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Abstract

We show in this paper that the analysis of diffusion-induced instability in spatially extended

models can be performed by separating local dynamics from diffusion. This is possible not

only in the case studied by Turing, namely models with two interacting variables, but also in

the general case of three or more variables. The advantage of this decomposition, based on

the notion of potential Turing instability, is illustrated through the analysis of two spatially

extended plant-insect models.

Key words: Turing instability, diffusion-induced instability, prey-predator models, spatial

pattern, plant-insect models.
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1 Introduction

Spatially extended models can be described, under the assumption of diffusive dispersal, by

a PDE of the form

∂x

∂t
= f(x) + εD∇2x (1)

where x ∈ R
n is the n-dimensional state vector depending upon time and space in a given

domain of R2, ε > 0 is diffusion and D = diag(d1, d2, . . . , dn) is a diagonal matrix, here called

dispersal profile, characterized by 0 ≤ di ≤ 1, and
∑n

i=1 di = 1. Typically, in order to have

a well posed problem, zero-flux or periodic boundary conditions are also imposed.

Model (1) can be naturally transformed, through standard space discretization, into an

equivalent model with N patches, described by one ODE for each patch i, namely

ẋ(i) = f(x(i)) + ε
∑
j=Si

D(x(j) − x(i)) (2)

where Si is the set of patches directly coupled to patch i.

A homogeneous and stationary solution x̄ of (1), characterized by f(x̄) = 0, can be stable

in absence of diffusion (i.e. for ε = 0) but unstable for suitable pairs (ε,D). This somehow

counterintuitive phenomenon, first investigated by Turing in a celebrated paper [41], is known

as diffusion-induced instability, but is also called Turing instability. Model (1) is actually a

parameterized family of models depending not only upon diffusion ε and dispersal profile D,

but also upon parameters p influencing the function f . In many applications it is therefore

of interest to determine the so-called Turing set, namely all the triplets (p, ε,D) for which

the equilibrium x̄ is unstable in (1) but stable in the system

ẋ = f(x, p). (3)

However, quite frequently, one is mainly interested in finding the set of parameters for which

Turing instability is possible for at least one pair (ε,D). This set, which is nothing but the
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projection of the Turing set onto the subspace of parameters, is here called set of potential

Turing instability, or, more shortly, potential Turing set. The interest for potential Turing

instability is not only motivated by physical reasons, but also because the potential Turing

set can be determined quite easily.

The original Turing analysis considers the effect of small perturbations with wavenumber

√
ε imposed upon x̄ in the Fourier expansion of the solution of (1). The key result is that

diffusion induced instability is equivalent to the instability of the matrix

C(p, ε,D) = A(p)− εD (4)

where A(p) is the Jacobian of (3) at the equilibrium x̄, i.e.

A(p) =

[
∂f

∂x

]
x̄(p)

.

The same conclusion is obtained straightforwardly by studying the stability of x̄ in model

(2) with the well known Master Stability Function approach ([34, 22]). If the dispersal profile

D is perfectly balanced, i.e. if D is proportional to the identity matrix, the spectrum of C

in (4) is simply the spectrum of A shifted to the left of an amount ε/n. This is why the

dispersion profile must be unbalanced in order to have Turing instabilities.

In the case n = 2

tr [C] = tr [A]− ε det [C] = det [A]− ε (d1a22 + d2a11)

with tr [A] < 0 and det [A] > 0. Since tr [C] is always negative, C is unstable if and only if

det [C] is negative, i.e.

ε (d1a22(p) + d2a11(p)) > det [A(p)] . (5)

Inequality (5) can be satisfied if and only if one of the two diagonal elements of A, say aii,

is positive (in which case, the other diagonal element ajj is negative, since tr [A] < 0). In
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particular, if aii > 0 (i.e., if i is a so-called activator, while j is an inhibitor) the simplest

(extreme) solution of (5) is

di = 0, dj = 1 ε >
1

aii
det [A] .

By continuity, less extreme dispersal profiles will also satisfy (5). Thus, in conclusion, in the

case n = 2 a parameter p is in the set of potential Turing instability if and only if the system

contains an activator for that value of p. Moreover, this potential instability is realized if

the activator does not disperse or disperses much less than the inhibitor.

