurring under proactive management. The features
we observe under proactive regime, anticipation, pseudo-cooperation, and loser’s race to
fish, are absent under reactive management. The nature of reactive management (man-
agers are assumed to see future stock ownership being the same as it is today) prohibits
any anticipatory behaviors of its players. Under proactive management, anticipation of
the change in ownership changes a seemingly robust conclusion about the harvest poli-
cies of a shared stock: that the main owner always conserves more than the minor one
who free-rides the main owner’s conservation efforts (Hannesson 2007). In anticipation
of becoming the minor owner, player 1 starts to harvest more than his competitor while
still being the major owner, a few years before his stock share goes below 50% (Table 1,
Figure 7).
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A detailed example of dynamics under reactive and proactive management is presented
in Figure 7. It shows that under proactive management player 1 is seen to start increasing
his harvest one year earlier than under reactive management; this leads to an earlier stock
decline, but otherwise the difference between the regimes is small. However, after a while,
“pseudo-cooperation” starts: the harvest of both players is less under proactive compared
to reactive regime. This involves a period of pulse fishing. Finally, player 1 starts his
aggressive terminal fishing, but the stock is nevertheless recovering. The stock reaches
the sole-owner optimal level much earlier under the proactive compared to the reactive
regime.
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Figure 7: An example of trajectories of current and future payoff (A; under proactive
management only) and stock size and escapement policies (B). In (A), dashed and solid
lines show respectively the current payoff and discounted future for player 1 (black) and
player 2 (blue). In (B), thin solid or dashed lines are for reactive and thick solid lines for
proactive management. The harvest ratio of player 1 is shown in black and that of player
2 in blue, and stock size is in red. a = 0.4, b = 0.3, ce/q = 0.2, and r = 10%.

3.4 Pulse Fishing

We now elaborate on the causes of pulse fishing policy seen under proactive management
in Figure 4 and Figure 7. Pulse fishing is a well-known phenomenon in the bioeconomic
literature (Clark et al. [1973], Pope [1973], Hannesson [1975]). Explanations mostly fall
in two categories, non-linearity of harvest cost (economy of scale) and poor age-selectivity
leading to inadvertent catch of young fish, before they realize their growth potential
(e.g., Clark [1990], Tahvonen [2009], Steinshamn [2011]). Neither explanation applies
here. Pulse fishing in our model is driven by competitive interactions between the two
players. It is an expression of complementarity that often characterizes optimal policies of
proactive managers: when conserving the stock is in the interest of both players, the best
response to the opponent’s increased harvest is to harvest less. In an extreme case, the
reaction curves are nearly identical with slopes ∼ −45◦; the intersection of the reaction
curves is then sensitive to small changes in current or future payoffs. Consequently, Nash
equilibria can easily flip between situations where player 1 is harvesting heavily whereas
player 2 does not harvest, and the opposite.
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The necessary condition for strong complementarity is that both players have signifi-
cant future value associated with the stock, such that sacrificing current payoff to conserve
the stock for future harvest is sensible. This requires that (1) the asymmetry in ownership
is not very large and that (2) discount rate is not very high. Furthermore, complementar-
ity is facilitated by low b, such that stock can be profitably harvested even at low stock
levels, and consequently, that players have more latitude to choose their policies.

Under certain conditions, complementarity of the reaction curves becomes visible as
pulse fishing. Suitable conditions in our model are triggered by the “loser’s race to fish”;
let us denote the beginning of this terminal harvest by t′. When b is small, the terminal
harvest is associated with significant payoffs, creating an incentive for player 1 not to let
stock to shrink to very low levels. At the same time, this creates a situation in which player
2 does not benefit from further recovery of the stock. Taken together these conditions lead
to a situation in which Nash equilibria (above a certain stock size) in period t′−1 involve
heavy harvest by player 2 and no or little harvest by player 1. This outcome affects the
game in the previous period (t′−2): player 2’s heavy harvest in period t′−1 reduces the
conservation incentive of player 1 but increases his own conservation incentive, and the
Nash equilibria for this period are mirror images of those for period t′−1. This effect can
then cascade further back in time, giving rise to the zebra patterns (e.g., Figure 4).

