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Michael Obersteiner a, Bernhard Stürmer b,e, Wei Xiong a

a International Institute for Applied Systems Analysis (IIASA), Ecosystem Services and Management Program, Schlossplatz 1, A-2361 Laxenburg, Austria
b Institute for Sustainable Economic Development, University of Natural Resource and Life Sciences, Vienna, Feistmantelstrasse 4, 1180 Vienna, Austria
c Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic
d Soil Science and Conservation Research Institute, 827 13 Bratislava, Slovak Republic
e Austrian Compost and Biogas Association, Franz-Josefs-Kai 1, 1010 Vienna, Austria

a r t i c l e i n f o
Article history:
Received 2 November 2012
Received in revised form 29 April 2013
Accepted 30 May 2013
Available online 3 July 2013

Keywords:
EPIC
Large-scale crop modelling
Model performance testing
EU
a b s t r a c t

Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially
extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-Euro-
pean implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfacto-
rily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter
wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil
and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop
and biophysical process parameter values were used with some minor adjustments according to sugges-
tions from scientific literature. The model performance was improved by spatial calculations of crop sow-
ing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed
reasonable in the simulation of regional crop yields, with long-term averages predicted better than
inter-annual variability: linear regression R2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative
estimation errors were between ±30% for most of the European regions. The modelled and reported crop
yields demonstrated similar responses to driving meteorological variables. However, EPIC performed bet-
ter in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management
factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model
response and attainable yields. We also show that modelled crop yield is strongly dependent on the cho-
sen PET method. The simulated crop yield variability was lower compared to reported crop yields. This
assessment should contribute to the availability of harmonised and transparently evaluated agricultural
modelling tools in the EU as well as the establishment of modelling benchmarks as a requirement for
sound and ongoing policy evaluations in the agricultural and environmental domains.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-SA license.
1. Introduction

Crop models were developed at the field scale to integrate and
quantify biophysical process-based understanding and improve
crop production (Bouwman et al., 1996). Gradually, many of these
models have expanded to include the external effects of agricul-
tural production on the environment. Although crop models were
developed under assumption of homogeneous field conditions,
they have been used at farm, regional, national, continental and
global levels. Large-scale implementations of crop models are
increasingly used for crop growth modelling (Folberth et al.,
2012; Liu, 2009; Tan and Shibasaki, 2003) and global policy issues
where agriculture plays an important role, including climate
change (Challinor, 2009; Liu et al., 2013; Niu et al., 2009), carbon
sequestration (Billen et al., 2009), water resources use (Liu and
Yang, 2010; Wriedt et al., 2009a), sustainable biofuel production
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(Havlík et al., 2011; van der Velde et al., 2009), management inten-
sity and land-use change effects (Schönhart et al., 2011; Stürmer
et al., 2013).

The up-scaling of a crop model from field to regional scale in-
volves linking different spatial and temporal scales (cf. Faivre
et al., 2004) and provokes practical and theoretical challenges.
Firstly, high-performance solutions integrating advanced GIS tools
and computing infrastructure are required (Bouraoui and Aloe,
2007; Liu et al., 2007; Nichols et al., 2011). Secondly, integration
of spatially heterogeneous soil, weather and management data
inevitably leads to aggregation errors resulting in spatial and tem-
poral biases in the yield prediction (Hansen and Jones, 2000). Fur-
thermore, Niu et al. (2009) showed that the use of data from
commonly available sources instead of field-measured or loca-
tion-specific data increases the simulation bias. In addition, the
reproducibility of crop model outputs is often difficult as assump-
tions regarding input data and parameters describing biophysical
processes are not always harmonised and documented
transparently.

In this study we build and test an EU-wide implementation of
crop growth model combining the Environmental Policy Integrated
Climate model (EPIC; Williams, 1995) and coarse resolution data
that are available at European scale. We report on a comprehensive
and transparent validation of this spatial EPIC implementation
which is necessary to perform accurate crop model simulations.

Although EPIC has been extensively calibrated and validated
against observations under various conditions at the field-scale
(e.g. Billen et al., 2009; Cabelguenne et al., 1990; Rosenberg
et al., 1992; Schmid et al., 2004; Williams et al., 1989), studies that
test crop model performance against spatially extensive time ser-
ies of regional yields (e.g. van der Velde et al., 2009) as well as crop
model sensitivities against climate change (e.g. Strauss et al., 2012)
are still rare. The transparent validation of a large-scale crop model
implementation is faced with several challenges. Firstly, a thor-
ough model calibration, which is often a prerequisite for its reliable
application, cannot be performed since there are no comprehen-
sive experimental or independent data available that allow testing
of the entire set of variables and their interactions represented in
the integrated model. On the other hand, aggregated data from re-
gional statistics are usually insufficient to derive parameters for
crop models as they do not represent field-scale conditions for
which the models have been originally developed (Therond et al.,
2011). At the same time, it is desired to avoid ‘‘feed-back’’ calibra-
tion, the process by which certain model parameters are adjusted
randomly until the model outputs fit observed data (Niu et al.,
2009). Secondly, large scale crop model simulations can signifi-
cantly benefit from methodological improvements in spatial and
temporal calculations of input variables. Therefore, we (1) accepted
the default crop and biophysical process parameter values in EPIC,
with only minor, justifiable adjustments, and (2) implemented pro-
cedures to calculate potential heat units (PHU), crop sowing densi-
ties, nutrient application rates, and field operation timing over
time and space. The before-mentioned parameters and variables
significantly contribute to uncertainties in EPIC-based estimations
and thus have to be carefully evaluated to understand the overall
robustness of the model predictions.

The motivation for this study was threefold, first there is a need
for transparent, comprehensive, and spatially extensive evaluation
of agricultural production using large-scale crop model simula-
tions with sufficient performance and accuracy; secondly, the
European Union Member States and the European Commission
need agricultural modelling tools that are harmonised and trans-
parently evaluated across the EU. The third motivation relates to
the interdisciplinary research activities to integrate biophysical
crop model outputs with economic optimisation models describing
the land-based production sector (e.g. Leip et al., 2008; Schneider
et al., 2011). These types of assessments require the establishment
of a reliable crop production baseline reflecting the current input
data levels.