Turing result can be extended to the case n > 2 provided the notion of activator is

generalized as follows [38]: a stable n-dimensional linear system

ż = Az (6)

is said to contain a m-dimensional activator (m < n) if an unstable m×m submatrix with

the same indices of rows and columns can be extracted from the matrix A. The linear

system associated to this submatrix is called activator and has, by definition, at least one

eigenvalue with positive real part. Then, it is possible to prove [38] that a stable hyperbolic

equilibrium x̄ of (3), i.e. an equilibrium that has a stable Jacobian matrix A, is potentially

unstable in (1) if and only if A contains an activator. But what is even more interesting,

is that if an activator exists, it is always possible to determine a sufficiently high diffusion

ε and a sufficiently unbalanced dispersal profile D that destabilize the homogeneous and

stationary solution x̄ in (1). This implies that the analysis of Turing instability can actually

be performed in two steps, by separating the role of local dynamics from that of diffusion,

namely

(i) determine if system (6) contains an activator;

(ii) if an activator exists, determine (if needed) the diffusion ε and the dispersal profile D
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realizing Turing instability.

This decomposition, which has never been systematically exploited in the literature,

greatly simplifies the analysis, in particular when the identification of the factors promoting

or inhibiting diffusion-induced instabilities is the problem of major concern. In the next

section we discuss some of the advantages of this decomposition, keeping the simple case

n = 2 separated from the case n > 2, while in the third section we show the power of the

decomposition by studying in some detail Turing instabilities in two plant-insect models.

2 Potential Turing instability

We assume in this section to be interested in the influence that some parameters p charac-

terizing the function f of model (1) have on diffusion-induced instability. More precisely we

want to determine the set of potential Turing instability. Thus, we can follow the approach

outlined in the previous section and perform only the first step (i) of the analysis, namely

find out for which parameter values the linearized system (6) contains an activator.

The case n = 2

In this case, the existence of an activator, is equivalent to the satisfaction of the following

three inequalities

tr [A] = a11 + a22 < 0 (7)

det [A] = a11a22 − a12a21 > 0 (8)

tur [A] � a11a22 < 0 (9)

where (7) and (8) guarantee the stability of the equilibrium x̄ in (3), while (9) guarantees

that either a11 or a22 are positive, i.e. that an activator exists.

In any two-dimensional parameter space the boundary of the potential Turing set is

composed of curves where one of the three functions tr [A], det [A], tur [A] changes sign.
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Curves delimiting the potential Turing set can therefore be Hopf bifurcation curves (where

tr [A] = 0), transcritical or saddle-node bifurcation curves (where det [A] = 0) and so-called

Turing bifurcation [19] curves (where tur [A] = 0).

In simple models, the potential Turing set can be determined analytically, as in the three

examples concerning prey-predator models reported in Fig. 1. In Fig. 1.a, which refers to the

first study of diffusion induced instabilities in ecology [39], the potential Turing set coincides

with the entire set of stable equilibria. This is because in the prey-predator model considered

by Segel and Jackson the prey is strictly cooperative, i.e. it has a per-capita growth rate

(ẋ1/x1) increasing with prey density and this is sufficient to imply a11 > 0, i.e. that the prey

is an activator. By contrast, in Fig. 1.b, that refers to the Rosenzweig-MacArthur model

[36], the potential Turing set is empty (as noticed in [1]), because in that model ẋ2/x2 is

independent upon x2, so that a22 = 0, which prevents the existence of an activator. Finally,

in Fig. 1.c, which refers to a ratio-dependent prey-predator model [3], the potential Turing

set is a proper subset of the region of stable equilibria, as already ascertained [42, 43] through

the computation of the entire Turing set in the space (p, ε,D).

When the potential Turing set can not be determined analytically, it can be produced

numerically by determining the signs of tr [A], det [A] and tur [A] at all points of a grid in

parameter space. More effectively, the boundary of the potential Turing set can be computed

automatically and with high accuracy trough standard continuation techniques [12, 11, 24].

