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Abstract

The relationships between cannibalism and pattern formation in spatially extended prey-

predator systems are studied with a model that degenerates, in the absence of cannibalism,

into the most standard prey-predator model, known as Rosenzweig-MacArthur model. The

analysis is based on the theory developed long ago by Turing in his famous paper on mor-

phogenesis, but in a special form which allows one to decouple the role of demographic

parameters from that of diffusive dispersal. The proofs are given in terms of prey and preda-

tor nullclines because ecologists are mainly familiar with this technique. The final result of

the analysis is that spatial pattern can exist only in systems with highly cannibalistic and

highly dispersing predator provided the attractor of the system in the absence of cannibalism

is a limit cycle. This result is more simple and more complete than that published in this

journal a few years ago by Sun and coauthors.
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1 Introduction

Pattern formation in spatially extended prey-predator systems has been studied in ecology

for more than thirty years [6, 4, 22, 23, 1, 12, 2, 11, 5, 17, 7, 13, 14, 18, 20]. These investiga-

tions, based on the notion of diffusive instability and on the results obtained by Turing [21],

show that simple prey-predator interactions can be responsible of patchiness in perfectly

homogeneous environments.

Even if cannibalism is a widespread phenomenon among a variety of taxa [10], only one

paper (published in this journal) has been devoted to the relationship between cannibalism

and pattern formation [20]. However, the analysis of Sun and coauthors is not complete,

though accompanied by numerous and interesting simulations, and is performed with a model

which is realistic only for very weak cannibalism. For these reasons, we present in this paper

a complete analysis of the problem obtained with a biologically sound model of cannibalism

[9]. Moreover, we use the recently proposed notion of potential Turing instability [8], which

allows one to decouple the role played by demographic factors from that of dispersal of the

populations involved.

The results we obtain are general and can be summarized with the following two simple

statements :

(i) If a system has a stable equilibrium when the predator in non-cannibalistic, the intro-

duction of any degree of predator cannibalism can not promote pattern formation.

(ii) The addition of cannibalism in a system that has a stable limit cycle when the preda-

tor is non-cannibalistc promotes spatial pattern provided predator cannibalism and

dispersal are sufficiently high.
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2 The model

Spatially extended prey-predator systems can be described, under the standard assumption

of diffusive dispersal, by a PDE of the form

dx

dt
= f(x, y, p)x+ dx∇

2x

dy

dt
= g(x, y, p)y + dy∇

2y

(1)

where x and y are prey and predator biomass depending upon time and space in a given

domain of R2, f and g are per-capita growth rates depending upon demographic parameters

p, and dx and dy are the non-negative dispersal coefficients of the two populations. Typically,

in order to have a well posed problem, zero-flux or periodic boundary conditions are also

imposed.

A positive, homogeneous and stationary solution (x̄, ȳ) of (1) (characterized by f = g =

0) can be stable in absence of diffusion (i.e. for dx = dy = 0) but unstable for suitable pairs

(dx, dy). In other words, an equilibrium (x̄, ȳ) can be stable in a lumped prey-predator model

dx

dt
= f(x, y, p)x

dy

dt
= g(x, y, p)y

(2)

but unstable in its spatially extended version (1). This somehow counterintuitive phe-

nomenon, first investigated by Turing in a celebrated paper [21], is known as diffusion-induced

instability, but is also called Turing instability.

The key result of Turing analysis (see also [19]) is that diffusion induced instability is

equivalent to the instability of the matrix

C = J(p)−D (3)
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where J(p) is the Jacobian of (2) at the equilibrium (x̄, ȳ), i.e.

J(p) =

⎡
⎢⎢⎢⎢⎣
x̄
df

dx
x̄
df

dy

ȳ
dg

dx
ȳ
dg

dy

⎤
⎥⎥⎥⎥⎦

and D is the diagonal matrix with dx and dy as diagonal elements. If dx = dy, i.e. if D is

proportional to the identity matrix, the spectrum of C in (3) is simply the spectrum of J

shifted to the left, so that C can not be unstable if J is stable. This is why the dispersion

coefficients must be unbalanced in order to have Turing instability.

As shown in [19, 8], the problem of finding triples (p, dx, dy) for which (x̄, ȳ) is stable in

(2) but unstable in (1) can be solved in two steps, namely :

(i) find values of p for which one diagonal element of the Jacobian matrix J is positive.

Notice that if Jii > 0 (i.e. if i is the so-called activator) then Jjj < 0 since tr(J) < 0.

(ii) determine (if needed) the dispersal coefficients (dx, dy) realizing Turing instability by

imposing that C is unstable. This is always possible if the activator disperses suffi-

ciently less than the other population (inhibitor).