The main objective of this article is to evaluate the ability of our
Pan-European EPIC implementation to predict long-term average
crop yields at a regional level and to reproduce inter-annual vari-
ability for four major crops: winter wheat, spring barley, rainfed
and irrigated maize and winter rye. To achieve the main objective,
several specific objectives were identified: (1) an evaluation and
selection of a PET method with appropriate parameter settings
with respect to the model’s performance, (2) an implementation
of an improved method to calculate the spatially explicit distribu-
tion of crop sowing densities, (3) a spatially explicit calculation of
crop management schedule and nutrient application from chemi-
cal fertilizers and manure, and finally (4) to test the model’s re-
sponse and sensitivity to selected meteorological variables and
management options.
2. Material and methods

2.1. The EPIC model

The EPIC model was developed by the USDA to assess how agri-
cultural activities affect the status of US soil and water resources
(Jones et al., 1991; Williams et al., 1984; Williams, 1990). EPIC
compounds various components from CREAMS (Kinsel, 1980),
SWRRB (Williams et al., 1985), GLEAMS (Leonard et al., 1987),
and CENTURY (Parton et al., 1992), and has been continuously ex-
panded to allow simulation of many processes important in land
use management (Sharpley and Williams, 1990; Williams, 1995).
The major components in EPIC are crop growth, yield and compe-
tition, weather simulation, hydrological, nutrient and carbon cy-
cling, soil temperature and moisture, soil erosion, tillage, and
plant environment control. EPIC operates on a daily time step,
and can be used for long-term assessments spanning decades to
centuries. The model offers options for simulating yields with – in-
ter alia – different PET equations, which allow reasonable model
applications in very distinct natural areas. Different management
options are available, including tillage operations, irrigation sched-
uling, fertilizer application rates and timing.

In the crop growth routine, potential biomass is calculated daily
from photo-synthetically active radiation and radiation-use effi-
ciency. Potential biomass is adjusted to actual biomass through
daily stress caused by extreme temperatures, water and nutrient
deficiency or inadequate aeration. Crop yields are calculated as a
ratio of economic yield over total actual above-ground biomass
at maturity as defined by harvest index. Besides meteorological
and soil variables, main growth-defining factors are PHU, the bio-
mass-energy conversion factor and the harvest index (Wang
et al., 2005). Yield losses due to nutrient stress are mainly con-
trolled by nutrient supplies through crop management. Water
stress is effectively controlled through soil water balance, which
is especially sensitive to the chosen PET method (Roloff et al.,
1998), and supplementary irrigation.
2.2. Data sources at EU scale

Daily meteorological data were obtained from the Joint Re-
search Centre’s (JRC) Crop Growth Monitoring System (CGMS)
meteorological database (Micale and Genovese, 2004) at a 50 km
grid resolution for the period 1995–2007. Land cover information
was taken from a combined CORINE 2000 and PELCOM map at
1 km resolution provided by JRC. Digital terrain information was
derived from SRTM (Shuttle Radar Topographic Mission; Werner,
2001) and GTOPO sources (Global 30 Arc Second Elevation Data;
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http://eros.usgs.gov). Soil data were obtained from the European
Soil Bureau Database (ESBD v. 2.0), including the Soil Geographic
Database of Europe, the Soil Profile Analytical Database of Europe,
the Pedo-Transfer Rules Database, the Database of Hydraulic Prop-
erties of European Soils (Wösten et al., 1999) and the Map of Or-
ganic Carbon Content in topsoils in Europe (Jones et al., 2005).
Administrative regions were obtained from the Geographic Infor-
mation System of the European Commission (GISCO) and water-
sheds from the European River Catchment Database, version 2
(ERC; provided by European Environment Agency, http://
www.eea.europa.eu). Agricultural statistics on crop yields and fer-
tilizer consumptions were retrieved from the Statistical Office of
the European Communities (EUROSTAT) and IFA/FAO datasets
(IFA/IFD/IPI/PPI/FAO, 2002). Information on rainfed and irrigated
crop areas were taken from the European Irrigation Map (EIM) pre-
sented by Wriedt et al. (2009b).
2.3. Integration of EPIC with GIS and up-scaling for large-scale
modelling

In order to implement crop growth simulations at European
scale, the EPIC model (version 0810) was integrated with ArcGIS
using a loose coupling approach (Siu, 1998) as presented in
Fig. 1. Programs were connected through data exchange in ASCII
file format. ArcGIS capabilities were used for preparation of EPIC
input datasets from the above GIS data sources and for rendering
output variables. EPIC was run outside of GIS, while the data
Fig. 1. Schematic diagram of the Pan-European EPIC implementation. S – soil and topog
EPIC control database, R – results database; dashed line denotes EPIC simulations relate
transfer and file format conversions were automated using Visual
Basic. A similar approach has been used for other large-scale EPIC
implementations by Tan and Shibasaki (2003), Liu et al. (2007) and
Bouraoui and Aloe (2007).

The EU EPIC modelling system was integrated by combining
data layers on soil and physiographic aspects of land with water-
sheds and administrative regions. The site and soil spatial data
were linked to the European wide INSPIRE-compliant 1 km model-
ling grid with Lambert-Azimuthal equal-area projection (Annoni,
2005). To avoid redundant model runs, model grid cells with
homogeneous input data were aggregated following a two-step ap-
proach (Schmid et al., 2006). First, Homogeneous Response Units
(HRU) were defined at 1 km resolution, with homogenous physical
properties given by intersections of more-or-less stable site prop-
erties such as: (i) elevation classes <300 m, 300–600 m, 600–
1100 m, 1100–1600 m, 1600–2100 m, and >2100 m, (ii) slope clas-
ses <3%, 3–6%, 6–10%, 10–15%, 15–30%, 30–50%, and >50%, (iii) soil
of coarse, medium, medium-fine, fine, very fine, and peat texture
(CEC, 1985), (iv) soil depth classes <40 cm, 40–80 cm, 80–120 cm,
and >120 cm, and (v) subsoil stoniness classes <5%, 5–25%, and
>25%. Subsequently, a zone raster was defined consisting of
homogenous Simulation Units (SimU) upon which the model was
run. Simulation Units are combinations of one NUTS2 region, one
watershed, one land cover and one Homogeneous Response Unit
(HRU) at 1 km resolution. A total of 38,738 SimUs for cropland
were then linked to 50 km CGMS grid, identifying a representative
grid cell for each SimU. Accordingly, each SimU reflects a unique
raphical database, M – meteorological database, O/C – field operation schedule and
d to optimising PHU and planting dates.

http://eros.usgs.gov
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combination of weather, soil type, topographic exposition, and
crop management.

2.4. Crop model setup

In total, six daily meteorological variables from the CGMS data-
base were used to run EPIC from 1996 until 2007: minimum and
maximum temperature (�C), precipitation (mm), global radiation
(MJ m�2), mean vapour pressure (hPa), and mean wind speed at
10 m (m s�1).

Each SimU was attributed with a set of 13 soil properties,
including soil organic carbon (%), sand, silt and clay (%), bulk den-
sity (g cm�3), base saturation (%), cation exchange capacity and
sum of base cations (cmol+ kg�1), pH, stoniness (vol.%), saturated
hydraulic conductivity (mm h�1), and wilting point and field water
capacity (cm3 cm�3). All these variables are averages calculated
from the ESDB separately for topsoil (0–30 cm) and subsoil
(>30 cm) horizons. Additionally to ESDB, pedo-transfer rules pub-
lished by Balkovič et al. (2007) were used to acquire all soil prop-
erties. Soil profiles were split into 10 vertical layers to
appropriately address soil water and temperature regimes. In addi-
tion, the SimU landforms were approximated with mode slopes
and mean elevations obtained from SRTM/GTOPO.