For this, the detection of codimension-2 points [25] is strategically important because various

bifurcation curves delimiting the potential Turing set merge from those points. The most

interesting of such codimension-2 bifurcations is the Turing-Hopf (TH) bifurcation [6], where

tr [A] = tur [A] = 0.

The existence of a TH point can be easily ascertained from the matrix A, which must have

a11 = a22 = 0, or, equivalently, from the geometry of the two null-isoclines ẋ1 = 0 and ẋ2 = 0
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which must be, respectively, horizontal and vertical at their intersection point x̄, as sketched

in Fig. 2. The existence of a TH bifurcation point is the key feature for identifying potential

Turing instability in the simplest model considered in the next section.

The case n > 2

For determining the set of potential Turing instability of a system with n > 2 one should

detect the values of the parameter p for which the matrix A(p) is stable and contains an

activator. This is not always easy to accomplish, in particular if the analysis must be carried

out analytically. For this reason, we suggest here a simple rule, that can be applied through

inspection of the signs of the diagonal elements of the Jacobian matrix. In general, this rule

allows one to determine only a subregion of the potential Turing set. The rule, based on the

fact that a square matrix with positive trace is unstable, is the following: if the Jacobian

matrix A(p) is stable and the sum of m(< n) of its diagonal elements is positive, then p is a

point of the potential Turing set (because A(p) contains a m-dimensional activator).

This rule is very simple but often quite effective. For example, in tritrophic food chain

models with logistic prey and Holling type II predator and super-predator described by [20]

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = rx1

(
1− x1

K

)
− a1x1x2

1 + a1h1x1
,

ẋ2 = e1
a1x1x2

1 + a1h1x1
−m1x2 − a2x2x3

1 + a2h2x2
,

ẋ3 = e2
a2x2x3

1 + a2h2x2
−m2x3,

where r and K are net gwowth rate and carrying capacity of the prey and ai, hi,mi, ei,

i = 1, 2, are attack rate, handling time, mortality rate, and efficiency of predator and

super-predator, respectively, the Jacobian matrix A(p) associated with any stable positive

equilibrium x̄(p) has always a11 < 0, a22 > 0 and a33 = 0. Thus the system has two activators,

namely the predator, which is a one-dimensional activator, and the pair (predator, super-

predator), which is a two-dimensional activator. A first pair (ε,D) that destabilizes x̄ is,
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therefore, characterized by a sufficiently high diffusion ε and by d2 = 0, or, by continuity, by

d2 � min(d1, d3) (10)

while another destabilizing pair (ε,D) is characterized by d2 = d3 = 0 or, more realistically,

by

d1 � max(d2, d3). (11)

Food chains where conditions (10) or (11) are satisfied are not many but certainly exist.

For example, tritrophic food chains composed of insects, spiders and birds, satisfy condition

(10) because in general, spiders disperse much less than insects and birds (even when spiders

colonize habitats trough long-distance aerial dispersal [14, 15]).

3 Application to plant-insect models

We study in this section the problem of diffusion-induced instability in two different plant-

insect models, with n equal to 2 and 3, respectively, in order to show the power of the

notion of potential Turing instability. The problem is of interest per se, because plant-

insect interactions have been recognized to be the source of many intriguing spatio-temporal

phenomena such as recurrent insect outbreaks, synchronization, and travelling waves in forest

[28, 27, 23].

The models proposed in the literature for studying plant-insect interactions are many and

involve, in general, segments of the food chain starting with the plant, continuing with the

insect and ending with insectivores or with parasitoids and their pathogens. The vegetational

compartment has been described with five variables, namely organic carbon and nitrogen

contained in the foliage and in the soil and inorganic nitrogen contained in the soil in [17],

but more often with only two variables namely wood and foliage [29], adult and young trees

[2, 35], foliage and maternal effect [16], foliage and energy [40]. In the most extreme cases
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the vegetational compartment has been described with a single variable, say biomass of

the plant [7, 32] or with foliage quality, because it has been noticed that heavy defoliation

can cause marked changes in the quality of new foliage in the following years [5]. Similar

considerations hold for the insect which should, for example, be described by four variables