It is worth highlighting that pulse fishing is more prominent in policy functions than in
the dynamic path analysis: the optimal stock trajectory often involves so low stock levels
that pulse fishing does not occur (were the optimal stock trajectory higher in Figure 4B,
pulse fishing would continue until the terminal harvest of player 1). We also emphasize
that pulse fishing is not a very robust feature of the model: preliminary results from a
stochastic model suggest that uncertainty about future stock state easily eradicates at
least the regular pulse control shown in Figure 4.

3.5 Sensitivity

In this section, we summarize how growth ratio (a), concentration profile (b) and discount
rate (r) influence the model behavior (Figure 8). We first note that the model reproduces
the patterns familiar from simpler models: harvesting is most likely to lead to extinction
when stock is highly schooling (low b), has low growth ratio (low a), and when interest
rate is high (r = 10%).

Whether proactive and reactive regimes differ markedly is most prominently influenced
by the concentration profile b. Highly schooling stocks (low b) are harvested to extinction
under the reactive regime, whereas sustainable harvesting is often possible under the
proactive regime. If the value of b is sufficiently large (i.e., b ≥ 0.7 when r = 10%), the
quantitative differences between reactive management and proactive management become
negligible. This result is intuitive: if it is harder and thus costlier to fish down a small
stock for player 1 in the end of stock transition, player 2 has better control of the stock.
Players’ strategic interactions then become much simpler and close to those under the
reactive regime.

Growth ratio (a) has a major influence on complexity of reaction curves and policy
functions. Discontinuous reaction curves (see Section 2.3 and Appendix B) tend to become
visible as non-existence of global Nash equilibria during the pseudo-cooperative phase if
the growth ratio a � 0.4. When a � 0.4, pulse control (policy functions) and pulse fishing
(dynamic path analysis) prevail; discontinuities may still exist but they no longer lead to
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absence of a global Nash equilibrium.
What is the role of discount rate? Figure 8B shows that the effect of a smaller discount

rate is two-fold: (a) a more diffuse bifurcation area, and (b) a shrinking area of monotonic
policy control. As we explaining earlier, bifurcation is induced by the non-convexity of
payoff function. The smaller the discount rate, the greater non-convex the total payoff
function will become. This explains the more complex system dynamics we observe here.
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Figure 8: Schematic illustration of the dynamic behavior of the model with respect to
growth ratio a (x-axis), concentration profile b (y-axis), and discount rate r (panel (a)
and (b)). Black area: both reactive and proactive regime lead to extinction. Gray area:
only reactive regime leads to extinction. Horizontal stripes: monotonic control. Below
and to the right of the solid gray curve, global Nash equilibrium may not exist under the
proactive regime. Below the dotted black line, the quantitative difference between reactive
and proactive becomes significant. Parameter combinations corresponding to Figures 4–6
are also shown. ce/q = 0.2.

4 Concluding Remarks

Our model has attempted to simulate how stock displacement induced by climate warming
may affect international fishery management. Significant changes in stock distribution do
occur, although at present it can be difficult to judge the degree to which these are related
to climate change (Brander [2010]). For example, mackerel used to be an occasional visitor
to Icelandic waters, but in the recent years it has become abundant enough to support
a sizeable Icelandic commercial fishery (ICES [2011]). The earlier agreement for sharing
the mackerel stock did not involve Iceland and broke down. The current situation can be
characterized as a non-cooperative game where the parties regulate their mackerel fisheries
based on their own perceptions of their rightful shares. Even though the presented split-
stream model certainly is a gross simplification of the reality, it does capture some essential
characteristics of managing a migratory stock.