In most large-scale crop model setups only one value is chosen
for crop sowing densities across zones with variable climatic con-
ditions, even though it is a critical yield-determining variable
(Deng et al., 2012). Here, we calculated and distributed sowing
densities for winter wheat, winter rye and spring barley using a
method that is novel for large-scale crop modelling applications.
Sowing densities were estimated based on expected plant available
precipitation and optimum ear density as published by Wichmann
(1999). Although sowing densities may vary considerably depend-
ing on cultivars and farming system, our values are in line with
plant population ranges which have been calibrated for the three
crops in EPIC (cf. Williams et al., 2006). Plant available precipita-
tion (mm) was calculated from average monthly precipitation
using the USDA Soil Conservation method following Smith (1991)
at 50 km resolution. The maize plant population density was set
constantly to 5 plants m–2. Crops were simulated in 1-year
mono-crop rotations on all the available cropland. Maize was not
simulated for Sweden, Finland, Latvia, Lithuania and Estonia as it
is not usually grown for grain production.

EPIC requires an estimation of PHUs (�C) accumulated by a crop
from its sowing to maturity and a detailed regional description of
crop management practices, including timing of individual opera-
tions or application of fertilizers and irrigation. PHUs (Appendix,
Fig. 1) were determined with the use of the PHU calculator devel-
oped at the Texas Blackland Research and Extension Center (BREC,
1990) using long-term minimum and maximum temperatures
from CGMS, optimum and minimum crop growth temperatures
and the average number of days for the crops to reach maturity
(see Table 1). We split the study area into Atlantic, Alpine, Boreal,
Continental and Mediterranean climatic zones based on the cli-
matic stratification of Metzger et al. (2005) (cf. Bouraoui and Aloe,
2007) to address regional differences in crop varieties (Appendix,
Fig. 2) characterized by different times to maturity (Table 1).

Sowing dates were estimated together with PHUs using the
PHU calculator at 50 km resolution. Harvesting dates were then
calculated by adding the time to maturity to the sowing date.
The time windows given by the sowing and harvesting dates were
optimised iteratively with EPIC runs, while PHU fractions reached
at the harvesting operation were used to tune planting and har-
vesting as suggested by Williams et al. (2006). Since harvesting
dates are considered as the earliest possible dates of harvest, an
automatic harvest was scheduled at 110% and 115% of the calcu-
lated PHU for cereals and maize, respectively, to enable flexible
harvesting based on annual heat unit accumulation and to take
post-maturity drying of crops on the field into account.

Tillage operations were scheduled relative to the sowing and
harvesting dates. These practices consisted of mouldboard plough-
ing and seed-bed preparation three days prior to sowing and offset
disking two days after harvesting.

Phosphorus and potassium fertilises were applied as rigid
amounts together with tillage operation three days prior to sow-
ing. N fertilisation was triggered automatically until the annual N
application rate was reached.

The crop and regional specific annual N, P, and K application
rates (kg ha�1) were calculated by computing NUTS2 fertilizer bal-
ances. Fertilizer supply was calculated from NUTS2 livestock num-
bers and excretion coefficients (cf. Albert, 2006; Danneberg, 1999;
Galler, 1989; Jahn, 1991; Schechtner, 1991) as well as commercial
fertilizer consumptions from EUROSTAT. Crop specific fertilizer de-
mands at NUTS2 level were calculated using crop and forage yields
and acreages from EUROSTAT as well as nutrient uptake coeffi-
cients (Berger, 1969; De Geus, 1973; Fleischer, 1998; Goetz,
1998; Hege and Weigelt, 1991; Kaas et al., 1994; Loehr, 1990;
Ten Have, 1989).

Since the other crops are grown mainly under rainfed condi-
tions, maize is the only crop that is considered to be irrigated in
this study. Information on the irrigated area of maize (ha) was ta-
ken from the EIM (Wriedt et al., 2009b). Similarly to Liu et al.
(2007), Folberth et al. (2012) and Heumesser et al. (2012), we used
the automatic irrigation trigger in EPIC to supply water when
water stress exceeded 10% on a given day. To ensure sufficient irri-
gation water supply on irrigated cropland, the maximum annual
irrigation volume was set to 500 mm. Irrigated and rainfed crop-
land was simulated separately. The final maize yield was calcu-
lated for each SimU as an average of the two scenarios weighted
by respective areas of irrigated and rainfed cropland:

Yj ¼ kr;jYr;j þ ð1� kr;jÞYf ;j for j ¼ 1; . . . ;n ð1Þ

where Yj (t ha�1) is the average maize yield in SimU j, Yr,j is the yield
on the irrigated cropland of the jth SimU, kr,j is the fraction of irri-
gated area in SimU j, Yf,j is the yield on the rainfed cropland of the
j-th SimU and n is the number of SimUs.
2.5. Crop model parameterization

Winter wheat, maize, spring barley, and winter rye are major
crops grown in Europe and there are many cultivars with different
growth properties and productivity. This fact together with the
lack of information on the cultivars’ spatial distribution leads to
a necessity of introducing significant simplification into the model-
ling system. We use one set of crop model parameters for each
crop, which are provided by EPIC developers, with some minor
adjustments (Table 1). The parameters that were modified in-
cluded the optimum air temperature and the base temperature
for maize, which were lowered from 25 �C and 8 �C to 22.5 �C
and 6 �C, respectively, as suggested by Cabelguenne et al. (1999).
The time needed for crop to reach maturity and PHUs were com-
piled from different data sources (e.g. FAO, CGMS) separately for
major agro-climatic zones to address regional crop varieties
(Table 1).

The EPIC model offers different methods to calculate PET. We
used the original Hargreaves method (Ho), with coefficient of
0.0023 and exponent of 0.5 as published by Hargreaves and Samani
(1985). In order to assess the effect of PET methods on EPIC perfor-
mance, we also used the modified EPIC Hargreaves method (Hm;
Williams et al., 2006), the Penman–Monteith method (PM; Mon-
teith, 1965), the Priestley–Taylor (PT; Priestley and Taylor, 1972),
and the Baier–Robertson method (BR; Baier and Robertson, 1965).



Table 1
Important parameters and parameter values by crop and agro-climatic zone.