(eggs, larvae, pupae, and adults) in the case one likes to include in the model strategic details

on the interactions with insect enemies. All these simple models could a priori be considered

as equally good candidates for studying diffusion-induced instability. However, if we are

interested in deriving a formal theory, we are forced to avoid numerical analysis and use very

simple models that can be studied analytically. Since, in practice, only second order models,

i.e., models with only two variables (plant and insect), enjoy this property, our first choice

is limited to the three models in which the vegetational compartment is described with a

single variable. Among these three we have selected the model described in [32] because it

has been shown to mimic rather well the behavior of more complex models [17]. The model

is ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ1 = rx1

(
1− x1

K

)
− a2x1

1 + a2h2x1
x2,

ẋ2 = e2
a2x1

1 + a2h2x1
x2 −m2x2 − c2x

2
2 −

a3x2
1 + a3h3x2 + a′3h

′
3V

x3,

(12)

where x1 and x2 are plant and insect biomasses, r and K are net growth rate and carrying

capacity of the plant, a2 and h2 are insect attack rate and handling time, e2 is the plant/insect

conversion factor, m2 is basic insect mortality, c2 is insect intraspecific competition, x3

is biomass of insect enemies (assumed constant), a3(a
′

3) and h3(h
′

3) are attack rates and

handling times of insect enemies, while V is the density of alternative preys.

For c2 = x3 = 0, model (12) is the standard Rosenzweig-MacArthur model [36] that can

not have Turing instability (see Fig. 1.b). By contrast, if all demographic parameters of

the model are positive, Turing instability is possible. In fact, the prey non-trivial isocline

x2 = ϕ(x1) is a parabola, with a maximum that can be arbitrarily placed in the state space

(x1, x2) by varying, for example, the two parameters r and K in (12). The predator non-

trivial isocline written in the form x1 = ψ(x2) is more complex, but can be shown to have
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a minimum with respect to x2 in the positive quadrant if x3 is sufficiently large. Thus,

for suitable combinations of the parameters, the two isoclines of model (12) intersects as

in Fig. 2. This means that a TH codimension-2 bifurcation point generically exists in any

two dimensional parameter space. As pointed out in the previous section, this implies the

existence of Turing instabilities, because two Turing bifurcation curves merge from the TH

point. In the specific case, the potential Turing set can be obtained by determining, through

continuation, the Hopf and Turing bifurcation curves merging from the TH point. The result

is shown in Fig. 3 for the parameter setting indicated in the caption. It is worth noticing

that only in one of the two subregions of the potential Turing set (namely the gray region

delimited by a11 = 0, in which the activator is the plant) the diffusion-induced instability

can be realized, while in the other this is certainly not possible, since it would require that

plants disperse more than insects.

The consequence of the above findings is the existence of stationary spatial patterns

when the parameters are in the subregion of the potential Turing set where the activator is

the plant.An example of the spatial distribution of the vegetational biomass obtained after

transient is shown in Fig. 4 which has been produced by solving numerically on a unitary

square eqs.(1,12) with d1 = 10−5, d2 = 1 − 10−5, ε = 1.5 starting from random initial

conditions. In agreement with previous studies predicting that spatial patterns can arise

even within homogeneous habitats (see, for example, [10, 21, 33, 9, 30, 1, 6, 42, 43]), Fig.4

points out the formation of vegetational patches that look very much like those observed

in the field (see Fig.5). The transients toward stationary solutions or toward more complex

solutions are also interesting and reveal the existence of various kinds of waves. However,

these waves are not strictly related with Turing instability, because they have been observed

also in systems where Turing instability is not possible [18, 31] as well as in systems with

more complex dispersal mechanisms [26, 37, 4, 8].