Results from comparison of reactive and proactive management regimes show that
two players are approximately symmetric under reactive management, but anticipation
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about the changing future makes the role of the two players inherently asymmetric under
proactive management. The differences between two alternative management regimes can
be seen in following aspects:

• For any given stock size, the optimal harvest rate under reactive management is
monotonically increasing with respect to time for the player losing the stock and
monotonically decreasing for the player whose stock share is increasing. Under
proactive management, the pattern is replaced by non-monotonic harvest control
which can take complex forms.

• Stock trajectory under reactive management is always smooth and typically nearly
symmetric; the trajectory under proactive management shows various degrees of
volatility. Under sole owner equilibrium, the stock level is the same regardless of
who the sole owner is or which management regime applies.

• Reactive managers can always find a unique, global Nash equilibrium. Proactive
management can sometimes result in non-existence of a globally stable Nash equi-
librium; instead, two or more local Nash equilibria appear.

• Proactive management induces complex strategic interactions between players. Typ-
ically these involve more aggressive harvesting by the player that is loosing the stock,
whereas the player gaining the stock acts more conservatively. However, there is
also often a short period when even the competitive solution is to allow the stock
to grow.

• Proactive management can save a stock from a stock collapse caused by competitive,
non-cooperative harvest.

We emphasize that choice of concentration profile can influence the degree of variations
between two management regimes. Our model shows that fixing the concentration profile
to an extreme case (b = 0 or b = 1) can be misleading (see also Steinshamn [2011]).
With a general formulation of concentration profile, the quantitative difference between
two alternative regimes increases as b decreases, becoming subtle only for low-schooling
stocks (b ∼ 1). This suggests that reactive management can be a good approximation of
proactive management only if the stock in question shows little schooling behavior.

In comparison to the noticeable changes in harvest policies caused by shifting the
management regime from reactive to proactive, often the impact of the regime shift on
total stock level and realized payoff is more subtle. This is possible because the two
players’ harvest policies often show “complementarity”: it is not in interests of either
player to let the stock become very small, such that the best response to other player’s
aggressive policy is conservative policy, and vice versa. This complementarity mitigates
the stock-level effects of volatile policies that may occur under proactive management.

We would like to emphasize that our model is deterministic and our managers have
perfect knowledge. This was necessary to keep the model as simple as possible. Some
features we observed in the model such as pulse fishing are intriguing, yet they may not
be robust and can ease or even disappear in a stochastic world. Extending the model into
stochastic version and incorporating cooperative games into model will be natural next
steps forward.
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While the distinction between reactive and proactive strategies to decision making is
well established in many contexts (e.g., Petulla [1987], Lin and Carley [1993], Klassen and
Angell [1998], Zhen et al. [2011]), in the literature about climate change and fisheries this
distinction is typically left implicit. Adaptation to climate change can involve proactive
strategies that aim to anticipate important future changes (Tompkins and Adger [2004],
Cochrane et al. [2009]), or reactive strategies where adaptation is passive and happens to
change that has already occurred (Hannesson [2007], Cochrane et al. [2009], Coulthard
[2009]). Theoretical research on the issue has been lacking, despite calls for proactive
policies (Herrick et al. [2009], Johnson and Welch [2010]). Our results highlight that
reactive and proactive approaches can give rise to very different policy responses, with
the proactive approach allowing avoiding some of the worst outcomes.
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dal for their input and comments. MH acknowledges the Bergen Research Foundation
and the Norwegian Research Council (184951/S40) for funding.

Appendix A: Fishing Costs and Concentration Profile

We assume that a uniform catch rate yit is maintained within a season. Total catch Y during
season t of length one then becomes:

Y i
t =

∫ 1

0
yitdτ = θitRt − Si

t , (10)

where θit is the split ratio at season t for country i, Rt is total stock before harvesting, and Si
t

is the stock size in country i’s zone after harvesting. The sub-stream stock size xiτ at time τ
within a season can be written as:

xit(τ) = θitRt − τyit. (11)

The concentration profile ρ, giving the effective stock density, is a function of stock size x:

ρ(xiτ ) =

(
xiτ
θit

)b

, (12)

where b is a non-negative parameter. If b = 1, stock is uniformly distributed and reducing the
stock will proportionally affect density but not the distribution area; if b = 0, stock density
remains constant, representing a stock of “super-schooling” type. In our model, we look at the
more generic case 0 < b < 1.