Crop parameters Winter wheat Spring barley Maize Winter rye

Optimum air temper. (�C) 15e 15e 22.5c 12.5e

Base temperature (�C) 0e 0e 6c 0e

Biomass-energy ratio, WA (kg MJ�1) 35e 30e 40e 35e

Harvest index, HI (mg mg�1) range of HI 0.45e (0.42c–0.49n) 0.40e (0.32p–0.56n) 0.50e (0.45–0.60)w 0.40e (0.25l–0.44n)

Time to maturity (days)
Alpine 280 115 165 285
Atlantic 300 160 180 290
Boreal 330 115 205 315
Continental 290 130 155 285
Mediterranean 265 140 155 265

Mean potential heat units (�C)
Alpine 1860 1270 1710 1770
Atlantic 2380 1660 1720 2450
Boreal 1490 1450 1380 1340
Continental 2150 1630 1700 2020
Mediterranean 2660 1630 1880 3050

e EPIC.
w Wang et al. (2005).
c Cabelguenne et al. (1999).
p Petr et al. (2002).
n Ellen (1993).
l Larcher (2003).
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2.6. Evaluation of model performance

Simulated crop yields were compared against EUROSTAT re-
ported yield data between 1997 and 2007. Considering availability
of reported yields, winter wheat, winter rye and maize were com-
pared at NUTS2 level, whereas spring barley was evaluated at
NUTS0 (country) level. EPIC yield estimates were regionalised for
each year as weighted average:

Y
�

i ¼
Pn

j¼1Yi;j � Ai;jPn
j¼1Ai;j

for i ¼ 1; . . . ;m ð2Þ

where Y
�

i is the regional average yield for the ith NUTS region, Yi,j is
the crop yield in the jth SimU of region i, Ai,j is the crop harvested
area in the jth SimU of region i, n is the total of SimUs in the ith re-
gion, and m is the number of NUTS regions. Simulated crop yields
were compared at 12% and 15% water content for cereals and maize,
respectively.

A total of five statistical measures were used to evaluate the
model performance: (i) linear regression, (ii) Pearson correlation
coefficient (r), (iii) Root Mean Square Error (RMSE), (iv) Nash–Sutc-
liffe efficiency (E) and (v) Relative Error (RE). The goodness of sim-
ulation was assessed using the coefficient of determination for
linear regression (R2), which was tested by the F-test, and the
regression slope. The Pearson correlation coefficient was used to
analyse whether simulated yields adequately captured temporal
variability in regionally reported yields (cf. Reidsma et al., 2009).
Prior to comparing the 1997–2007 time series of simulated against
reported yields, the census regional yields were de-trended using
linear regression to correct for technology development. The anal-
ysis was generally calculated for NUTS2 regions; however, it was
scaled up to NUTS1 for some regions with missing temporal data
at NUTS2 level (e.g. Germany). The RMSE between simulated and
reported yields, which is a measure of the overall relative error,
was calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1ðY

�
i � XiÞ

2

m

s
ð3Þ

where Xi is the reported yield for the ith region, and m is the total
number of regions reporting crop yields for a given year.
Relative errors (RE) were calculated by Eq. (4) to examine sys-
tematic errors in the EPIC modelling. Given the scale of this study,
we assume a |RE| of 30% to be an acceptable limit for reliable re-
sults, whereas |RE| > 50% were considered to be extreme errors
(Niu et al., 2009).

REi ¼
ðY
�

i � XiÞ
Xi

� 100 for i ¼ 1; . . . ;m ð4Þ

In addition to RMSE and RE, the overall performance was char-
acterized by the Nash–Sutcliffe efficiency coefficient (Nash and
Sutcliffe, 1970) defined as:

E ¼ 1�
Pm

i¼1ðXi � Y
�

iÞ
2

Pm
i¼1ðXi � X

�
Þ

2 ð5Þ

The Nash–Sutcliffe efficiencies can range from �1 to 1. An E va-
lue of 1.0 means that simulated crop yields are equal to reported
ones, a value of 0 indicates that model predictions are as accurate
as the mean of the observed data, and E < 0 indicates that the mean
of the observed data is a better predictor than the model.

Differences between mean values and standard deviations in
simulated and reported yields were statistically evaluated using
the two-tailed pair t-test and the F-test, respectively, in STATISTICA
software (StatSoft Inc., 2003). The coefficient of variation (CV) was
calculated for each NUTS2 regions as a ratio of SD over the mean of
annual yields between 1997 and 2007 for both simulated and re-
ported EUROSTAT data.
3. Results

3.1. Comparison between simulated and reported crop yields

The annual crop yields simulated at 1 km resolution are pre-
sented in Fig. 2. Simulated crop yield averages for winter wheat,
spring barley, winter rye and maize were 4.2, 4.0, 3.6, and
7.4 t ha�1 with standard deviations of 1.82, 1.04, 1.42, and
1.39 t ha�1, respectively. Reported average crop yields were 4.9,
3.8, 3.6, and 7.3 t ha�1 with standard deviations of 2.3, 1.4, 1.7,
and 2.5 t ha�1, respectively. Simulated and reported mean annual
yields for spring barley, winter rye and maize were consistent since



Fig. 2. Predicted average yields of (a) winter wheat, (b) spring barley, (c) grain maize, and (d) winter rye.
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the overall yield differences were not significant when tested with
the paired t-test (P > 0.05). The RMSE values varied between 0.5 for
spring barley to 1.7 t ha�1 for maize. In contrast, EPIC underesti-
mated average winter wheat yields in Europe (the P value of the
t-test less than 0.01) with a RMSE of 1.2 t ha�1. The standard devi-
ations of reported crop yields except for spring barley were signif-
icantly higher than of simulated yields (the P value of F-test less
than 0.05).

A comparison between simulated and reported annual yields
aggregated at NUTS2/0 level is presented in Fig. 3. The linear
regression was highly significant (F-test P < 0.01) with R2 between
0.58 (maize) and 0.91 (spring barley). The regression slopes were
0.72, 0.72, 0.43, and 0.75 for winter wheat, spring barley, maize
and winter rye, respectively. Therefore, EPIC underestimates yields
at higher yield levels and overestimates at lower yield levels. The
higher standard deviations in the reported crop yields are clearly
visible by comparing the vertical with the horizontal whiskers in
Fig. 3. However, note that this pattern can be partly explained by
an increasing trend in the reported crop yields due to technical ad-
vances, which can be observed in the reported EUROSTAT data of
some countries.

The systematic error in the EPIC simulations is presented
through the RE maps in Fig. 4. Although no evident regularities
are demonstrated in these maps, some general regional pattern
can be deduced. Foremost, highly productive regions of Western
Europe, including many districts in France, Germany, the Nether-
lands and Belgium, were especially underestimated for all crops,
with RE of less than �10%, or even �20% for winter wheat. In con-
trast, regions of Eastern Europe, and particularly Romania, Bulgaria
and Poland, were generally over-predicted by EPIC. Extreme esti-
mation errors exceeding 50% relative to EUROSTAT yields were ob-
served mainly for maize and winter rye in Eastern Europe,
particularly in some regions in Poland, Bulgaria and Romania,
and then in Finland and Portugal.