This decomposition, which has never been systematically exploited in the literature,

greatly simplifies the analysis, in particular when the identification of the factors promoting

or inhibiting diffusion-induced instability is the problem of concern.

The most standard prey-predator model [16] is composed of a logistic prey and a type II

predator and is therefore described by

dx

dt
=

[
r
(
1−

x

K

)
−

ay

1 + ahx

]
x

dy

dt
=

[
e

ax

1 + ahx
− d

]
y

(4)

where r and K are prey net growth rate and carrying capacity and a, h, e and d are predator
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(a) (b) (c)

Figure 1: Phase portraits of system (4): (a) predator extinction, (b) stationary coexistence and (c) cyclic
coexistence

attack rate, handling time, efficiency and death rate, respectively. Model (4) is of the form

(2) and has three possible state portraits [15] as shown in Fig.1. If the product of attack

rate and carrying capacity is low, i.e.

aK < d/(e− dh)

(notice that e > dh because it is reasonable to assume that predator invade when the food

available to them is very abundant), then predator die-off in the long term (Fig.1a), while

the system tends toward a positive attractor if the opposite inequality is satisfied. More

precisely, if

d/(e− dh) < aK < (
e

h
+ d)/(e− dh) (5)

the system tends toward a stable positive equilibrium (x̄, ȳ) (Fig.1b) while if

aK > (
e

h
+ d)/(e− dh) (6)

the system tends toward a stable limit cycle (Fig.1c).

Since the per-capita growth rate g does not depend upon predator density, the second

diagonal element of the Jacobian J in (3) is zero, i.e. J22=0 for all parameter values, while
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J11 < 0 at the positive equilibrium (x̄, ȳ) of Fig.1 since tr(J) < 0 at a stable equilibrium.

This means that Turing condition (J11J22 < 0) can not be satisfied in model (4), although

it is almost satisfied since J11J22 = 0. In other words, model (4) is critical in the context of

Turing instability. This has been explicitly recognized by Sun et al. [20] as well as by Alonso

et al. [1].

In order to study the relationship between cannibalism and pattern formation we must

modify model (4) by taking into account that a cannibalistic predator has different attack

rates (a and A) and handling times (h and H) for the prey and for the predator, as well as

two different efficiencies (e and E) in transforming predated units into newly born predator.

The corresponding model is [9]:

dx

dt
=

[
r
(
1−

x

K

)
−

ay

1 + ahx+ AHy

]
x

dy

dt
=

[
e

ax

1 + ahx+ AHy
+ E

Ay

1 + ahx+ AHy
−

Ay

1 + ahx+ AHy
− d

]
y

where E < 1 because the biomass of cannibalized predator is greater than the corresponding

biomass of newly born predator. Thus, in conclusion, the model with cannibalistic predator

can be given the form

dx

dt
=

[
r
(
1−

x

K

)
−

ay

1 + ahx+ AHy

]
x

dy

dt
=

[
aex− A(1− E)y

1 + ahx+ AHy
− d

]
y

(7)

Since model (7) degenerates into model (4) when A tends to zero, the cannibalistic attack

rate A, from now on simply called cannibalism, is the most natural control parameter for

our discussion.

It is worth noticing that the model used by Sun et al. in [20] (see their eq.7) is different

from our model (7) and can, at most, be considered as a sort of approximated model valid
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(a) (b)

Figure 2: Prey (a) and predator (b) nontrivial isoclines for different values of cannibalism (A). The figures
are obtained with the set of parameters r = 0.5, K = 5, a = 2, H = 0.4, h = 0.22, e = 0.5, E = 0.4 and
d = 0.7.

for small values of cannibalism: as such, it can not be used to support any conclusion on

pattern formation in systems with high cannibalism.

3 Analysis of the model

In this section we prove the two properties reported in the Introduction, which can now be

more precisely formulated as follows.

(i) If condition (5) is satisfied, predator cannibalism (A) can not promote pattern forma-

tion in model (1,4).

(ii) If condition (6) is satisfied, spatial pattern can emerge in model (1,4), provided predator

cannibalism (A) and dispersal (dy) are sufficiently high.

The non-trivial prey nullcline dx/dt = 0 for model (4) is

y =
r(1− x/K)(1 + ahx)

a− r(1− x/K)AH

It is a unimodal curve intersecting the x-axis at two points (x = −1/ah and x = K) that do

not depend on canibalism (A). By contrast, for all values of x in the range (−1/(ah), K),
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any increase of A gives rise to an increase of y, as shown in Fig.2a. Moreover, after some

algebra one obtains

dy

dx
=

−
a
K
(1 + ahx) + a(1− x

K
)ah− rahAH(1− x

K
)2

(a− r(1− x
K
)AH)2

(8)

which allows one to check that dy/dx is negative at the central point

x∗ =
K −

1

ah

2
(9)

of the interval [−1/ah,K], where the nullcline corresponding to A = 0 (the Rosenzweig-

MacArthur parabola) has its maximum. In fact, for x = x∗ the first two terms at the

numerator of (8) cancel, while the third term is always negative. This implies that the

maximum of the prey nullcline gradually shifts to the left when cannibalism (A) increases

from 0. In conclusion, the prey nullclines depend continuously upon A as sketched in Fig.2a.