The decision variable is pit, the escapement proportion, i.e., the proportion of fish in his
stream the manager of country i decides to leave behind at season t:

pit =
Si
t

θitRt
. (13)

Costs are proportional to fishing effort. Effort by country i at time τ is:

eiτ =
yit

qρ(xiτ )
, (14)
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where q is the catchability, a parameter relating effort to catch rate, i.e., how easy to catch the
fish are. Now we can derive the total seasonal costs:

Ci
t =

∫ 1

0
cee

i
τdτ =

ce
q

∫ 1

0

yit
ρ(xiτ )

dτ =
ceθ

i
t
b
Y i

q

∫ 1

0
xiτ

−b
dτ. (15)

where ce is the cost per unit of effort, assumed to be constant and the same for both countries
in the game. We know also that:

∫ 1

0
xiτ

−b
dτ =

∫ 1

0
(θitRt − τyit)

−bdτ =
(θitRt)

1−b − Si
t
1−b

Y i
t (1− b)

=
(θitRt)

1−b(1− pit
1−b

)

Y i
t (1− b)

. (16)

Replacing the integral in equation (15) with equation (16), we obtain total seasonal cost for
country i:

Ci
t =

ceθ
i
tR

1−b
t (1− pit

1−b
)

q(1− b)
, (17)

which is a function of the decision variable pit and state variables θit and Rt.

Appendix B: Discontinuous Reaction Curves

We highlighted in section 2.3 that the reaction curves in our model may become discontinuous,
i.e., they may display a bifurcation. We elaborate on this issue here.

In a two players’ game, Nash equilibria are intersections of reaction curves. With continuous
reaction curves, such an intersection is bound to exist. However, this is no longer true if a dis-
continuity is present; thus the corresponding subgame may not have a global Nash equilibrium.

Example in Figure 3 shows a discontinuity in player 2’s reaction curve. Player 2 has two
locally optimal responses to a certain range of player 1’s harvest policies. These are shown as
local reaction curves, i.e., curves of policies that are better responses than immediately adjacent
responses. When player 1 is harvesting aggressively (low p1), the best response for player 2
is given by the lower, more aggressive local reaction curve. However, if player 1 is leaving a
larger proportion of his stock behind, player 2 gets better off by shifting to the upper local
reaction curve, corresponding to a more conservative harvest policy. This discontinuity occurs
such that global reaction curves never intersect, i.e., there is no global Nash equilibrium. There
are, however, two local Nash equilibria, one of which is reached if the players find the Nash
equilibrium by local gradient search starting from no catch (Figure 3).

Mathematically, the discontinuity arises due to non-convexity of payoff function that allows
multiple local optima to exist. This is due to introducing concentration profile into managers’
decision problem. Study of current and future payoff landscapes show that the current payoff
surface is approximately linear when b is sufficiently small but convex when b increases further.
The future payoff surface can become very ragged, the more so the faster the stock grows.

Complex future payoff landscapes arise because a player can achieve high net present value by
being conservative while accepting the cost of the other player free-riding, or by being aggressive
and therefore making the future stock so small that the other player cannot profitably fish.
Which solution is the local Nash equilibrium reached by the local search algorithm can change
abruptly as a function of stock size. Such abrupt changes then make the future payoff landscape
of the previous period more complex, and the effect propagates backward. It is worth noting
that discontinuities never appear under the reactive management regime where future payoff
landscape is inherently simple.

The bifurcation brings interesting dynamics to the model, but we should interpret this with
caution. The presence of discontinuities during the last period when they occur is a robust
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and real feature of the modelled system. However, the way they back-propagate is influenced
by numerical limitations arising from discretizing a continuous state variable, stock size. The
back-propagation is also enhanced by the assumption of determinism, which implies that both
players can predict the stock level next year perfectly. The tendency for bifurcations is lessened
in the real world where uncertainty prevails.
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