Nash–Sutcliffe efficiencies equal 0.70, 0.85, 0.54, and 0.81 for,
winter wheat, spring barley, maize and winter rye and indicate



Fig. 3. Scatter plots with means and ±one SD of simulated versus reported regional crop yields (average of 1997–2007) for (a) winter wheat, (b) spring barley, (c) maize, and
(d) winter rye; labelled black circles in (c) refer to Fig. 8.
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that the model is a better predictor than the mean value of the ob-
served yields for all crops. Overall model efficiency is reasonable to
good for the cereal crops, but less satisfactorily for grain maize. It is
worth noting that the spring barley model results were sub-opti-
mally compared with reported country-level yield data since
NUTS0 data are only available from EUROSTAT.

An agreement on crop yield averages does not necessarily guar-
antee sufficient validity throughout the course of the simulated
period (Cabelguenne et al., 1990; Niu et al., 2009; Reidsma et al.,
2009; Rosenberg et al., 1992). Therefore, we calculated statistical
measures for 1997–2007 (Table 2) to assess the spatial perfor-
mance separately for each year. Furthermore we analyzed the in-
ter-annual yield variability per region (Fig. 5) to address this
source of uncertainty. Similarly to overall results, EPIC under-pre-
dicted both winter wheat means and standard deviations by 0.2–
1.8 t ha�1 (P < 0.05 for all years) and 0.4–0.5 t ha�1 (P < 0.05 for five
of the 11 years), respectively. The year-to-year overall performance
for the other three crops varied between years and crops (see Ta-
ble 2). The simulated yields were consistent or slightly over-pre-
dicted for these crops. The model reproduced about 0.9–1.5 t
ha�1 lower standard deviations in maize yields compared to re-
ported data.

Both RMSE and Nash–Sutcliffe efficiencies calculated from 1997
to 2007 indicate different model performances between years and
crops (Table 2). Year-to-year simulations demonstrate weaker per-
formance compared to the long-term average for maize and rye,
and a comparable performance for the other two crops.

The R2 goodness of fit between simulated and reported yields
were 0.64–0.81, 0.73–0.92, 0.29–0.64, and 0.39–0.78 for winter
wheat, spring barley, maize and winter rye, respectively. Linear
regression slopes were more-or-less consistent with the values in
the long-term comparison.

The comparison presented in Fig. 5 demonstrates EPIC’s ability
to capture inter-annual variability in the regional census yields.
Spring barley was not analyzed due to insufficient information in
the EUROSTAT database. For winter wheat, the observed yields
were significantly related to simulated yields (tested against the
r value at P = 0.05) in 30% of regions. These are regions of North-
Atlantic and Continental Europe, including Denmark, Belgium,
Czech Republic, Poland, northern Germany, Hungary and Romania
where winter wheat is the dominant crop. Lower correlations were
obtained for, with some exceptions, Mediterranean and Boreal re-
gions, and for regions in southwest France, southern Germany and
western Austria. The results obtained for winter rye were similar to
winter wheat. The highest correlations were calculated for Conti-
nental Europe, particularly for some regions in Poland, Hungary,
Romania and eastern France. For maize, the temporal variability
in simulated yields was significantly related to variability in re-
ported yields in almost 40% of regions. These regions are mainly
Germany, France, Hungary, Romania and northern Italy, corre-
sponding to the most important producers of grain maize in EU.
Generally, temporal variation was captured less satisfactorily than
the spatial patterns in long-term average yields. With our EPIC
implementation we were not able to reproduce the entire variabil-
ity of regional management interventions, technology advances
and farm diversity which significantly contribute to deviations in
variability over time (Reidsma and Ewert, 2008; Reidsma et al.,
2009). This may influence the validation results especially in re-



Fig. 4. Relative estimation error (in %) for (a) winter wheat, (b) spring barley, (c) maize, and (d) winter rye.
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gions with a relatively modest climatic signal due to high annual
rainfall and mild winter and summer temperatures, such as wes-
tern France. In contrast, the calculations can be negatively influ-
enced by factors not accounted for in the model, such as
windstorms, pests, diseases, weeds or freezing of seeds in winter.
Uncertainty of the above comparison also depends on quality of re-
gional census data. The EUROSTAT database does not distinguish –
inter alia – between rainfed and irrigated crop yields and does not
capture some important differences in crop varieties, which adds
uncertainty to the validation results.

3.2. Crop yield response to meteorological variables

We examined the crop yield responses to principal meteorolog-
ical variables, including solar radiation, temperature, PET and pre-
cipitation. We also examined whether EPIC sufficiently reproduced
yield variation in the period 1997–2007 relative to the aridity in-
dex (AI), which is a ratio of average annual precipitation and PET.
The aridity index was used to quantify the degree of dryness and
it identifies dry regions defined by UNEP (1992). We exclusively fo-
cused on winter wheat because it is a major European crop, re-
ported continuously and grown under rainfed conditions so that
irrigation does not distort the overall picture.

The modelled and reported wheat yields demonstrate similar
responses to the driving meteorological variables: they both de-
crease with increasing solar radiation and PET, increase with grow-
ing precipitation and AI, and show an optimum at about 11 �C
(Appendix, Fig. 3). The simulated wheat yields exhibit significantly
higher variation in dry regions (AI < 0.65; UNEP, 1992) as CVs are
exponentially decreasing with increasing AI (Fig. 6a). Similar rela-



Table 2
Year-to-year comparison of simulated and reported annual crop yields and statistical model performance measures.

Year m Simulated Reported Test RMSE E Slope R2

Mean SD Mean SD t F

Winter wheat
1997 169 4.29 2.04 4.49 2.18 * ns 1.20 0.69 0.79 0.71
1998 169 4.09 1.67 4.67 2.18 ** ** 1.36 0.61 0.63 0.69
1999 202 4.45 2.00 5.01 2.41 ** ** 1.25 0.73 0.74 0.79
2000 172 3.85 1.95 4.56 2.31 ** * 1.36 0.65 0.73 0.75
2001 171 4.13 1.99 4.49 2.17 ** ns 1.18 0.70 0.94 0.73
2002 170 3.95 1.90 4.63 2.19 ** ns 1.25 0.67 0.76 0.77
2003 199 4.07 1.87 4.58 2.33 ** ** 1.16 0.75 0.72 0.81
2004 157 4.29 1.87 5.37 2.34 ** ** 1.71 0.46 0.66 0.68
2005 135 4.00 2.06 4.81 2.34 ** ns 1.37 0.65 0.78 0.78
2006 143 4.00 1.84 4.75 2.16 ** ns 1.34 0.61 0.73 0.73
2007 129 4.17 2.04 4.61 1.98 ** ns 1.35 0.54 0.83 0.64