As a second example of application of the notion of potential Turing instability in spatially

extended systems, we now consider a model with n = 3. The model is the most natural
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extension of the previous one, obtained by adding to it a third equation describing the

dynamics of the insect enemy, namely

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = rx1

(
1− x1

K

)
− a2x1

1 + a2h2x1
x2,

ẋ2 = e2
a2x1

1 + a2h2x1
x2 −m2x2 − c2x

2
2 −

a3x2
1 + a3h3x2 + a′3h

′
3V

x3

ẋ3 =
e3a3x2 + e′3a

′

3V

1 + a3h3x2 + a′3h
′
3V

x3 −m3x3 − c3x
2
3,

(13)

In order to show that model (13) can have Turing instabilities for suitable values of its

parameters, let us first reconsider model (12) that has already been proved to have a11 > 0

and a22 < 0 at the positive equilibrium x̄ = (x̄1, x̄2) corresponding to suitable values of its

parameters, including the value, say x̄3 > 0, of the insect enemy. Then, consider the third

equation in (13) and remark that it can be satisfied with x3 = x̄3 and ẋ3 = 0 provided

c3 =
1

x̄3

(
e3a3x̄2 + e′3a

′

3V

1 + a3h3x̄2 + a′3h
′
3V

−m3

)

Thus, for suitably small values of e3, e
′

3 and m3 (that do not affect model (12)) model (13)

has a stable positive equilibrium x̄ = (x̄1, x̄2, x̄3) and a11 > 0, a22 < 0 and a33 = −c3x̄3 < 0.

This means that the plant is an activator and, Turing instability is obtained if the plants

disperse much less than the insects and their enemies, a condition that is very often satisfied.

Figure 6 shows spatial patterns obtained after transient with model (1,13) which favorably

compare with those reported in Fig.5.

4 Concluding remarks

We have shown in this paper that diffusion-induced instability in spatially extended models

can be studied by separating local dynamics from diffusion. This decomposition is possible

thanks to the notion of potential Turing instability, which has been illustrated through

the analysis of two spatially extended plant-insect models. Potential Turing sets can be

12



easily produced through continuatiuon, in particular when special codimension-2 bifurcation

points, like the Turing-Hopf point, have already been detected.

The extension of the approach to other kinds of models where dispersal is active instead

of diffusive [4,26,nuovaRef] would certainly be relevant for studying ecological systems. In

the same context, it would also be interesting to identify, through the systematic analysis

of the most standard prey-predator models, which are the mechanisms (e.g. competition,

cooperation, harvesting, cannibalism, ...) that promote the emergence of spatial patterns in

homogeneous environments.
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Figure captions

Figure 1

Examples of potential Turing sets (gray regions) for three different prey-predator models:

(a) Segel-Jackson model [39]; (b) Rosenzweig-MacArthur model [36]; (c) Arditi-Ginzburg

model [3]. In the black regions there is no stable positive equilibrium, while in the other

regions such an equilibrium exists.

Figure 2

Prey and predator null-isoclines at a TH codimension-2 bifurcation point: ẋ1 = 0 is maximum

with respect to x1, while ẋ2 = 0 is minimum with respect to x2.

Figure 3

Bifurcation diagram in the parameter plane (c2, a2) of model (12). In the black regions

there is no stable positive equilibrium, while in the other regions such an equilibrium exists.

The positive stable equilibrium can not be diffusively unstable in the white regions (where

a11 < 0, a22 < 0), while it can in the gray regions (potential Turing sets). In the gray region

delimited by the curve a11 = 0 the activator is the plant, so that Turing instability can be

obtained since insects disperse much more than plants. The parameter values are r = 1.3,

K = 10, h2 = 2/3, e2 = 0.6, m2 = 0.3, a3 = 1, h3 = 2.5, a′3 = 1, h′3 = 1, V = 3 and x3 = 1.

Figure 4

Plant density at equilibrium in a spatial domain of model (1,12): The figure has been

obtained by integrating eqs. (1,12) using finite difference spatial discretization and forward

Euler time integration for the parameter values reported in the caption of Fig. 3 and for

a2 = 0.86 and c2 = 0.08.
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Figure ??

Vegetational patches observed at extremely different scales : (a) Ticchiolatura della rosa, at-

taccata da “Marsonnina rosae” (b) pini silvestri deperiti sui versanti della Valtellina attaccati

da bostrico.

Figure 6

Plant density at equilibrium in a spatial domain of model (1,13): The parameter values are

as in Fig. 3and e′3 = 1, m3 = 1, c3 = 0.8, d1 = 10−5, d2/d3 = 0.5 and ε = 0.5.
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