The nontrivial predator nullcline dy/dt = 0 for model (7) (see Fig.2b) is the straight line

A(1− E + dH)y = a(e− dh)x− d

which intersects the x-axis at a point x∗∗ independent upon A, namely

x∗∗ =
d

a(e− dh)
(10)

and has a positive slope for all values of A (recall that E < 1 and e > dh).

Proof of property (i)

A direct consequence of condition (5) is that (see (9) and (10))

x∗∗ > x∗
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Figure 3: Prey and predator nullclines for different values of cannibalism (A = 0, 0.9, 1.8) when condition
(5) is satisfied : the equilibrium (•) is always on the right of the maximum of the prey nullcline (�). The
curves are obtained with the same set of parameters used in Fig.2 except for a = 1.5.

so that the nullclines are like in Fig.3, which clearly shows that the slopes of prey and

predator nullclines are, respectively, negative and positive at the equilibrium point. But in

prey-predator systems, where for biological reasons J12 < 0 and J21 > 0 (see eq.(7)), the

negativity of the slope of the prey nullcline is equivalent to J11 < 0, while the positivity of

the slope of the predator isocline is equivalent to J22 < 0. Thus, for all values of A the signs

of the four elements of the Jacobian matrix evaluated at the equilibrium are as follows

J =

⎡
⎢⎢⎢⎢⎣
− −

+ −

⎤
⎥⎥⎥⎥⎦

so that there is no activator and, hence, no Turing instability.

Proof of property (ii)

Condition (6) implies

x∗∗ < x∗

so that the nullclines are like in Fig.4. For A = 0 model (7) is the Rosenzweig-MacArthur

model (4) which has J11 > 0 and J22 = 0 since the trace of J is positive (recall that the
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equilibrium is unstable). Increasing A from zero, the two nullclines gradually vary and their

slopes indicate that J11 remains initially positive but decreases while J22 becomes negative

and decreases. Thus, the trace of J decreases with A until it becomes zero at a particular

value, say A1, of cannibalism (a Hopf bifurcation of model (7)). For A slightly grater than

A1 the equilibrium is therefore stable and has

J =

⎡
⎢⎢⎢⎢⎣
+ −

+ −

⎤
⎥⎥⎥⎥⎦

so that the prey is an activator. A further increase of A, reduces J11 until it becomes zero at

A = A2, i.e. when the predator nullcline intersects the prey nullcline at its maximum (where

J11 changes sign). Hence, for A > A2

J =

⎡
⎢⎢⎢⎢⎣
− −

+ −

⎤
⎥⎥⎥⎥⎦

Figure 4: Prey and predator nullclines when condition (6) is satisfied. For A = A1 model (7) has a Hopf
bifurcation, while at A = A2 (Turing bifurcation) the prey population ceases to be an activator. The curves
are obtained with the same set of parameters used in Fig.2 except for a = 3.8. The approximated critical
values of cannibalism (A) are A1 = 0.81211 and A2 = 5.727616.
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and again there is no activator. Thus, in conclusion, the equilibrium is stable and has the

prey as activator for

A1 < A < A2 (11)

so that spatial pattern can emerge provided cannibalism is sufficiently high (in agreement

with (11)) and predator disperse much more than prey.

4 Conclusions

We have studied in this paper the relationship between cannibalism and pattern formation

in spatially extended prey-predator systems, a subject investigated until now only in a paper

published in this journal [20]. Our analysis is complete and based on a biologically sound

model [9] and the proofs are presented in terms of prey and predator nullclines in order to

facilitate ecologists who are mostly used to this technique.

The results are quite simple: spatial pattern can not emerge if, in the absence of canni-

balism, the attractor of the model is an equilibrium, while they can emerge if, in the absence

of cannibalism, the attractor is a limit cycle and predator cannibalism and dispersal are

sufficiently high.

Our conclusions are most likely valid for other mechanisms promoting pattern formation

in spatially extended prey-predator systems. For example, predator interference has already

been shown to promote spatial pattern [3, 1] but a more careful analysis shows that this can

occur exactly under the conditions described in this paper, i.e. interference cannot promote

Turing instability if it is too low and the attractor is not a limit cycle in the absence of

interference. We believe that it would be worth investing some effort to identify other

mechanisms promoting pattern formation under the same conditions pointed out in this

study.
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