Spring barley
1997 20+ 4.15 1.12 3.92 1.42 ns ns 0.59 0.82 0.73 0.86
1998 21+ 4.10 0.89 3.78 1.30 * ns 0.68 0.71 0.62 0.82
1999 22+ 4.12 1.08 3.76 1.65 * ns 0.85 0.73 0.60 0.85
2000 21+ 4.09 1.01 3.80 1.61 ns * 0.80 0.74 0.59 0.87
2001 20+ 4.00 1.14 3.82 1.43 ns ns 0.62 0.80 0.73 0.83
2002 21+ 3.99 1.09 3.77 1.30 ns ns 0.64 0.75 0.74 0.78
2003 22+ 3.88 1.08 3.80 1.63 ns ns 0.67 0.82 0.63 0.91
2004 21+ 4.18 0.98 4.35 1.39 ns ns 0.76 0.69 0.60 0.73
2005 21+ 3.87 1.18 3.95 1.43 ns ns 0.47 0.89 0.79 0.91
2006 21+ 3.73 1.17 3.81 1.43 ns ns 0.44 0.90 0.78 0.92
2007 21+ 4.03 1.17 3.81 1.38 * ns 0.53 0.85 0.80 0.89

maize
1997 147 7.47 1.64 7.59 2.99 ns ** 2.38 0.36 0.33 0.37
1998 135 7.52 1.57 6.91 2.47 ** ** 1.95 0.37 0.42 0.43
1999 181 7.59 1.47 7.55 2.35 ns ** 1.75 0.44 0.42 0.44
2000 150 7.54 1.72 7.42 3.21 ns ** 2.45 0.41 0.35 0.43
2001 149 7.36 1.59 7.40 2.53 ns ** 1.87 0.45 0.43 0.46
2002 147 7.53 1.52 7.45 2.64 ns ** 1.94 0.46 0.40 0.47
2003 177 6.77 1.32 6.74 2.53 ns ** 1.99 0.38 0.33 0.39
2004 135 7.48 1.20 7.64 2.64 ns ** 2.23 0.28 0.25 0.29
2005 125 7.30 1.56 7.91 2.91 ** ** 2.51 0.25 0.29 0.29
2006 127 7.64 1.29 7.10 2.45 ** ** 2.06 0.28 0.31 0.33
2007 116 7.27 2.07 7.45 3.52 ns ** 2.24 0.59 0.47 0.64

Winter rye
1997 124 3.48 1.28 3.27 1.58 ** * 0.84 0.72 0.70 0.74
1998 129 3.45 1.24 3.18 1.62 ** ** 1.01 0.61 0.61 0.64
1999 163 3.91 1.40 3.74 1.77 * ** 0.87 0.76 0.70 0.78
2000 132 3.46 1.46 3.17 1.58 ** ns 0.87 0.69 0.79 0.73
2001 126 3.26 1.20 3.19 1.50 ns * 0.92 0.62 0.63 0.62
2002 132 3.45 1.39 3.24 1.59 ** ns 0.81 0.74 0.76 0.76
2003 162 3.43 1.43 3.43 1.67 ns ns 0.86 0.74 0.74 0.74
2004 124 3.45 1.33 3.77 1.65 ** * 1.09 0.56 0.63 0.60
2005 107 3.18 1.38 3.19 1.51 ns ns 0.94 0.61 0.73 0.63
2006 115 3.22 1.25 3.23 1.52 ns * 1.01 0.56 0.61 0.56
2007 105 3.28 1.15 3.09 1.40 ns * 1.14 0.33 0.51 0.39

Notes: m – number of NUTS2/0 regions used in the comparison, two-tailed pair t-test and F-test (ns – not significant); all R2 were significant at P < 0.01
+ NUTS0 regions.
* Significant at P < 0.05.

** Significant at P < 0.01.
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tionship exists in the reported data, but is less obvious (Fig. 6b). At
low AI, the CV values calculated from reported yields were much
lower than the CV values of simulated yields for many regions. It
indicates that wheat yields reported by individual regions are often
more stabilized by management interventions than anticipated by
the model.

In addition, since the 11-year period is not sufficient for a com-
prehensive comparison of crop yields in normal and extreme years,
we instead compared simulated against reported yields for the dri-
est and wettest year in this period for each NUTS2 region (Appen-
dix, Fig. 4). We retrieved simulated and reported yield for a year
with the highest and the lowest AI value for each NUTS2 region,
indicating the wettest and driest year, respectively, and compared
them using linear regression. EPIC performed better for the set of
driest years, with R2 = 0.80 (P < 0.01), compared to the set of wet-
test years with R2 = 0.64 (P < 0.01). This is in agreement with the
observations of van der Velde et al. (2012) who found that EPIC,
as other crop models, fails to capture the negative impacts of heavy
rain and extremely wet conditions.
4. Discussion

Several novel approaches have been used in this study to simu-
late regional crop yields on a spatial grid. Our simulations espe-
cially rely on a spatialization of region-specific crop management
and phenology information. Such an approach has been empha-
sised also by Hutchings et al. (2012) and Leip et al. (2008) and in
the CGMS database of the EU JRC (cf. van Ittersum et al., 2003). Fu-
ture work should expand on comparing our input data and results



Fig. 5. Correlation between time series of simulated and reported yields calculated for (a) winter wheat, (b) winter rye, and (c) maize; Pearson correlation coefficient r > 0.60
is statistically significant at P < 0.05.

Fig. 6. Relationships between aridity index (AI) and coefficient of variation in winter wheat yields (CV) plotted for (a) simulated and (b) reported yields; vertical dashed line
identifies dry lands according to UNEP (1992); the power regression was used.
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to comparable large-scale crop model simulations to evaluate
uncertainties originating from independent crop phenology and
management distributions.

As stated in Section 2.5, only one set of crop model parameters
were used for each crop due to the lack of information on crop cul-
tivars, which may lead to a weaker model performance in certain
regions (Reidsma et al., 2009). Several studies have implied that
crop-growth models can perform better if their crop parameters
were subjected to calibration on regional yield statistics (Angulo
et al., 2013; Therond et al., 2011; Xiong et al., 2008), but this can-
not generally be recommended without further investigation (Ang-
ulo et al., 2013) and was not followed in our study.

A common denominator of many European-wide studies is the
emphasis on the uncertainties coming from insufficiently captured
heterogeneity in crop management (e.g. Boogaard et al., 2013; Su-
pit et al., 2012; Therond et al., 2011; van der Velde et al., 2009,
2012). Since we simulated water- and nutrient-limited regional
yields, the impacts of heterogeneity in nutrient and water avail-
ability are further investigated to address these sources of
uncertainty.

4.1. Crop yield response to PET calculation method

Roloff et al. (1998) emphasised that the performance of the
soil water balance component is critical for EPIC’s ability to calcu-
late crop yields. Above all, the PET calculation methods determine
the EPIC model’s accuracy (Benson et al., 1992; Roloff et al.,
1998). Therefore, we compared our yields, which were calculated
by the Ho PET method, with crop yields simulated by the alterna-
tive Hm, PM, PT and BR methods to evaluate their effects on crop
yield predictions (Table 3). The Hm and PT methods produced al-
most 40% higher PET compared to the reference Ho method,
which was accompanied by a significant crop yield decrease in
all yield intervals (see Table 3). Higher deviations in upper inter-
vals indicate that these two methods generate less stable yields
over time in high-productivity regions. The PM method resulted
in mean yields that were still significantly lower (P < 0.01) in all
intervals, but to a lesser extent that the previous two. The PET
values generated by the PM method were higher by about 10%
on average compared to the reference Ho method. In contrast,
the BR method resulted in yields that were more-or-less consis-
tent with the reference method, with only minimal differences
in means and standard deviations. The BR method slightly un-
der-predicted yields in high-productivity regions compared to
our EPIC implementation (based on Ho). Given the yield validation
in Fig. 3 and the above results, we conclude that the PM, PT and
especially Hm methods lead to strong under-prediction of crop
yields reported from highly productive regions (Western Europe).
The BR method performs similarly to the reference Ho calculation,
and they both allow reproducing near-optimal growing condi-
tions without extensive peaks of water stress. This is also the rea-
son why the Ho method was selected in our EPIC implementation.
The yields would decrease significantly if we used the PM, PT or
Hm method.



Table 3
Comparison of mean simulated crop yields (t ha�1) with the use of reference (Ho) and alternative PET methods.

Yield interval n Ref. PET Alternative PET

Ho Hm PM PT BR

Tests Tests Tests Tests

Mean SD Mean SD t F Mean SD t F Mean SD t F Mean SD t F

Winter wheat
<3 16,165 2.19 0.51 1.55 0.38 ** ** 1.76 0.54 ** ** 1.66 0.50 ** * 2.30 0.54 ** **

3–5 10,775 4.00 0.60 3.13 0.66 ** ** 3.58 0.73 ** ** 3.48 0.73 ** ** 4.04 0.59 ** ns
5–7 10,865 5.87 0.49 4.65 0.79 ** ** 5.36 0.63 ** ** 5.27 0.61 ** ** 5.84 0.50 ** ns
>7 933 7.58 0.57 6.47 0.91 ** ** 7.00 0.75 ** ** 7.05 0.62 ** * 7.51 0.55 ** ns
Total 38,738 3.85 1.71 2.98 1.52 ** ** 3.40 1.71 ** ns 3.31 1.71 ** ns 3.90 1.65 ** **

Spring barley
<3 8605 2.54 0.35 1.78 0.40 ** ** 2.25 0.46 ** ** 2.02 0.48 ** ** 2.75 0.39 ** **

3–4 13,176 3.52 0.29 2.79 0.50 ** ** 3.13 0.49 ** ** 2.91 0.57 ** ** 3.62 0.29 ** ns
4–5 13,355 4.47 0.27 3.71 0.52 ** ** 4.17 0.48 ** ** 4.04 0.51 ** ** 4.49 0.27 ** ns
>5 3602 5.29 0.26 4.66 0.52 ** ** 5.05 0.40 ** ** 4.97 0.39 ** ** 5.29 0.26 * ns
Total 38,738 3.79 0.91 3.06 1.00 ** ** 3.47 1.00 ** ** 3.29 1.06 ** ** 3.88 0.84 ** **

Maize
<4 1979 3.13 0.65 2.18 0.57 ** ** 2.16 0.76 ** ** 2.51 0.89 ** ** 3.50 0.63 ** ns
4–7 11,892 5.88 0.80 4.73 0.92 ** ** 4.90 1.12 ** ** 5.03 1.04 ** ** 6.08 0.78 ** *

7–10 19,346 8.13 0.76 6.96 1.16 ** ** 7.23 1.12 ** ** 7.43 1.05 ** ** 8.20 0.76 ** ns
>10 2896 10.78 0.55 10.57 0.75 ** ** 10.59 0.72 ** ** 10.60 0.71 ** ** 10.80 0.55 ** ns
Total 36,113 7.33 1.88 6.25 2.12 ** ** 6.46 2.16 ** ** 6.62 2.10 ** ** 7.45 1.79 ** **

Winter rye
<2 12,887 1.35 0.37 0.99 0.25 ** ** 1.11 0.35 ** ** 1.04 0.33 ** ** 1.39 0.38 ** **

2–4 12,679 2.97 0.61 2.36 0.62 ** ** 2.73 0.66 ** ** 2.60 0.68 ** ** 2.99 0.59 ** **

4–6 12,585 4.81 0.49 3.93 0.64 ** ** 4.54 0.57 ** ** 4.41 0.57 ** ** 4.78 0.50 ** ns
>6 578 6.33 0.23 5.47 0.49 ** ** 5.95 0.32 ** ** 5.93 0.36 ** ** 6.27 0.24 ** ns
Total 38,738 3.08 1.54 2.46 1.36 ** ** 2.83 1.54 ** ns 2.72 1.52 ** * 3.09 1.52 ** *

Notes: Ho – original Hargreaves, Hm – modified Hargreaves, PM – Penman–Monteith, PT – Priestly-Taylor, BR – Baier–Robertson; two-tailed paired t-test and F-test (ns – not
significant).
* Significant at P < 0.05.
** Significant at P < 0.01.

Fig. 7. Comparison of (a) winter wheat, (b) spring barley, (c) maize and (d) winter rye IFA/FAO expert estimates of N-fertiliser application rates and N-fertiliser application
rates used in the European EPIC implementation.
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4.2. N-fertilizer allocation

Predicting yields is exceptionally sensitive to application rates
of supplemental nutrients, and especially nitrogen. In order to ex-
press this source of variability, we aggregated our N application
rates (see Section 2.4) by countries and compared them with inde-
pendent national IFA/FAO expert estimates (IFA/IFD/IPI/PPI/FAO,
2002) in Fig. 7. We substantially overestimated the IFA/FAO esti-
mates for winter wheat, spring barley and maize in Netherland,
Belgium and Ireland. This is due to excessive use of manure not



Fig. 8. Relationships between simulated maize yields and N-fertilizer application rates for different maize varieties (v. 100 – early maize, v. 155 – medium-early maize, and v.
180 – late maize) and different irrigation intensities (kr from 0 to 1, with 0.2 increments, double-arrow denotes the k range for v. 180); triangle represents maize yield
realizations; horizontal arrow denotes EUROSTAT reported yields.
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considered in the IFA/FAO report. In contrast, we moderately
underestimated the quantity of N application in many countries
for all crops.

Nitrogen stress in Fig. 7 indicates that N deficiency limited
achievable yields in many countries. Above all, Eastern European
(right group in Fig. 7) and some Mediterranean countries demon-
strate substantial N stress due to suboptimal fertilisation rates.
The results suggest that the simulated yields could be significantly
increased in many regions if more nitrogen was applied. It is also
visible that nitrogen did not constrain maize yields in high produc-
tive regions of Netherland, Belgium, Germany, and others in Fig. 3
c, since there is almost no N stress for these countries in our
simulation.

Several points of criticism can be raised with respect to the ap-
proach we have followed here. It is doubtlessly very coarse and re-
spects neither crop rotation particularities nor nutrient stock
accumulation. Nevertheless, it enables a spatial distribution of crop
yields and nutrient stress.
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4.3. Sensitivity to management interventions

Management interventions can significantly contribute to spa-
tial and temporal variability in simulated and reported yields (Re-
idsma and Ewert, 2008; Reidsma et al., 2009). Therefore, a
sensitivity analysis of crop management and cultivar specific char-
acteristics was undertaken to evaluate the model implementation.
We demonstrate a range of possible simulation results as deter-
mined by changing fertilisation and irrigation intensities and crop
cultivars to better understand the uncertainties in the validation in
Section 3.1. We focus exclusively on maize. Crop yield responses to
changing nitrogen supplies and irrigation intensities are presented
in Fig. 8. A total of three maize cultivars with distinct PHUs and
vegetation periods were evaluated: (i) early cultivar with a short
vegetation period (100 days, dotted curve), (ii) medium-early cul-
tivar with a vegetation period of 155 days (dashed curve), and a
late 180-day cultivar (solid curve); all of them with HI = 0.50 and
WA = 40. Nitrogen supplies range from 0 to 400 N kg ha�1, covering
no to surplus N applications. A total of six water supply strategies
with the irrigated area fraction (kr) ranging from 0 to 1 (an incre-
ment of 0.2) were calculated for all the three cultivars (six lines
with respective dash) and six diverse European regions from Bel-
gium (BE23), Poland (PL0F), Romania (RO01), France (FR53), Greece
(GR24), and Spain (ES41). In these regions we capture different
cases of deviations in simulated versus reported yields from the
validation scatterplot in Fig. 3c. The respective yield realizations
from Fig. 3c (black circles) are here plotted as triangles lying at a
virtual intersection of N-fertilisation, irrigation and cultivar strate-
gies used in our Pan-European EPIC implementation, while hori-
zontal arrows demonstrate reported EUROSTAT yields. The
results in Fig. 8 depict uncertainties in simulated yields in different
regions since the yield estimates can occur anywhere along plotted
lines, or between them, depending on chosen N-fertilisation and
irrigation strategy for a given cultivar. It is visible that the irriga-
tion strategy affects yields in Mediterranean regions (ES, GR) much
more than in Continental (RO, FR, PL) or Atlantic (BE) regions if
requirements for sufficient nitrogen were met, and especially for
late maize cultivars. For example, EPIC predicted yields of almost
13 t ha�1 on intensively irrigated cropland in ES, whereas only 4
t ha�1 on the same land when rainfed. On the other hand, the BE
region is almost not sensitive to any irrigation. Nevertheless, dur-
ing extremely dry or hot conditions, irrigation would also provide
relief in these types of regions (van der Velde et al., 2010).

A number of different crop breeds not accounted for in our
implementation introduces additional uncertainty. Early cultivars
were less sensitive to water deficiency compared to the others as
they avoided higher temperatures later in the growing season,
but they resulted in lower yields. For instance, Reidsma et al.
(2009) reported that insufficiently captured maize breeds can limit
model performance in specific regions.

It is worth noting that we used only one combination of the
above strategies to reproduce regional yields in this study, while
statistical reports mix a number of them. It must necessarily lead
to over-simplification and inability to reproduce the entire yield
variability. The BE region is a good example of how our ‘‘over-
simplified’’ model failed to reproduce reported crop yields. As
shown in Fig. 3c, EPIC under-predicted reported crop yield and
its variation in the BE region. However, it is noticeable from
Fig. 8a that the predicted crop yields cannot be increased whether
by applying more N or by additional irrigation. We had to include
a more productive late hybrid with HI = 0.6 from Table 1 to ap-
proach the reported yields (Fig. 8a). In contrast, the RO region
shows much lower reported yields compared to our predictions.
This crop yield is consistent with almost no-input subsistence
management in our setup (Fig. 8c). We assume that we slightly
over-estimated crop technologies in some Eastern European re-
gions and under-estimated them in highly developed Western
European countries.
5. Conclusions

The Pan-European EPIC implementation performed effectively
in the prediction of regional crop yields for winter wheat, spring
barley, maize, and winter rye, while the spatial pattern in average
crop yields was reproduced better than inter-annual yield variabil-
ity. In this study, we benefit from improved calculations of (1) spa-
tially explicit sowing densities, (2) PHUs, (3) crop operation
schedule, and (4) nutrient application rates, rather than from
‘‘feed-back’’ calibration of EPIC. We accept the default crop and
biophysical process parameter values in EPIC, with only minor
adjustments, aiming to evaluate the model in a way by which it
is used in most impact studies.

In particular, EPIC was a better predictor for winter wheat, win-
ter rye and spring barley than for maize. We under-predicted
yields in highly productive regions of Western Europe and over-
predicted those in less productive regions of Eastern Europe. The
reproduced crop yields demonstrated narrower variance opposed
to the reported yields, indicating that we are not able to account
for the entire variability in reported crop yields with our imple-
mentation. We showed that our regional model implementation
necessarily simplifies effects of crop management options, causing
a ‘‘flatter’’ yield reproduction across European regions. The results
substantially altered when we used different PET methods, N-fer-
tilizer distribution, irrigation strategy, or crop cultivars. Therefore
we expect that the EPIC implementation performance shall in-
crease once we have better regionalization of the above variables.

EPIC performed notably better in dry compared to wet years.
The response of simulated yields to relevant meteorological vari-
ables was similar to the response observed in reported yields. In
contrast to the overall variability statement above, EPIC over-esti-
mated the temporal yield variability for some dry regions
(AI < 0.65). The results suggest that farmers in these regions are
able to lower water stress and produce more stable yields than
anticipated by our EPIC simulations.

We provide a comprehensive and spatially extensive validation
of a spatial Pan-European EPIC implementation. Undoubtedly,
through an iterative process, these EPIC simulations can be im-
proved by using better Pan-European input data as they become
available, as well as using a nested approach for model comparison
with reported regional and measured field data. In addition, future
work should expand on comprehensive sensitivity and uncertainty
analyses to help and identify the most influential model parame-
ters and outline important research and data-gap areas relevant
to large-scale crop modelling. We hope that this manuscript will
contribute to the availability of harmonised and transparently
evaluated agricultural modelling tools in the EU, as well as the
establishment of modelling benchmarks as a requirement for
sound and ongoing policy evaluations in the agricultural and envi-
ronmental domains.
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